
UBL Deprecation Policy version 1.0

1. Table of Contents
1. Table of Contents 1
2. Introduction 1
3. Assessing component deprecation 2
4. Vetting process 2
5. Documentation 3

5.1. General 3
5.2. Deprecating document types 3
5.3. Deprecating Business Information Entities (BIEs) 4
5.4. Deprecating cardinalities 4
5.5. Deprecating semantic definitions 5
5.6. Deprecating supplementary components 5

6. Removal of deprecated components 6

2. Introduction
This policy defines the guidelines and procedures for deprecating components within UBL.
Deprecation is the process of marking components within UBL as obsolete, signaling to users
that use of these components is no longer recommended and that they will be removed in future
versions. Components covered by this policy are:

- Document types
- Business Information Entities (BIEs)
- BIE cardinalities
- BIE definitions in the semantic library
- Supplementary components

Deprecating UBL components is sometimes necessary. It allows for the removal of obsolete or
problematic components, improving clarity, reducing ambiguity, enhancing usability and
accommodating the evolving needs of the user community. For example, when there are
ambiguous or redundant information items in the standard or when improved interoperability
between different UBL implementations is desired. However, deprecating a component is a
delicate decision that demands careful analysis and a clear understanding of the impact on
existing users. It is important that deprecation of a component is done thoughtfully and with
clear justification, and in a way that minimizes disruptions and confusion for users.

This policy exists to facilitate a more efficient and interoperable UBL ecosystem while taking into
account the concerns of existing users and stakeholders.



3. Assessing component deprecation
The deprecation of a component may be warranted when one or more of the following situations
are met and the correction results in breaking backwards compatibility:

- Consolidation
- In cases where data redundancy or fragmentation needs to be eliminated for

better data management and consistency, for example removing redundant
components.

- Ambiguity
- When the use of a component is unclear or can lead to conflicting interpretations,

for example because of a vague or imprecise semantic definition.
- Rectification

- To correct an error introduced in a previous UBL version, for example a spelling
error in a component name.

- Interoperability
- When a component is creating interoperability issues between users, for example

when providing different ways of achieving the same functionality.
- Feedback and user needs

- When feedback from users and stakeholders reveal that a component is causing
confusion, inefficiency, or other issues.

- No Longer Relevant
- When a component no longer serves a purpose or is no longer used in UBL, for

example orphaned ABIEs in the semantic library.
- Better Alternatives

- When there are better or more efficient ways to achieve the same functionality
and it is in the interest of UBL to encourage the use of these alternatives.

When deciding to deprecate a UBL component, it should also be assessed how users can
migrate from the deprecated component to another component in UBL. This is especially
important when BIEs and Supplementary Components are deprecated because of redundancy
or ambiguity.

4. Vetting process
Any member of the UBL TC may initiate the process for deprecating a UBL component. This
process is initiated by submitting a written proposal to the TC mailing list, clearly identifying
which component or components are being proposed and providing the rationale for the
proposed deprecation. Once received, the proposal will be triaged to determine whether the TC
will continue working on the proposal. If the TC cannot reach a consensus regarding the
deprecation of a component, a majority vote among TC voting members is conducted to make
the final decision.



5. Documentation
5.1. General

Each deprecation of a UBL component should be extensively documented to provide clarity and
guidance for users. This documentation should include:

- a clear explanation of why the component has been deprecated,
- alternatives considered,
- instructions on how to transition from the deprecated component to a recommended

alternative,
- expected impact on existing implementations,
- any dependencies to other components and/or document types that rely on the

deprecated component.

The following general requirements apply when documenting a deprecated component:

- Documentation must contain information about the UBL version number from which the
component was deprecated.

- The deprecation of the component must be mentioned in the release notes of the UBL
specification.

- Deprecated components must be clearly labeled in all documentation, libraries,
schemas, and other relevant artefacts.

- A warning message must be added to all applicable documentation and artefacts,
encouraging users to stop using the component.

In addition, specific documentation requirements may apply depending on the type of
component being deprecated, as outlined in the following sections.

5.2. Deprecating document types
When a UBL document type is deprecated, the specification and documentation must be
updated in the following ways:

- All mentions of the deprecated document type and of its declared namespace must
clearly label it as deprecated.

- The document schema documentation (currently under section 3.2) must be replaced
with a warning that the document type is deprecated as well as any helpful background
information and migration guidance.

- All processes and process diagrams that involve the deprecated document type must be
either removed or updated to use a viable alternative document type.

- Technical artefacts, such as XSDs and other schemas, must carry a warning message
that the document type is deprecated.



- All occurrences of the document type in the common library and document models must
clearly identify the document type as deprecated.

- All examples using the deprecated document type must either be removed or changed
to use an alternative document type.

5.3. Deprecating Business Information Entities (BIEs)
When deprecating a BBIE or an ABIE, the specification and documentation must be updated in
the following ways:

- All mentions of the deprecated BIE must clearly label it as deprecated.
- Technical artefacts, such as XSDs and other schemas, must carry a warning message

that the BIE is deprecated.
- All occurrences of the BIE in the common library and document models must clearly

identify the BIE as deprecated.
- For ABIEs, all associations to the ABIE (i.e., ASBIEs) must also clearly identify the BIE

as deprecated.
- If an alternative BIE or other functionality is being recommended, then the recommended

approach should be available everywhere in the common library and document models
where the deprecated BIE was previously available.

- The deprecated BIE must either be removed from the example UBL instances, or the
examples must be changed to use an alternative recommended approach.

- Where feasible, validation artefacts should show a warning message when encountering
use of the deprecated BIE.

5.4. Deprecating cardinalities
Changing the cardinality of a BIE from optional to mandatory or from unbounded to bounded is
sometimes desirable, however, it is not feasible between minor versions of UBL because of
backwards compatibility. Instead, the cardinality can be deprecated, informing users that a
cardinality change is planned for a future UBL release.

When deprecating the cardinality of a BIE, the specification and documentation must be
updated in the following ways:

- In the common library or document model, the BIE must show both the deprecated and
the new cardinality, with a clear warning that the old cardinality is deprecated.

- Technical artefacts, such as XSDs and other schemas, must carry a warning message
that use of the old cardinality is deprecated.

- Example UBL instances must be updated to avoid using the deprecated cardinality.
- Where feasible, validation artefacts should show a warning message when encountering

use of the deprecated cardinality.



5.5. Deprecating semantic definitions
Improving the semantic definition of a BIE or a document type within the common library or the
document models can be desirable, for example to clarify its intended use. However, if such a
change carries the risk of invalidating previous interpretations or uses of the BIE, it cannot be
changed within minor versions of UBL as this would break backwards compatibility. Instead, the
old semantic definition must be deprecated, and a new definition must be communicated to
users.

When deprecating a semantic definition, the specification and documentation must be updated
in the following ways:

- In the common library or document model, the BIE must show both the deprecated and
the new definition, with a clear warning that the old definition is deprecated.

- Technical artefacts, such as XSDs and other schemas, must carry a warning message
that use of the old definition is deprecated.

- Example UBL instances must be updated to ensure that example values are conformant
with the new definition.

5.6. Deprecating supplementary components
When deprecating the use of a CCTS supplementary component in UBL, the specification and
documentation must be updated in the following ways:

- All mentions of the deprecated supplementary component must clearly label it as
deprecated.

- The documentation of data type qualifications (currently appendix D of the UBL
specification) must clearly label the supplementary components as deprecated as well
as provide helpful background information and migration guidance.

- Technical artefacts, such as XSDs and other schemas, must carry a warning message
that the supplementary component is deprecated.

- All common library and document models documentation must clearly identify the
supplementary component as deprecated.

- The deprecated supplementary component must either be removed from the example
UBL instances, or the examples must be changed to use an alternative recommended
approach.

- Where feasible, validation artefacts should show a warning message when encountering
use of the deprecated supplementary component.



6. Removal of deprecated components
6.1. Removing components

Deprecated components will only be removed from the UBL library when transitioning to a new
major version of UBL. This approach ensures that backward compatibility is maintained within
each major version. Consequently, when moving to the next minor version within the same
major version, deprecated components will not be removed. This strategy aims to avoid
breaking existing systems and to allow a smoother transition for users, as they can continue
using deprecated components within the same major version without any disruption.

6.2. Future syntax bindings
When incorporating new syntax bindings into UBL, the question of backwards compatibility is
not a concern. As a result, new syntax specifications may selectively omit the use of deprecated
components, irrespective of the major or minor version of the UBL semantic library used when
introducing the new syntax binding.


