
 

ebXML Registry Services and Protocols 
Version 3.0.1

Committee Draft, Feb 22, 2007 

Document identifier:
regrep-rs

Location:
Latest Version: http://docs.oasis-open.org/regrep-rs/latest/
This Version: http://docs.oasis-open.org/regrep-rs/v3.0.1/
Previous Version: http://docs.oasis-open.org/regrep-rs/v3.0/

Editors:
Name Affiliation

Kathryn Breininger The Boeing Company
Farrukh Najmi Wellfleet Software Corporation
Nikola Stojanovic GS1 US

Contributors:
Name Affiliation

Ivan Bedini France Telecom
Ted Haas GS1 US
Paul Macias LMI
Carl Mattocks MetLife
Monica Martin Sun Microsystems
David Webber Individual

Abstract:
This document defines the services and protocols for an ebXML Registry 

A separate document, ebXML Registry: Information Model [ebRIM], defines the types of 
metadata and content that can be stored in an ebXML Registry.

Status:
This document is an OASIS ebXML Registry Technical Committee Approved Draft Specification.

Committee members should send comments on this specification to the regrep@lists.oasis-
open.org list. Others should subscribe to and send comments to the regrep-
comment@lists.oasis-open.org list. To subscribe, send an email message to regrep-comment-
request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to 
implementing this specification, and any offers of patent licensing terms, please refer to the 
Intellectual Property Rights section of the OASIS ebXML Registry TC web page 
(http://www.oasis-open.org/committees/regrep/).

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 1 of 129

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

http://www.oasis-open.org/committees/regrep/
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
http://docs.oasis-open.org/regrep-rs/v3.0/
http://docs.oasis-open.org/regrep-rs/v3.0.1/
http://docs.oasis-open.org/regrep-rs/latest/


Table of Contents
1 Introduction.............................................................................................................................................12

1.1 Audience.........................................................................................................................................12

1.2 Terminology.....................................................................................................................................12

1.3 Notational Conventions...................................................................................................................12

1.3.1 UML Diagrams.........................................................................................................................12

1.3.2 Identifier Placeholders.............................................................................................................12

1.3.3 Constants.................................................................................................................................12

1.3.4 Bold Text...................................................................................................................................13

1.3.5 Example Values.......................................................................................................................13

1.4 XML Schema Conventions..............................................................................................................13

1.4.1 Schemas Defined by ebXML Registry.....................................................................................13

1.4.2 Schemas Used By ebXML Registry.........................................................................................14

1.5 Registry Actors................................................................................................................................15

1.6 Registry Use Cases........................................................................................................................15

1.7 Registry Architecture.......................................................................................................................15

1.7.1 Registry Clients........................................................................................................................16
1.7.1.1 Client API............................................................................................................................................16

1.7.2 Registry Service Interfaces......................................................................................................16

1.7.3 Service Interface: Protocol Bindings........................................................................................16

1.7.4 Authentication and Authorization.............................................................................................17

1.7.5 Metadata Registry and Content Repository.............................................................................17

2 Registry Protocols..................................................................................................................................18

2.1 Requests and Responses...............................................................................................................18

2.1.1 RegistryRequestType...............................................................................................................18
2.1.1.1 Syntax:................................................................................................................................................18

2.1.1.2 Parameters:........................................................................................................................................19

2.1.1.3 Returns:..............................................................................................................................................19

2.1.1.4  Exceptions:........................................................................................................................................19

2.1.2 RegistryRequest......................................................................................................................19

2.1.3 RegistryResponseType............................................................................................................19
2.1.3.1 Syntax:................................................................................................................................................20

2.1.3.2 Parameters:........................................................................................................................................20

2.1.4 RegistryResponse....................................................................................................................20

2.1.5 RegistryErrorList......................................................................................................................20
2.1.5.1 Syntax:................................................................................................................................................21

2.1.5.2 Parameters:........................................................................................................................................21

2.1.6 RegistryError............................................................................................................................21
2.1.6.1 Syntax:................................................................................................................................................21

2.1.6.2 Parameters:........................................................................................................................................21

3 SOAP Binding.........................................................................................................................................23

3.1 ebXML Registry Service Interfaces: Abstract Definition..................................................................23

3.2 ebXML Registry Service Interfaces SOAP Binding.........................................................................23

3.3 ebXML Registry Service Interfaces SOAP Service Template.........................................................24

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 2 of 129

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72



3.4 Mapping of Exception to SOAP Fault .............................................................................................24

4 HTTP Binding.........................................................................................................................................26

4.1 HTTP Interface URL Pattern...........................................................................................................26

4.2 RPC Encoding URL.........................................................................................................................26

4.2.1 Standard URL Parameters.......................................................................................................26

4.2.2 QueryManager Binding............................................................................................................27
4.2.2.1 Sample getRegistryObject Request...................................................................................................27

4.2.2.2 Sample getRegistryObject Response................................................................................................27

4.2.2.3 Sample getRepositoryItem Request..................................................................................................28

4.2.2.4 Sample getRepositoryItem Response................................................................................................28

4.2.3 LifeCycleManager HTTP Interface...........................................................................................28

4.3 Submitter Defined URL...................................................................................................................28

4.3.1 Submitter defined URL Syntax.................................................................................................29

4.3.2 Assigning URL to a RegistryObject .........................................................................................29

4.3.3 Assigning URL to a Repository Item .......................................................................................30

4.4 File Path Based URL.......................................................................................................................30

4.4.1 File Folder Metaphor................................................................................................................30

4.4.2 File Path of a RegistryObject...................................................................................................30
4.4.2.1 File Path Example...............................................................................................................................30

4.4.3 Matching URL To Objects........................................................................................................31

4.4.4 URL Matches a Single Object..................................................................................................31

4.4.5 URL Matches Multiple Object..................................................................................................32

4.4.6 Directory Listing.......................................................................................................................32

4.4.7 Access Control In RegistryPackage Hierarchy........................................................................32

4.5 URL Resolution Algorithm...............................................................................................................33

4.6 Security Consideration....................................................................................................................33

4.7 Exception Handling.........................................................................................................................33

5 Lifecycle Management Protocols............................................................................................................34

5.1 Submit Objects Protocol..................................................................................................................34

5.1.1 SubmitObjectsRequest............................................................................................................34
5.1.1.1 Syntax:................................................................................................................................................34

5.1.1.2 Parameters:........................................................................................................................................35

5.1.1.3 Returns:..............................................................................................................................................35

5.1.1.4 Exceptions:.........................................................................................................................................35

5.1.2 Unique ID Generation..............................................................................................................35

5.1.3 ID Attribute And Object References.........................................................................................35

5.1.4 Audit Trail..................................................................................................................................36

5.1.5 Sample SubmitObjectsRequest...............................................................................................36

5.2 The Update Objects Protocol..........................................................................................................36

5.2.1 UpdateObjectsRequest............................................................................................................37
5.2.1.1 Syntax:................................................................................................................................................37

5.2.1.2 Parameters:........................................................................................................................................37

5.2.1.3 Returns:..............................................................................................................................................38

5.2.1.4  Exceptions:........................................................................................................................................38

5.2.2 Audit Trail..................................................................................................................................38

5.3 The Approve Objects Protocol.........................................................................................................38

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 3 of 129

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118



5.3.1 ApproveObjectsRequest..........................................................................................................38
5.3.1.1 Syntax:................................................................................................................................................39

5.3.1.2 Parameters:........................................................................................................................................39

5.3.1.3 Returns:..............................................................................................................................................39

5.3.1.4  Exceptions:........................................................................................................................................39

5.3.2 Audit Trail..................................................................................................................................39

5.4 The Deprecate Objects Protocol.....................................................................................................39

5.4.1 DeprecateObjectsRequest.......................................................................................................40
5.4.1.1 Syntax:................................................................................................................................................40

5.4.1.2 Parameters:........................................................................................................................................40

5.4.1.3 Returns:..............................................................................................................................................40

5.4.1.4  Exceptions:........................................................................................................................................41

5.4.2 Audit Trail..................................................................................................................................41

5.5 The Undeprecate Objects Protocol.................................................................................................41

5.5.1 UndeprecateObjectsRequest...................................................................................................41
5.5.1.1 Syntax:................................................................................................................................................41

5.5.1.2 Parameters:........................................................................................................................................42

5.5.1.3 Returns:..............................................................................................................................................42

5.5.1.4  Exceptions:........................................................................................................................................42

5.5.2 Audit Trail..................................................................................................................................42

5.6 The Remove Objects Protocol.........................................................................................................42

5.6.1 RemoveObjectsRequest..........................................................................................................43
5.6.1.1 Syntax:................................................................................................................................................43

5.6.1.2 Parameters:........................................................................................................................................43

5.6.1.3 Returns:..............................................................................................................................................44

5.6.1.4  Exceptions:........................................................................................................................................44

5.7 Registry Managed Version Control..................................................................................................44

5.7.1 Version Controlled Resources..................................................................................................44

5.7.2 Versioning and Object Identification.........................................................................................44

5.7.3 Logical ID.................................................................................................................................44

5.7.4 Version Identification................................................................................................................45
5.7.4.1 Version Identification for a RegistryObject.........................................................................................45

5.7.4.2 Version Identification for a RepositoryItem.........................................................................................45

5.7.5 Versioning of ExtrinsicObject and Repository Items................................................................45
5.7.5.1 ExtrinsicObject and Shared RepositoryItem......................................................................................46

5.7.6 Versioning and Composed Objects..........................................................................................46

5.7.7 Versioning and References......................................................................................................46

5.7.8 Versioning and Audit Trail.........................................................................................................47

5.7.9 Inter-versions Association........................................................................................................47

5.7.10 Client Initiated Version Removal............................................................................................47

5.7.11 Registry Initiated Version Removal........................................................................................47

5.7.12 Locking and Concurrent Modifications...................................................................................47

5.7.13 Version Creation.....................................................................................................................47

5.7.14 Versioning Override................................................................................................................48

6 Query Management Protocols................................................................................................................49

6.1 Ad Hoc Query Protocol...................................................................................................................49

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 4 of 129

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164



6.1.1 AdhocQueryRequest................................................................................................................50
6.1.1.1 Syntax:................................................................................................................................................50

6.1.1.2 Parameters:........................................................................................................................................50

6.1.1.3 Returns:..............................................................................................................................................51

6.1.1.4  Exceptions:........................................................................................................................................51

6.1.2 AdhocQueryResponse.............................................................................................................51
6.1.2.1 Syntax:................................................................................................................................................51

6.1.2.2 Parameters:........................................................................................................................................51

6.1.3 AdhocQuery.............................................................................................................................52
6.1.3.1 Syntax:................................................................................................................................................52

6.1.3.2 Parameters:........................................................................................................................................52

6.1.4 ReponseOption........................................................................................................................52
6.1.4.1 Syntax:................................................................................................................................................52

6.1.4.2 Parameters:........................................................................................................................................52

6.2 Iterative Query Support...................................................................................................................53

6.2.1 Query Iteration Example..........................................................................................................53

6.3 Stored Query Support.....................................................................................................................54

6.3.1 Submitting a Stored Query.......................................................................................................54
6.3.1.1 Declaring Query Parameters..............................................................................................................54

6.3.1.2 Canonical Context Parameters...........................................................................................................55

6.3.2 Invoking a Stored Query..........................................................................................................55
6.3.2.1 Specifying Query Invocation Parameters...........................................................................................55

6.3.3 Response to Stored Query Invocation.....................................................................................56

6.3.4 Access Control on a Stored Query..........................................................................................56

6.3.5 Canonical Query: Get Client’s User Object..............................................................................56

6.4 SQL Query Syntax..........................................................................................................................57

6.4.1 Relational Schema for SQL Queries........................................................................................57

6.4.2 SQL Query Results..................................................................................................................57

6.5 Filter Query Syntax.........................................................................................................................58

6.5.1 Filter Query Structure..............................................................................................................58

6.5.2 Query Elements.......................................................................................................................58

6.5.3 Filter Elements.........................................................................................................................59
6.5.3.1 FilterType............................................................................................................................................60

6.5.3.2 SimpleFilterType.................................................................................................................................60

6.5.3.3 BooleanFilter..................................................................................................................... ..................61

6.5.3.4 FloatFilter............................................................................................................................................61

6.5.3.5 IntegerFilter........................................................................................................... ..............................61

6.5.3.6 DateTimeFilter....................................................................................................................................62

6.5.3.7 StringFilter..........................................................................................................................................62

6.5.3.8 CompoundFilter..................................................................................................................................62

6.5.4 Nested Query Elements...........................................................................................................63

6.5.5 Branch Elements......................................................................................................................63

6.6 Query Examples..............................................................................................................................64

6.6.1 Name and Description Queries................................................................................................64

6.6.2 Classification Queries..............................................................................................................64
6.6.2.1 Retrieving ClassificationSchemes......................................................................................................65

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 5 of 129

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210



6.6.2.2 Retrieving Children of Specified ClassificationNode..........................................................................65

6.6.2.3 Retrieving Objects Classified By a ClassificationNode......................................................................65

6.6.2.4 Retrieving Classifications that Classify an Object..............................................................................65

6.6.3 Association Queries.................................................................................................................66
6.6.3.1 Retrieving All Associations With Specified Object As Source............................................................66

6.6.3.2 Retrieving All Associations With Specified Object As Target.............................................................66

6.6.3.3 Retrieving Associated Objects Based On Association Type..............................................................66

6.6.3.4 Complex Association Query...............................................................................................................67

6.6.4 Package Queries......................................................................................................................67

6.6.5 ExternalLink Queries...............................................................................................................67

6.6.6 Audit Trail Queries....................................................................................................................68

7 Event Notification Protocols....................................................................................................................69

7.1 Use Cases.......................................................................................................................................69

7.1.1 CPP Has Changed...................................................................................................................69

7.1.2 New Service is Offered............................................................................................................69

7.1.3 Monitor Download of Content..................................................................................................69

7.1.4 Monitor Price Changes............................................................................................................69

7.1.5 Keep Replicas Consistent With Source Object........................................................................69

7.2 Registry Events...............................................................................................................................69

7.3 Subscribing to Events......................................................................................................................70

7.3.1 Event Selection........................................................................................................................70

7.3.2 Notification Action....................................................................................................................70

7.3.3 Subscription Authorization.......................................................................................................71

7.3.4 Subscription Quotas.................................................................................................................71

7.3.5 Subscription Expiration............................................................................................................71

7.3.6 Subscription Rejection.............................................................................................................71

7.4 Unsubscribing from Events.............................................................................................................71

7.5 Notification of Events.......................................................................................................................71

7.6 Retrieval of Events..........................................................................................................................72

7.7 Pruning of Events............................................................................................................................72

8 Content Management Services..............................................................................................................73

8.1 Content Validation...........................................................................................................................73

8.1.1 Content Validation: Use Cases.................................................................................................73
8.1.1.1 Validation of HL7 Conformance Profiles.............................................................................................73

8.1.1.2 Validation of Business Processes.......................................................................................................73

8.1.1.3 Validation of UBL Business Documents.............................................................................................73

8.2 Content Cataloging..........................................................................................................................74

8.2.1 Content-based Discovery: Use Cases.....................................................................................74
8.2.1.1 Find All CPPs Where Role is “Buyer”.................................................................................................74

8.2.1.2 Find All XML Schema’s That Use Specified Namespace..................................................................74

8.2.1.3 Find All WSDL Descriptions with a SOAP Binding.............................................................................74

8.3 Abstract Content Management Service..........................................................................................74

8.3.1 Inline Invocation Model ...........................................................................................................75

8.3.2 Decoupled Invocation Model....................................................................................................76

8.4 Content Management Service Protocol..........................................................................................77

8.4.1 ContentManagementServiceRequestType..............................................................................77

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 6 of 129

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256



8.4.1.1 Syntax:................................................................................................................................................77

8.4.1.2 Parameters:........................................................................................................................................78

8.4.1.3 Returns:..............................................................................................................................................78

8.4.1.4  Exceptions:........................................................................................................................................78

8.4.2 ContentManagementServiceResponseType............................................................................78
8.4.2.1 Syntax:................................................................................................................................................78

8.4.2.2 Parameters:........................................................................................................................................78

8.5 Publishing / Configuration of a Content Management Service........................................................79

8.5.1 Multiple Content Management Services and Invocation Control Files.....................................80

8.6 Invocation of a Content Management Service................................................................................81

8.6.1 Resolution Algorithm For Service and Invocation Control File.................................................81

8.6.2 Audit Trail and Cataloged Content............................................................................................81

8.6.3 Referential Integrity..................................................................................................................81

8.6.4 Error Handling..........................................................................................................................81

8.7 Validate Content Protocol................................................................................................................82

8.7.1 ValidateContentRequest..........................................................................................................82
8.7.1.1 Syntax:................................................................................................................................................82

8.7.1.2 Parameters:........................................................................................................................................83

8.7.1.3 Returns:..............................................................................................................................................83

8.7.1.4  Exceptions:........................................................................................................................................83

8.7.2 ValidateContentResponse........................................................................................................83
8.7.2.1 Syntax:................................................................................................................................................83

8.7.2.2 Parameters:........................................................................................................................................83

8.8 Catalog Content Protocol................................................................................................................84

8.8.1 CatalogContentRequest...........................................................................................................84
8.8.1.1 Syntax:................................................................................................................................................84

8.8.1.2 Parameters:........................................................................................................................................85

8.8.1.3 Returns:..............................................................................................................................................85

8.8.1.4  Exceptions:........................................................................................................................................85

8.8.2 CatalogContentResponse........................................................................................................85
8.8.2.1 Syntax:................................................................................................................................................85

8.8.2.2 Parameters:........................................................................................................................................86

8.9 Illustrative Example: Canonical XML Cataloging Service................................................................86

8.10 Canonical XML Content Cataloging Service.................................................................................87

8.10.1 Publishing of Canonical XML Content Cataloging Service....................................................87

9 Cooperating Registries Support.............................................................................................................88

9.1  Cooperating Registries Use Cases................................................................................................88

9.1.1 Inter-registry Object References..............................................................................................88

9.1.2 Federated Queries...................................................................................................................88

9.1.3 Local Caching of Data from Another Registry..........................................................................88

9.1.4 Object Relocation.....................................................................................................................88

9.2 Registry Federations.......................................................................................................................89

9.2.1 Federation Metadata................................................................................................................89

9.2.2 Local Vs. Federated Queries....................................................................................................90
9.2.2.1 Local Queries......................................................................................................................................90

9.2.2.2 Federated Queries..............................................................................................................................90

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 7 of 129

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302



9.2.2.3 Membership in Multiple Federations..................................................................................................91

9.2.3 Federated Lifecycle Management Operations.........................................................................91

9.2.4 Federations and Local Caching of Remote Data.....................................................................91

9.2.5 Caching of Federation Metadata..............................................................................................91

9.2.6 Time Synchronization Between Registry Peers.......................................................................91

9.2.7 Federations and Security.........................................................................................................92

9.2.8 Federation Lifecycle Management Protocols ..........................................................................92
9.2.8.1 Joining a Federation...........................................................................................................................92

9.2.8.2 Creating a Federation.........................................................................................................................92

9.2.8.3 Leaving a Federation..........................................................................................................................92

9.2.8.4 Dissolving a Federation......................................................................................................................92

9.3 Object Replication...........................................................................................................................93

9.3.1 Use Cases for Object Replication............................................................................................93

9.3.2 Queries And Replicas..............................................................................................................94

9.3.3 Lifecycle Operations And Replicas..........................................................................................94

9.3.4 Object Replication and Federated Registries...........................................................................94

9.3.5 Creating a Local Replica..........................................................................................................94

9.3.6 Transactional Replication.........................................................................................................94

9.3.7 Keeping Replicas Current........................................................................................................95

9.3.8 Lifecycle Management of Local Replicas.................................................................................95

9.3.9 Tracking Location of a Replica.................................................................................................95

9.3.10 Remote Object References to a Replica................................................................................95

9.3.11 Removing a Local Replica.....................................................................................................95

9.4 Object Relocation Protocol..............................................................................................................95

9.4.1 RelocateObjectsRequest.........................................................................................................98
9.4.1.1 Parameters:........................................................................................................................................98

9.4.1.2 Returns:..............................................................................................................................................98

9.4.1.3  Exceptions:........................................................................................................................................98

9.4.2 AcceptObjectsRequest............................................................................................................98
9.4.2.1 Parameters:........................................................................................................................................99

9.4.2.2 Returns:..............................................................................................................................................99

9.4.2.3  Exceptions:........................................................................................................................................99

9.4.3 Object Relocation and Remote ObjectRefs.............................................................................99

9.4.4 Notification of Object Relocation To ownerAtDestination.......................................................100

9.4.5 Notification of Object Commit To sourceRegistry...................................................................100

9.4.6 Object Ownership and Owner Reassignment........................................................................100

9.4.7 Object Relocation and Timeouts............................................................................................100

10 Registry Security................................................................................................................................101

10.1 Security Use Cases.....................................................................................................................101

10.1.1 Identity Management...........................................................................................................101

10.1.2 Message Security................................................................................................................101

10.1.3 Repository Item Security......................................................................................................101

10.1.4 Authentication......................................................................................................................101

10.1.5 Authorization and Access Control........................................................................................101

10.1.6 Audit Trail..............................................................................................................................101

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 8 of 129

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347



10.2 Identity Management...................................................................................................................102

10.3 Message Security........................................................................................................................102

10.3.1 Transport Layer Security......................................................................................................102

10.3.2 SOAP Message Security.....................................................................................................102
10.3.2.1 Request Message Signature..........................................................................................................102

10.3.2.2 Response Message Signature.......................................................................................................102

10.3.2.3 KeyInfo Requirements....................................................................................................................103

10.3.2.4 Message Signature Validation........................................................................................................103

10.3.2.5 Message Signature Example.........................................................................................................103

10.3.2.6 Message With RepositoryItem: Signature Example.......................................................................104

10.3.2.7 SOAP Message Security and HTTP/S...........................................................................................105

10.3.3 Message Confidentiality.......................................................................................................106

10.3.4 Key Distribution Requirements.............................................................................................106

10.4 Authentication..............................................................................................................................106

10.4.1 Registry as Authentication Authority....................................................................................106

10.4.2 External Authentication Authority.........................................................................................107

10.4.3 Authenticated Session Support............................................................................................107

10.5 Authorization and Access Control...............................................................................................107

10.6 Audit Trail.....................................................................................................................................107

11 Registry SAML Profile........................................................................................................................108

11.1 Terminology.................................................................................................................................108

11.2 Use Cases for SAML Profile........................................................................................................108

11.2.1 Registry as SSO Participant: ...............................................................................................109

11.3 SAML Roles Played By Registry.................................................................................................109

11.3.1 Service Provider Role..........................................................................................................109
11.3.1.1 Service Provider Requirements.....................................................................................................109

11.4 Registry SAML Interface.............................................................................................................110

11.5 Requirements for Registry SAML Profile  ...................................................................................110

11.6 SSO Operation............................................................................................................................111

11.6.1 Scenario Actors....................................................................................................................111

11.6.2 SSO Operation – Unauthenticated HTTP Requestor..........................................................111
11.6.2.1 Scenario Sequence........................................................................................................................112

11.6.3 SSO Operation – Authenticated HTTP Requestor...............................................................113

11.6.4 SSO Operation – Unuthenticated SOAP Requestor............................................................113
11.6.4.1 Scenario Sequence........................................................................................................................114

11.6.5 SSO Operation – Authenticated SOAP Requestor..............................................................114
11.6.5.1 Scenario Sequence........................................................................................................................115

11.6.6 <samlp:AuthnRequest> Generation Rules...........................................................................116

11.6.7 <samlp:Response> Processing Rules.................................................................................116

11.6.8 Mapping Subject to User......................................................................................................116

11.7 External Users.............................................................................................................................117

12 Native Language Support (NLS)........................................................................................................118

12.1 Terminology.................................................................................................................................118

12.2 NLS and Registry Protcol Messages..........................................................................................118

12.3 NLS Support in RegistryObjects ................................................................................................118

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 9 of 129

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392



12.3.1 Character Set of LocalizedString.........................................................................................120

12.3.2 Language of LocalizedString...............................................................................................120

12.4 NLS and Repository Items .........................................................................................................120

12.4.1 Character Set of Repository Items.......................................................................................120

12.4.2 Language of Repository Items.............................................................................................120

13 Conformance......................................................................................................................................121

13.1 Conformance Profiles..................................................................................................................121

13.2 Feature Matrix.............................................................................................................................121

14 References.........................................................................................................................................125

14.1 Normative References.................................................................................................................125

14.2 Informative...................................................................................................................................127

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 10 of 129

393

394

395

396

397

398

399

400

401

402

403

404



Illustration Index

Figure 1: Simplified View of ebXML Registry Architecture.........................................................................16

Figure 2: Registry Protocol Request-Response Pattern............................................................................18

Figure 3: Example Registry Package Hierarchy.........................................................................................31

Figure 4: Example of a Directory Listing....................................................................................................32

Figure 5: Submit Objects Protocol.............................................................................................................34

Figure 6: Update Objects Protocol.............................................................................................................37

Figure 7: Approve Objects Protocol...........................................................................................................38

Figure 8: Deprecate Objects Protocol........................................................................................................40

Figure 9: Undeprecate Objects Protocol....................................................................................................41

Figure 10: Remove Objects Protocol.........................................................................................................43

Figure 11: Ad Hoc Query Protocol.............................................................................................................50

Figure 12: Filter Type Hierarchy.................................................................................................................60

Figure 13: Content Validation Service........................................................................................................73

Figure 14: Content Cataloging Service......................................................................................................74

Figure 15: Content Management Service:  Inline Invocation Model..........................................................76

Figure 16: Content Management Service: Decoupled Invocation Model...................................................77

Figure 17: Cataloging Service Configuration.............................................................................................80

Figure 18: Validate Content Protocol.........................................................................................................82

Figure 19: Catalog Content Protocol.........................................................................................................84

Figure 20: Example of CPP cataloging using Canonical XML Cataloging Service....................................86

Figure 21: Inter-registry Object References...............................................................................................88

Figure 22: Registry Federations.................................................................................................................89

Figure 23: Federation Metadata Example..................................................................................................90

Figure 24: Object Replication....................................................................................................................93

Figure 25: Object Relocation.....................................................................................................................96

Figure 26: Relocate Objects Protocol........................................................................................................97

Figure 27: SAML SSO Typical Scenario..................................................................................................109

Figure 28: SSO Operation – Unauthenticated HTTP Requestor.............................................................112

Figure 29: SSO Operation - Unauthenticated SOAP Requestor.............................................................114

Figure 30: SSO Operation - Authenticated SOAP Requestor..................................................................115

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 11 of 129

405



1 Introduction
An ebXML Registry is an information system that securely manages any content type and the 
standardized metadata that describes it.

The ebXML Registry provides a set of services that enable sharing of content and metadata between 
organizational entities in a federated environment. An ebXML Registry may be deployed within an 
application server, a web server or some other service container. The registry MAY be available to clients 
as a public, semi-public or private web site.

This document defines the services provided by an ebXML Registry and the protocols used by clients of 
the registry to interact with these services. 

A separate document, ebXML Registry: Information Model [ebRIM], defines the types of metadata and 
content that can be stored in an ebXML Registry.

1.1 Audience
The target audience for this specification is the community of software developers who are:

• Implementers of ebXML Registry Services
• Implementers of ebXML Registry Clients

1.2 Terminology
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, 
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in IETF 
RFC 2119 [RFC2119].

The term “repository item” is used to refer to content (e.g., an XML document or a DTD) that resides in a 
repository for storage and safekeeping. Each repository item is described by a RegistryObject instance. 
The RegistryObject catalogs the RepositoryItem with metadata.

1.3 Notational Conventions
Throughout the document the following conventions are employed to define the data structures used. The 
following text formatting conventions are used to aide readability:

1.3.1 UML Diagrams

Unified Modeling Language [UML] diagrams are used as a way to concisely describe concepts. They are 
not intended to convey any specific Implementation or methodology requirements.

1.3.2 Identifier Placeholders

Listings may contain values that reference ebXML Registry objects by their id attribute. These id values 
uniquely identify the objects within the ebXML Registry. For convenience and better readability, these key 
values are replaced by meaningful textual variables to represent such id values. 
For example, the placeholder in the listing below refers to the unique id defined for an example Service 
object:

<rim:Service id="${EXAMPLE_SERVICE_ID}">

1.3.3 Constants

Constant values are printed in the Courier New font always, regardless of whether they are defined 
by this document or a referenced document.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 12 of 129

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444



1.3.4 Bold Text

Bold text is used in listings to highlight those aspects that are most relevant to the issue being 
discussed. In the listing below, an example value for the contentLocator slot is shown in italics if 
that is what the reader should focus on in the listing:

<rim:Slot name="urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator">
...
</rim:Slot>

1.3.5 Example Values

These  values  are  represented  in  italic font.  In  the  listing  below,  an  example  value  for  the 
contentLocator slot is shown in italics:

<rim:Slot name="urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator">
<rim:ValueList>

<rim:Value>http://example.com/myschema.xsd</rim:Value>
</rim:ValueList>

</rim:Slot>

1.4 XML Schema Conventions
This specification uses schema documents conforming to W3C XML Schema [Schema1] and normative 
text to describe the syntax and semantics of XML-encoded objects and protocol messages. In cases of 
disagreement between the ebXML Registry schema documents and schema listings in this specification, 
the schema documents take precedence. Note that in some cases the normative text of this specification 
imposes constraints beyond those indicated by the schema documents.

Conventional XML namespace prefixes are used throughout this specification to stand for their 
respective namespaces as follows, whether or not a namespace declaration is present in the example. 
The use of these namespace prefixes in instance documents is non-normative. However, for consistency 
and understandability instance documents SHOULD use these namespace prefixes. 

1.4.1 Schemas Defined by ebXML Registry

Prefix XML Namespace Comments

rim: urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0 This is the Registry Information Model 
namespace [ebRIM]. The prefix is 
generally elided in mentions of Registry 
Information Model elements in text.

rs: urn:oasis:names:tc:ebxml-regrep:xsd:rs:3.0 This is the ebXML Registry namespace 
that defines base types for registry 
service requests and responses [ebRS]. 
The prefix is generally elided in mentions 
of ebXML Registry protocol-related 
elements in text.

query: urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0 This is the ebXML Registry query 
namespace that is used in the query 
protocols used between clients and the 
QueryManager service [ebRS].

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 13 of 129

445

446

447

448

449

450
451
452

453

454

455

456

457

458
459
460
461
462

463

464

465

466

467

468

469

470

471

472

473

474

475



Prefix XML Namespace Comments

lcm: urn:oasis:names:tc:ebxml-regrep:xsd:lcm:3.0 This is the ebXML Registry Life Cycle 
Management namespace that is used in 
the life cycle management protocols used 
between clients and the 
LifeCycleManager service [ebRS].

cms: urn:oasis:names:tc:ebxml-regrep:xsd:cms:3.0 This is the ebXML Registry Content 
Management Services namespace that is 
used in the content management 
protocols used between registry and 
pluggable content managent services 
[ebRS].

1.4.2 Schemas Used By ebXML Registry

Prefix XML Namespace Comments

saml: urn:oasis:names:tc:SAML:2.0:assertion This is the SAML V2.0 assertion 
namespace [SAMLCore]. The prefix is 
generally elided in mentions of SAML 
assertion-related elements in text.

samlp: urn:oasis:names:tc:SAML:2.0:protocol This is the SAML V2.0 protocol 
namespace [SAMLCore]. The prefix is 
generally elided in mentions of XML 
protocol-related elements in text.

ecp: urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp This is the SAML V2.0 Enhanced Client 
Proxy profile namespace, specified in this 
document and in a schema [SAMLECP-
xsd].

ds: http://www.w3.org/2000/09/xmldsig# This is the XML Signature namespace 
[XMLSig].

xenc: http://www.w3.org/2001/04/xmlenc# This is the XML Encryption namespace 
[XMLEnc].

SOAP-
ENV:

http://schemas.xmlsoap.org/soap/envelope This is the SOAP V1.1 namespace 
[SOAP1.1].

paos: urn:liberty:paos:2003-08 This is the Liberty Alliance PAOS (reverse 
SOAP) namespace.

xsi: http://www.w3.org/2001/XMLSchema-instance This namespace is defined in the W3C 
XML Schema specification [Schema1] for 
schema-related markup that appears in 
XML instances.

wsse: http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd

This namespace is defined by the Web 
Services Security: SOAP Message 
Security 1.0 specification [WSS-SMS]. It 
is used by registry to secure soap 
message communication.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 14 of 129

476

477

478



Prefix XML Namespace Comments

wsu: http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd

This namespace is defined by the Web 
Services Security: SOAP Message 
Security 1.0 specification [WSS-SMS]. It 
is used by registry to secure soap 
message communication.

 

1.5 Registry Actors
This section describes the various actors who interact with the registry. 

Actor Description

Registry Operator An organization that operates an ebXMl Registry and 
makes it's services available.

Registry Administrator A privileged user of the registry that is responsible for 
performing administrative tasks necessary for the 
ongoing operation of the registry. Such a user is 
analogous to a “super user” that is authorized to perform 
any action.

Registry Guest A user of the registry whose identity is not known to the 
registry. Such a user has limited privileges within the 
registry.

Registered User A user of the registry whose identity is known to the 
registry as an authorized user of the registry.

Submitter A user that submits content and or metadata to the 
registry. A Submitter MUST be a Registered User.

Registry Client A software program that interacts with the registry using 
registry protocols.

1.6 Registry Use Cases
Once deployed, the ebXML Registry provides generic content and metadata management services and 
as such supports an open-ended and broad set of use cases. The following are some common use 
cases that are being addressed by ebXML Registry. 

• Web Services Registry: publish, management, discovery and reuse of web service discriptions in 
WSDL, ebXML CPPA and other forms.

• Controlled Vocabulary Registry: Enables publish, management, discovery and reuse of controlled 
vocabularies including taxonomies, code lists, ebXML Core Components, XML Schema and UBL 
schema.

• Business Process Registry: Enables publish, management, discovery and reuse of Business Process 
specifications such as ebXML BPSS, BPEL and other forms.

• Electronic Medical Records Repository

• Geological Information System (GIS) Repository that stores GIS data from sensors

1.7 Registry Architecture
The following figure provides a simplified view of the architecture of the ebXML Registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 15 of 129

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498



1.7.1 Registry Clients

A Registry Client is a software program that interacts with the registry using registry protocols. The 
Registry Client MAY be a Graphical User Interface (GUI), software service or agent. The Registry Client 
typically accesses the registry using SOAP 1.1 with Attachments [SwA] protocol. 

A Registry Client may run on a client machine or may be a web tier service running on a server and may 
accessed by a web browser. In either case the Registry Client interacts with the registry using registry 
protocols.

1.7.1.1 Client API

A Registry client MAY access a registry interface directly. Alternatively, it MAY use a registry client API 
such as the Java API for XML Registries [JAXR] to access the registry. Client APIs such as [JAXR] 
provide programming convenience and are typically specific to a programming language.

1.7.2 Registry Service Interfaces

The ebXML Registry consists of the following service interfaces: 

• A LifecycleManager interface that provides a collection of operations for end-to-end lifecycle 
management of metadata and content within the registry. This includes publishing, update, approval 
and deletion of metadata and content.

• A QueryManager interface that provides a collection of operations for the discovery and retrieval of 
metadata and content within the registry.    

[RS-Interface-WSDL] provides an abstract (protocol neutral) definition  of these Registry Service 
interfaces in WSDL format.

1.7.3 Service Interface: Protocol Bindings

This specification defines the following concrete protocol binding for the abstract service interfaces of the 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 16 of 129

Figure 1: Simplified View of ebXML Registry Architecture

499

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522



ebXML Registry:

• SOAP Binding that allows a Registry Client to access the registry using SOAP 1.1 with 
Attachments [SwA]. [RS-Bindings-WSDL] defines the binding of the abstract Registry Service 
interfaces to the SOAP protocol in WSDL format.

• HTTP Binding that allows a Web Browser client to access the registry using HTTP 1.1 
protocol.

Additional bindings may be defined in the future as needed by the community.

1.7.4 Authentication and Authorization

A Registry Client SHOULD be authenticated by the registry to determine the identity associated with 
them. Typically, this is the identity of the user associated with the Registry Client. Once the registry 
determines the identity it MUST perform authorization and access control checks before permitting the 
Registry Client's request to be processed.

1.7.5 Metadata Registry and Content Repository

An ebXML Registry is both a registry of metadata and a repository of content. A typical ebXML Registry 
implementation uses some form of persistent store such as a database to store its metadata and content. 
Architecturally, registry is distinct from the repository. However, all access to the registry as well as 
repository is through the operations defined by the Registry Service interfaces.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 17 of 129

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539



2 Registry Protocols
This chapter introduces the registry protocols supported by the registry service interfaces. Specifically it 
introduces the generic message exchange patterns that are common to all registry protocols.

2.1 Requests and Responses
Specific registry request and response messages derive from common types defined in XML Schema in 
[RR-RS-XSD].  The Registry Client sends an element derived from RegistryRequestType to a registry, 
and the registry generates an element adhering to or deriving from RegistryResponseType, as shown 
next.

Throughout this section, text mentions of elements and types are indicated with a namespace prefix. The 
namespace prefix conventions are defined in the “Introduction” chapter.

Each registry request is atomic and either succeeds or fails in entirety. In the event of success, the 
registry sends a RegistryResponse with a status of “Success” back to the client. In the event of failure, 
the registry sends a RegistryResponse with a status of “Failure” back to the client. In the event of an 
immediate response for an asynchronous request, the registry sends a RegistryResponse with a status 
of “Unavailable” back to the client. Failure occurs when one or more Error conditions are raised in the 
processing of the submitted objects.  Warning messages do not result in failure of the request.

2.1.1 RegistryRequestType

The RegistryRequestType type is used as a common base type for all registry request messages.

2.1.1.1 Syntax:

  <complexType name="RegistryRequestType">
    <sequence>
      <!-- every request may be extended using Slots. -->
      <element maxOccurs="1" minOccurs="0" name="RequestSlotList" 
type="rim:SlotListType"/>
    </sequence>    
    <attribute name="id" type="anyURI" use="required"/>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 18 of 129

Figure 2: Registry Protocol Request-Response Pattern

540

541

542

543

544

545

546

547

549

550

551

552

553

554

555

556

557

558

559

560

561
562
563
564
565
566
567



    <!--Comment may be used by requestor to describe the request. Used 
in VersionInfo.comment-->
    <attribute name="comment" type="string" use="optional"/>
  </complexType>
  <element name="RegistryRequest" type="tns:RegistryRequestType"/>

2.1.1.2 Parameters:

 comment:  This parameter allows the requestor to specify a string value that describes 
the action being performed by the request. This parameter is used by the “Registry 
Managed Version Control” feature of the registry.

 id:  This parameter specifies a request identifier that is used by the corresponding 
response to correlate the response with its request. It MAY also be used to correlate a 
request with another related request. The value of the id parameter MUST abide by the 
same constraints as the value of the id attribute for the <rim:IdentifiableType> type.

 RequestSlotList:  This parameter specifies a collection of Slot instances. A 
RegistryReuqestType MAY include Slots as an extensibility mechanism that provides a 
means of adding additional attributes to the request in form of Slots. The use of registry 
implementation specific slots MUST be ignored silently by a registry that does not 
support such Slots and MAY not be interoperable across registry implementations.

2.1.1.3 Returns:

All RegistryRequests return a response derived from the common RegistryResponseType base type.

2.1.1.4  Exceptions:

The following exceptions are common to all registry protocol requests:

 AuthorizationException: Indicates that the requestor attempted to perform an 
operation for which he or she was not authorized. 

 InvalidRequestException: Indicates that the requestor attempted to perform an 
operation that was semantically invalid.

 SignatureValidationException: Indicates that a Signature specified for the request 
failed to validate.

 TimeoutException: Indicates that the processing time for the request exceeded a 
registry specific limit. 

 UnsupportedCapabilityException: Indicates that this registry did not support the 
capability required to service the request.

In addition to above exceptions there are additional exceptions defined by [WSS-SMS] that a registry 
protocol request MUST return when certain errors occur during the processing of the <wsse:Security> 
SOAP Header element.

2.1.2 RegistryRequest

RegistryRequest is an element whose base type is RegistryRequestType. It adds no additional elements 
or attributes beyond those described in RegistryRequestType. The RegistryRequest element MAY be 
used by a registry to support implementation specific registry requests.

2.1.3 RegistryResponseType

The RegistryResponseType type is used as a common base type for all registry responses. 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 19 of 129

568
569
570
571
572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609



2.1.3.1 Syntax:

  <complexType name="RegistryResponseType">
    <sequence>
      <!-- every response may be extended using Slots. -->
      <element maxOccurs="1" minOccurs="0" name="ResponseSlotList" 
type="rim:SlotListType"/>
      <element minOccurs="0" ref="tns:RegistryErrorList"/>
    </sequence>
    <attribute name="status" type="rim:referenceURI" use="required"/>
    <!-- id is the request if for the request for which this is a 
response -->
    <attribute name="requestId" type="anyURI" use="optional"/>
  </complexType>
  <element name="RegistryResponse" type="tns:RegistryResponseType"/>

2.1.3.2 Parameters:

 status:  The status attribute is used to indicate the status of the request. The value of the 
status attribute MUST be a reference to a ClassificationNode within the canonical 
ResponseStatusType ClassificationScheme as described in [ebRIM]. A Registry MUST 
support the status types as defined by the canonical ResponseStatusType 
ClassificationScheme. The canonical ResponseStatusType ClassificationScheme may 
be extended by adding additional ClassificationNodes to it. 

The following canonical values are defined for the ResponseStatusType 
ClassificationScheme:

• Success - This status specifies that the request was successful.

• Failure - This status specifies that the request encountered a failure. One or more 
errors MUST be included in the RegistryErrorList in this case or returned as a SOAP 
Fault.

• Unavailable – This status specifies that the response is not yet available. This may 
be the case if this RegistryResponseType represents an immediate response to an 
asynchronous request where the actual response is not yet available.

 requestId:  This parameter specifies the id of the request for which this is a response. It 
matches value of the id attribute of the corresponding RegistryRequestType.

 ResponseSlotList:  This parameter specifies a collection of Slot instances. A 
RegistryResponseType MAY include Slots as an extensibility mechanism that provides a 
means of adding dynamic attributes in form of Slots. The use of registry implementation 
specific slots MUST be ignored silently by a Registry Client that does not support such 
Slots and MAY not be interoperable across registry implementations.

 RegistryErrorList: This parameter specifies an optional collection of RegistryError 
elements in the event that there are one or more errors that were encountered while the 
registry processed the request for this response. This is described in more detail in 6.9.4.

2.1.4 RegistryResponse

RegistryResponse is an element whose base type is RegistryResponseType. It adds no additional 
elements or attributes beyond those described in RegistryResponseType. RegistryResponse is used by 
many registry protocols as their response.

2.1.5 RegistryErrorList

A RegistryErrorList specifies an optional collection of RegistryError elements in the event that there are 
one or more errors that were encountered while the registry processed a request.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 20 of 129

610

611
612
613
614
615
616
617
618
619
620
621
622
623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656



2.1.5.1 Syntax:

<element name="RegistryErrorList">
   <complexType>
     <complexContent>
       <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
         <sequence>
           <element ref="rs:RegistryError" maxOccurs="unbounded"/>
         </sequence>
         <attribute name="highestSeverity" type="rim:referenceURI" />
       </restriction>
     </complexContent>
   </complexType>
 </element>

 

2.1.5.2 Parameters:

 highestSeverity:  This parameter specifies the ErrorType for the highest severity 
RegistryError in the RegistryErrorList. Values for highestSeverity are defined by 
ErrorType in .

 RegistryError: A RegistryErrorList has one or more RegistryErrors. A RegistryError 
specifies an error or warning message that is encountered while the registry processes a 
request. RegistryError is defined in 2.1.6.

2.1.6 RegistryError

A RegistryError specifies an error or warning message that is encountered while the registry processes a 
request.

2.1.6.1 Syntax:

  <element name="RegistryError">
    <complexType>
      <simpleContent>
        <extension base="string">
          <attribute name="codeContext" type="string" use="required"/>
          <attribute name="errorCode" type="string" use="required"/>
          <attribute default="urn:oasis:names:tc:ebxml-
regrep:ErrorSeverityType:Error" name="severity" type="rim:referenceURI" 
/>
          <attribute name="location" type="string" use="optional"/>
        </extension>
      </simpleContent>
    </complexType>
  </element>

 

2.1.6.2 Parameters:

 codeContext:  This attribute specifies a string that indicates contextual text that provides 
additional detail to the errorCode. For example, if the errorCode is 
InvalidRequestException the codeContext MAY provide the reason why the request was 
invalid.

 errorCode: This attribute specifies a string that indicates the error that was encountered. 
Implementations MUST set this attribute to the Exception or Error as defined by this 
specification (e.g. InvalidRequestException).

 severity: This attribute indicates the severity of error that was encountered. The value of 
the severity attribute MUST be a reference to a ClassificationNode within the canonical 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 21 of 129

657

658
659
660
661
662
663
664
665
666
667
668
669

670

671

672

673

674

675

676

677

678

679

680

681

682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697

698

699

700

701

702

703

704

705



ErrorSeverityType ClassificationScheme as described in [ebRIM]. A Registry MUST 
support the error severity types as defined by the canonical ErrorSeverityType 
ClassificationScheme. The canonical ErrorSeverityType ClassificationScheme may be 
extended by adding additional ClassificationNodes to it. 

The following canonical values are defined for the ErrorSeverityType 
ClassificationScheme:

• Error – An Error is a fatal error encountered by the registry while processing a 
request. A registry MUST return a status of Failure in the RegistryResponse for a 
request that encountered Errors during its processing.

• Warning – A Warning is a non-fatal error encountered by the registry while 
processing a request. A registry MUST return a status of Success in the 
RegistryResponse for a request that only encountered Warnings during its 
processing and encountered no Errors.

 location: This attribute specifies a string that indicated where in the code the error 
occured. Implementations SHOULD show the stack trace and/or, code module and line 
number information where the error was encountered in code.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 22 of 129

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721



3 SOAP Binding
This chapter defines the SOAP protocol binding for the ebXML Registry service interfaces. The SOAP 
binding enables access to the registry over the SOAP 1.1 with Attachments [SwA] protocol. The complete 
SOAP Binding is described by the following WSDL description files:

• ebXML Registry Service Interfaces: Abstract Definition [RR-INT-WSDL]

• ebXML Registry Service Interfaces: SOAP Binding [RR-SOAPB-WSDL]

• ebXML Registry Service Interfaces: SOAP Service [RR-SOAPS-WSDL]

3.1 ebXML Registry Service Interfaces: Abstract Definition
In [RR-INT-WSDL], each registry Service Interface is mapped to an abstract WSDL portType as follows: 

• A portType is defined for each Service Interface:

  <portType name="QueryManagerPortType">
  ...
  </portType>
  <portType name="LifeCycleManagerPortType">
  ...
  </portType>

• Within each portType an operation is defined for each protcol supported by the service interafce:

  <portType name="QueryManagerPortType">
    <operation name="submitAdhocQuery">
    ...
    </operation>
  </portType>

• Within each operation the  the request and response message for the corresponding protocol are 
defined as input and output for the operation:

  <portType name="QueryManagerPortType">
    <operation name="submitAdhocQuery">
      <input message="tns:msgAdhocQueryRequest"/>
      <output message="tns:msgAdhocQueryResponse"/>
    </operation>
  </portType>

• For each message used in an operation a message element is defined that references the element 
corresponding to the registry protocol request or response message from the XML Schema for the 
registry service interface [RR-LCM-XSD], [RR-QM-XSD]:

  <message name="msgAdhocQueryRequest">
    <part element="query:AdhocQueryRequest" 
      name="partAdhocQueryRequest"/>
  </message>
  <message name="msgAdhocQueryRespone">
    <part element="query:AdhocQueryResponse" 
      name="partAdhocQueryResponse"/>
  </message>

3.2 ebXML Registry Service Interfaces SOAP Binding
In [RR-SOAPB-WSDL], a SOAP Binding is defined for the registry service interfaces as follows:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 23 of 129

722

723

724

725

726

727

728

729

730

731

732

733
734
735
736
737
738

739

740

741

742
743
744
745
746

747

748

749
750
751
752
753
754
755

756

757

758

759

760

761
762
763
764
765
766
767
768

769

770



• For each portType corresponding to a registry service interface and defined in [RR-INT-WSDL] a 
<binding> element is defined which has name <ServiceInterfaceName>Binding

• The <binding> element references the portType defined in [RR-INT-WSDL] via its type attribute

• The <soap:binding> extension element uses the “document” style

• An operation element is defined for each protocol defined for the service interface. The operation 
name relates to the protocol request message.

• The <soap:operation> extension element has <input> and <output> elements that have <soap:body> 
elements with use="literal".  

  <binding name="QueryManagerBinding" 
type="interfaces:QueryManagerPortType">
    <soap:binding style="document" 
transport="http://schemas.xmlsoap.org/soap/http"/>
    <operation name="submitAdhocQuery">
      <soap:operation soapAction="urn:oasis:names:tc:ebxml-
regrep:wsdl:registry:bindings:3.0:QueryManagerPortType#submitAdhocQuery"
/>
      <input>
        <soap:body use="literal"/>
      </input>
      <output>
        <soap:body use="literal"/>
      </output>
    </operation>
  </binding>

3.3 ebXML Registry Service Interfaces SOAP Service Template
In [RR-SOAPS-WSDL], a non-normative template is provided for a WSDL Service that uses the SOAP 
Binding from the registry service interfaces as follows: 

• A single service element defines the concrete ebXML Registry SOAP Service.  The template uses the 
name “ebXMLRegistrySOAPService”.

• The service element includes a port definitions, where each port corresponds with one of the service 
interfaces defined for the registry. Each port includes an HTTP URL for accessing that port specified 
by the location attribute of the <soap:address> element. The HTTP URL to the SOAP Service MUST 
conform to the pattern <base URL>/soap where <base URL> MUST be the same as the value of the 
home attribute of the instance of the Registry class defined by [ebRIM] that represents this registry. 

• Each port definition also references a SOAP binding element described in the previous section. 

  <service name="ebXMLRegistrySOAPService">
    <port binding="bindings:QueryManagerBinding" 
name="QueryManagerPort">
      <soap:address location="http://your.server.com/soap"/>
    </port>
    <port binding="bindings:LifeCycleManagerBinding" 
name="LifeCycleManagerPort">
      <soap:address location="http://your.server.com/soap"/>
    </port>
  </service>

3.4 Mapping of Exception to SOAP Fault 
The registry protocols defined in this specification include the specification of Exceptions that a registry 
MUST return when certain exceptional conditions are encountered during the processing of the protocol 
request message. A registry MUST return Exceptions specified in registry protocol messages as SOAP 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 24 of 129

771

772

773

774

775

776

777

778

779

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

796

797

798

799

800

801

802

803

804

805

806

807

808

809
810
811
812
813
814
815
816
817
818

819

820

821

822

823



Faults as described in this section. In addition a registry MUST conform to [WSI-BP] when generating the 
SOAP Fault. A registry MUST NOT sign a SOAP Fault message it returns.

The following table provides details on how a registry MUST map exceptions to SOAP Faults.

SOAP Fault 
Element

Description Example

faultcode The faultCode MUST be present and MUST 
be the name of the Exception qualified by 
the URN prefix: 
urn:oasis:names:tc:ebxml-
regrep:rs:exception:

urn:oasis:names:tc:ebxml-
regrep:rs:exception:ObjectNot 
FoundException

faultstring The faultstring MUST be present and 
SHOULD provide some information 
explaining the nature of the exception.

Object with id  
urn:freebxml:registry:demoDB:Extrinsic
Object:zeusDescription not found in  
registry.

detail At least one detail element MUST be 
present. The detail element SHOULD 
include the stack trace and/or, code module 
and line number information where the 
Exception was encountered in code. If the 
Exception has nested Exceptions within it 
then the registry SHOULD include the 
nested exceptions as nested detail elements 
within the top level detail element.

faultactor At least one faultactor MUST be present. 
The first faultactor MUST be the base URL 
of the registry.

http://example.server.com:8080/oma 
r/registry

Table 1: Mapping a Registry Exception to SOAP Fault

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 25 of 129

824

825

826

827



4 HTTP Binding
This chapter defines the HTTP protocol binding for the ebXML Registry abstract service interfaces. The 
HTTP binding enables access to the registry over the HTTP 1.1 protocol. 

The HTTP interface provides multiple options for accessing RegistryObjects and RepositoryItems via the 
HTTP protocol. These options are:

• RPC Encoding URL: Allows client access to objects via a URL that is based on encoding a 
Remote Procedure Call (RPC) to a registry interface as an HTTP protocol request.

• Submitter Defined URL: Allows client access to objects via Submitter defined URLs.

• File Path Based URL: Allows clients access to objects via a URL based upon a file path derived 
from membership of object in a RegistryPackage membership hierarchy.

Each of the above methods has its advantages and disadvantages and each method may be better 
suited for different use cases as illustrated by table below:

HTTP Acceess Method Advantages Disadvantages
RPC Encoding URL • The URL is constant and 

deterministic
• Submitter need not 

explicitly assign URL

• The URL is long and not 
human-friendly to 
remember

Submitter Defined URL • Very human-friendly URL
• Submitter may assign any 

URL
• The URL is constant and 

deterministic

• Submitter must explicitly 
assign URL

• Requires additional 
resources in the registry

File Path Based URL • Submitter need not 
explicitly assign URL

• Intuitive URL that is based 
upon a familiar file / folder 
metaphor 

• The URL is NOT 
constant and deterministic

• Requires placing objects 
as members in 
RegistryPackages

Table 2: Comparison of HTTP Access Methods

4.1 HTTP Interface URL Pattern
The HTTP URLs used by the HTTP Binding MUST conform to the pattern <base URL>/http/<url suffix> 
where <base URL> MUST be the same as the value of the home attribute of the instance of the Registry 
class defined by [ebRIM] that represents this registry. The <url suffix> depends upon the HTTP Access 
Method and various request specific parameters that will be described later in this chapter.

4.2 RPC Encoding URL
The RPC Encoding URL method of the HTTP interface maps the operations defined by the abstract 
registry interfaces to the HTTP protocol using an RPC style. It defines how URL parameters are used to 
specify the interface, method and invocation parameters needed to invoke an operation on a registry 
interface such as the QueryManager interface.

The RPC Encoding URL method also defines how an HTTP response is used to carry the response 
generated by the operation specified in the request. 

4.2.1 Standard URL Parameters

The following table specifies the URL parameters supported by RPC Encoding URLs. A Registry MAY 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 26 of 129

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855



implement additional URL parameters in addition to these parameters. Note that the URL Parameter 
names MUST be processed by the registry in a case-insensitive manner while the parameter values 
MUST be processed in a case-sensitive manner.

URL Parameter Required Description Example

interface YES Defines the service interface 
that is the target of the request.

QueryManager

method YES Defines the method 
(operation)within the interface 
that is the target of the request.

 getRegistryObject

param-<key> NO Defines named parameters to 
be passed into a method call. 
Note that some methods 
require specific parameters.

param-id= 
urn:freebxml:registry:demoD
B:ExtrinsicObject:zeusDescri
ption

Table 3: Standard URL Parameters

4.2.2 QueryManager Binding

A registry MUST support a RPC Encoded URL HTTP binding to QueryManager service interface. To 
specify the QueryManager interface as its target, the interface parameter of the URL MUST be 
“QueryManager.” In addition the following URL parameters are defined by the QueryManager HTTP 
Interface.

Method Parameter Return Value HTTP Request Type

getRegistryObject id The RegistryObject that 
matches the specified id.

GET

getRepositoryItem id The RepositoryItem that 
matches the specified id. 
Note that a 
RepositoryItem may be 
arbitrary content (e.g. a 
GIF image).

GET

Table 4: RPC Encoded URL: Query Manager Methods

Note that in the examples that follow, name space declarations are omitted to conserve space. Also note 
that some lines may be wrapped due to lack of space.

4.2.2.1 Sample getRegistryObject Request

The following example shows a getRegistryObject request.

GET /http?interface=QueryManager&method=getRegistryObject&param-
id= urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription 
HTTP/1.1

4.2.2.2 Sample getRegistryObject Response

The following example shows an ExtrinsicObject, which is a concrete sub-class of RegistryObject being 
returned as a response to the getRegistryObject method invocation.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 27 of 129

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871
872
873

874

875

876

877

878



HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 555
 
<?xml version="1.0"?>
<ExtrinsicObject 

id = 
"urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription"

objectType="${OBJECT_TYPE}">
...
</ExtrinsicObject>  

4.2.2.3 Sample getRepositoryItem Request

The following example shows a getRepositoryItem request.

GET /http?interface=QueryManager&method=getRepositoryItem&param-
id= urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription 
HTTP/1.1

4.2.2.4 Sample getRepositoryItem Response

The following example assumes that the repository item was a Collaboration Protocol Profile as defined 
by [ebCPP]. It could return any type of content (e.g. a GIF image).

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 555
 
<?xml version="1.0"?>
<CollaborationProtocolProfile>
...
</CollaborationProtocolProfile>   

4.2.3 LifeCycleManager HTTP Interface

The RPC Encoded URL mechanism of the HTTP Binding does not support the LifeCycleManager 
interface. The reason is that the LifeCycleManager operations require HTTP POST which is already 
supported by the SOAP binding.

4.3 Submitter Defined URL

A Submitter MAY specify zero or more Submitter defined URLs for a RegistryObject or RepositoryItem. 
These URLs MAY then be used by clients to access the object using the GET request of the HTTP 
protocol. Submitter defined URLs serve as an alternative to the RPC Encoding URL defined by the HTTP 
binding for the QueryManager interface. The benefit of Submitter defined URLs is that objects are made 
accessible via a URL that is meaningful and memorable to the user. The cost of Submitter defined URLs 
is that the Submitter needs to specify the Submitter defined URL and that the Submitter defined URL 
takes additional storage resources within the registry.

Consider the examples below to see how Submitter defined URLs compare with the URL defined by the 
HTTP binding for the QueryManager interface. 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 28 of 129

879
880
881
882
883
884
885
886
887
888
889

890

891

892

893

894
895
896

897

898

899

900

901

902
903
904
905
906
907
908
909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924



Following is a sample URL defined by the HTTP binding for the QueryManager interface to access a 
RegistryObject that is an ExtrinsicObject describing a GIF image:
 

http://localhost:8080/ebxmlrr/registry/http/?interface=QueryManager&meth
od=getRegistryObject&param-
id=urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription
 

The same RegistryObject (an ExtrinsicObject) may be accessed via the following Submitter defined URL:

http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus.xml
 

Following is a sample URL defined by the HTTP binding for the QueryManager interface to access a 
repository item that is a GIF image:
 

http://localhost:8080/ebxmlrr/registry/http/?interface=QueryManager&meth
od=getRepositoryItem&param-
id=urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription
 

The same repository item may be accessed via the following Submitter defined URL:

http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus.jpg
 

4.3.1 Submitter defined URL Syntax

A Submitter MUST specify a Submitter defined URL as a URL suffix that is relative to the base URL of 
the registry. The URL suffix for a Submitter defined URL MUST be unique across all Submitter defined 
URLs defined for all objects within a registry. 

The use of relative URLs is illustrated as follows:

• Base URL for Registry: http://localhost:8080/ebxml/registry

• Implied Prefix URL for HTTP interface: http://localhost:8080/ebxml/registry/http

• Submitter Defined URL suffix: /pictures/nikola/zeus

• Complete URL: http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus 

4.3.2 Assigning URL to a RegistryObject 

A Submitter MAY assign one or more Submitter defined URLs to a RegistryObject.

The Submitter defined URL(s) MAY be assigned by the Submitter using a canonical slot on the 
RegistryObject. The Slot is identified by the name:

 
urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:locator 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 29 of 129

925

926

927
928
929
930
931
932
933

934
935

936
937
938
939

940

941

942
943
944
945
946
947
948

949
950

951
952
953
954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969
970
971

http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus
http://localhost:8080/ebxml/registry/http
http://localhost:8080/ebxml/registry


Each value in the collection of values for this Slot specifies a Submitter defined URL suffix for that 
RegistryObject. The registry MUST return the RegistryObject when the HTTP client sends an HTTP GET 
request whose URL matches any of the URLs specified within the locator Slot (if any) for that 
RegistryObject.

4.3.3 Assigning URL to a Repository Item 

A Submitter MAY assign one or more Submitter defined URLs to a Repository Item.

The Submitter defined URL(s) may be assigned by the Submitter using a canonical slot on the 
ExtrinsicObject for the repository item. The Slot is identified by the name:

 
urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator 

Each value in the collection of values for this Slot specifies a Submitter defined URL suffix for the 
RepositoryItem associated with the ExtrinsicObject. The registry MUST return the RepositoryItem when 
the HTTP client sends an HTTP GET request whose URL matches any of the URLs specified within the 
contentLocator slot (if any) for the ExtrinsicObject for that RepositoryItem. 

4.4 File Path Based URL
The File Path Based URL mechanism enables HTTP clients to access RegistryObjects and 
RepositoryItems using a URL that is derived from the RegistryPackage membership hierarchy for the 
RegistryObject or RepositoryItem.

4.4.1 File Folder Metaphor

The RegistryPackage class as defined by [ebRIM] enables objects to be structurally organized by a 
RegistryPackage membership hierarchy. As such, a RegistryPackage serves a role similar to that of a 
Folder within the File and Folder metaphor that is common within filesystems in most operating systems. 
Similarly, the members of a RegistryPackage serve a role similar to the files within a folder in the File and 
Folder metaphor.

In this file-folder metaphor, a Submitter creates a RegistryPackage to create the functional equivalent of 
a folder and creates a RegistryObject to create the functional equivalent of a file. The Submitter adds a 
RegistryObjects as a member of a RegistryPackage to create the functional equivalent of adding a file to 
a folder.  

4.4.2 File Path of a RegistryObject

Each RegistryObject has an implicit file path. The file path of a RegistryObject is a path structure similar 
to the Unix file path structure. The file path is composed of file path segments. Analogous to the Unix file 
path, the last segment within the file path represents the RegistryObject, while preceding segments 
represent the RegistryPackage(s) within the membership hierarchy of the RegistryObject. Each segment 
consists of the name of the RegistryPackage or the RegistryObject. Because the name attribute is of 
type InternationalString the path segment matches the name of an object within a specific locale.

4.4.2.1 File Path Example

Consider the example where a registry has a RegistryPackage hierarchy as illustrated below using the 
name of the objects in locale “en_US”:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 30 of 129

972

973

974

975

976

977

978

979

980

981
982
983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012



Figure 3: Example Registry Package Hierarchy

Now let us assume that the RegistryPackage named “2004” has an ExtrinsicObject named “baby.gif” for a 
repository item that is a photograph in the GIF format. In this example the file paths for various objects in 
locale “en_US” are shown in table below: 

Object Name File Path
userData /userData
Sally /userData/Sally
pictures /userData/Sally/pictures
2004 /userData/Sally/pictures/2004
baby.gif /userData/Sally/pictures/2004/baby.gif

Table 5: File Path Examples

Note that above example assumes that the RegistryPackage named userData is a root level package 
(not contained within another RegistryPackage).

4.4.3 Matching URL To Objects

A registry client MAY access RegistryObjects and RepositoryItems over the HTTP GET request using 
URL patterns that are based upon the File Path for the target objects. This section describes how a 
registry resolves File Path URLs specified by an HTTP client.

The registry MUST process each path segment from the beginning of the path to the end and for each 
path segment match the segment to the value attribute of a LocalizedString in the name attribute of a 
RegistryObject. For all but the last path segment, the matched RegistryObject MUST be a 
RegistryPackage. The last path segment MAY match any RegistryObject including a RegistryPackage. If 
any path segment fails to be matched then the URL is not resolvable by the File Path based URL 
method. When matching any segment other than the first segment the registry MUST also ensure that 
the matched RegistryObject is a member of the RegistryPackage that matches the previous segment. 

4.4.4 URL Matches a Single Object

When a File Path based URL matches a single object the there are two possible responses.

• If the URL pattern does not end in a '/' character or the last segment does not match a 
RegistryPackage then the Registry MUST send as response an XML document that is the 
XML representation of the RegistryObject that matches the last segment. If the last 
segment matches an ExtrinsicObject then if the URL specifies the HTTP GET parameter 
with name 'getRepositoryItem' and value of 'true' then the registry MUST return as 
response the repository item associated with the ExtrinsicObject.

• If the URL pattern ends in a '/' character and the last segment matches a RegistryPackage 
then the Registry MUST send as response an HTML document that is the directory listing 
(section 4.4.6) of all RegistryObjects that are members of the RegistryPackage that 
matches the last segment.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 31 of 129

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044



4.4.5 URL Matches Multiple Object

A registry MUST show a partial Directory Listing of a Registry Package when a File Path

based URL matches multiple objects.

A File Path based URL may match multiple objects if:

• Multiple objects with the same name exist in the same RegistryPackage

• The segment contains wildcard characters such as '%' or '?' to match the names of multiple 
objects within the same RegistryPackage. Note that wildcard characters must be URL encoded 
as defined by the HTTP protocol. For example the '%' character is encoded as '%25'.

4.4.6 Directory Listing

A registry MUST return a directory listing as a response under certain circumstances as describes 
earlier. The directory listing MUST show a list of objects within a specific RegistryPackage. 

A registry SHOULD structure a directory listing such that each item in the listing provides information 
about a RegistryObject within the RegistryPackage. A registry MAY format its directory listing page in a 
registry specific manner. However, it is suggested that a registry SHOULD format it as an HTML page 
that minimally includes the objectType, name and description attributes for each RegistryObject in the 
directory listing.

Figure 4 shows a non-normative example of a directory listing that matches all root level objects that 
have a name that begins with ‘Sun’ (path /Sun%25).

Figure 4: Example of a Directory Listing

4.4.7 Access Control In RegistryPackage Hierarchy

The ability to control who can add files and sub-folders to a folder is important in a file system. The same 
is true for the File Path Based URL mechanism.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 32 of 129

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069



A Submitter MAY assign a custom Access Control Policy to a Registry Package to create the functional 
equivalent of assigning access control to a folder in the file-folder metaphor. The custom Access Control 
Policy SHOULD use the “reference” action to control who can add RegistryObjects as members of the 
folder as described in [ebRIM].

4.5 URL Resolution Algorithm
Since the HTTP Binding supports multiple mechanisms to resolve an HTTP URL a registry SHOULD 
implement an algorithm to determine the correct HTTP Binding mechanism to resolve a URL.

This section gives a non-normative URL resolution algorithm that a registry SHOULD use to determine 
which of the various HTTP Binding mechanisms to use to resolve an HTTP URL. 

Upon receiving an HTTP GET request a registry SHOULD first check if the URL is an RPC Encoded 
URL. This MAY be done by checking if the interface URL parameter is specified in the URL. If specified 
the registry SHOULD resolve the URL using the RPC Encoded URL method as defined by section 4.2. If 
the interface URL parameter is not specified then the registry SHOULD use the Submitter specified URL 
method to check if the URL is resolvable. If the URL is still unresolvable then the registry SHOULD check 
if the URL is resolvable using the File Path based URL method. If the URL is still unresolvable then the 
registry should return an HTTP 404 (NotFound) error as defined by the HTTP protocol.

4.6 Security Consideration

A registry MUST enforce all Access Control Policies including restriction on the READ action when 
processing a request to the HTTP binding of a service interface. This implies that a Registry MUST not 
resolve a URL to a RegistryObject or RepositoryItem if the client is not authorized to read that object.

4.7 Exception Handling
If a service interface method generates an Exception it MUST be reported in a RegistryErrorList, 
and sent back to the client within the HTTP response for the HTTP request. 

When errors occur, the HTTP status code and message SHOULD correspond to the error(s) being 
reported in the RegistryErrorList. For example, if the RegistryErrorList reports that an object 
wasn't found, therefore cannot be returned, an appropriate error code SHOULD be 404, with a message 
of "ObjectNotFoundException". A detailed list of HTTP status codes can be found in [RFC2616]. The 
mapping between registry exceptions and HTTP status codes is currently unspecified.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 33 of 129

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097



5 Lifecycle Management Protocols
This section defines the protocols supported by Lifecycle Management service interface of the Registry. 
The Lifecycle Management protocols provide the functionality required by RegistryClients to manage the 
lifecycle of RegistryObjects and RepositoryItems within the registry.

The XML schema for the Lifecycle Management protocols is described in [RR-LCM-XSD].

5.1 Submit Objects Protocol
This SubmitObjects allows a RegistryClient to submit one or more RegistryObjects and/or repository 
items. 

Figure 5: Submit Objects Protocol

5.1.1 SubmitObjectsRequest

The SubmitObjectsRequest is used by a client to submit RegistryObjects and/or repository items to the 
registry.

5.1.1.1 Syntax:

  <element name="SubmitObjectsRequest">
    <complexType>
      <complexContent>
        <extension base="rs:RegistryRequestType">
          <sequence>
            <element ref="rim:RegistryObjectList"/>
          </sequence>
        </extension>
      </complexContent>
    </complexType>
  </element>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 34 of 129

1098

1099

1100

1101

1102

1103

1104

1105

1107

1108

1109

1110

1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122



5.1.1.2 Parameters:

 RegistryObjectList:  This parameter specifies a collection of RegistryObject instances 
that are being submitted to the registry. The RegistryObjects in the list may be brand new 
objects being submitted to the registry or they may be current objects already existing in 
the registry. In case of existing objects the registry MUST treat them in the same manner 
as UpdateObjectsRequest and simply update the existing objects.

5.1.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4for details.

5.1.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be 
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within 
the request that was not resolved during the processing of the request.

 UnsignedRepositoryItemException: Indicates that the requestor attempted to submit a 
RepositoryItem that was not signed.

 QuotaExceededException: Indicates that the requestor attempted to submit more 
content than the quota allowed for them by the registry.

5.1.2 Unique ID Generation

A Submitter MUST supply the id attribute for submitted objects. If the id is not specified then the registry 
MUST return an InvalidRequestException.

If the id and lid match the id and lid of an existing RegistryObject within the home registry, then the 
registry MUST treat it as an Update action upon the existing RegistryObject. 

If the id matches the id of an existing RegistryObject within the home registry but the lid does not match 
that existing object's lid, then the registry MUST return an InvalidRequestException.

If the lid matches the lid of an existing RegistryObject within the home registry but the id does not match 
that existing object's id, then the registry MUST create the newly submitted object as a new version of 
the existing object. 

If the Submitter supplies the id and it is a valid URN then the registry MUST honor the Submitter-
supplied id value and use it as the value of the id attribute of the object in the registry. If the id is not a 
valid URN then the registry MUST treat it as a temporary id and replace it, and all references to it within 
the request, with a registry generated universally unique id. A registry generated universally unique id 
value MUST conform to the format of a URN that specifies a DCE 128 bit UUID as specified in [UUID]:

(e.g. urn:uuid:a2345678-1234-1234-123456789012)

5.1.3 ID Attribute And Object References

The id attribute of an object MAY be used by other objects to reference that object. Within a 
SubmitObjectsRequest, the id attribute MAY be used to refer to an object within the same 
SubmitObjectsRequest as well as to refer to an object within the registry. An object in the 
SubmitObjectsRequest that needs to be referred to within the request document MAY be assigned an id 
by the submitter so that it can be referenced within the request. The submitter MAY give the object a 
valid URN, in which case the id is permanently assigned to the object within the registry.  Alternatively, 
the submitter MAY assign an arbitrary id that is not a valid URN as long as the id is a unique anyURI 
value within the request document. In this case the id serves as a linkage mechanism within the request 
document but MUST be replaced with a registry generated id upon submission.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 35 of 129

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166



When an object in a SubmitObjectsRequest needs to reference an object that is already in the registry, 
the request MAY contain an ObjectRef whose id attribute is the id of the object in the registry. This id is 
by definition a valid URN. An ObjectRef MAY be viewed as a proxy within the request for an object that is 
in the registry.

5.1.4 Audit Trail

The registry MUST create a single AuditableEvent object with eventType Created for all the 
RegistryObjects created by a SubmitObjectsRequest.  

5.1.5 Sample SubmitObjectsRequest

The following example shows a simple SubmitObjectsRequest that submits a single Organization object 
to the registry. It does not show the complete SOAP Message with the message header and additional 
payloads in the message for the repository items.

<lcm:SubmitObjectsRequest>
  <rim:RegistryObjectList>
    <rim:Organization lid="${LOGICAL_ID}" 

id="${ID}"
primaryContact="${CONTACT_USER_ID}">      

      <rim:Name>
        <rim:LocalizedString value="Sun Microsystems Inc." xml:lang="en-
US"/>
      </rim:Name>
      <rim:Address city="Burlington" country="USA" postalCode="01867" 
stateOrProvince="MA" street="Network Dr." streetNumber="1"/>
      <rim:TelephoneNumber areaCode="781" countryCode="1" number="123-
456" phoneType="office"/>
    </rim:Organization>
  </rim:RegistryObjectList>    
</SubmitObjectsRequest>

5.2 The Update Objects Protocol
The UpdateObjectsRequest protocol allows a Registry Client to update one or more existing 
RegistryObjects and/or repository items in the registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 36 of 129

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194

1195

1196

1197



Figure 6: Update Objects Protocol

5.2.1 UpdateObjectsRequest

The UpdateObjectsRequest is used by a client to update RegistryObjects and/or repository items that 
already exist within the registry.

5.2.1.1 Syntax:

  <element name="UpdateObjectsRequest">
    <complexType>
      <complexContent>
        <extension base="rs:RegistryRequestType">
          <sequence>
            <element ref="rim:RegistryObjectList"/>
          </sequence>
        </extension>
      </complexContent>
    </complexType>
  </element>

5.2.1.2 Parameters:

 RegistryObjectList:  This parameter specifies a collection of RegistryObject instances 
that are being updated within the registry. All immediate RegistryObject children of the 
RegistryObjectList MUST be current RegistryObjects already in the registry. 
RegistryObjects MUST include all required attributes, even those the user does not 
intend to change.  A missing attribute MUST be interpreted as a request to set that 
attribute to NULL or in case it has a default value, the default value will be assumed. If 
this collection contains an immediate child RegistryObject that does not already exists in 
the registry, then the registry MUST return an InvalidRequestException. If the user 
wishes to submit a mix of new and updated objects then he or she SHOULD use a 
SubmitObjectsRequest.
If an ExtrinsicObject is being updated and no RepositoryItem is provided in the 
UpdateObjectsRequest then the registry MUST maintain any previously existing 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 37 of 129

1199

1200

1201

1202

1203

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227



RepositoryItem associated with the original ExtrinsicObject with the updated 
ExtrinsicObject. If the client wishes to remove the RepositoryItem from an existing 
ExtrinsicObject they MUST use a RemoveObjectsRequest with 
deletionScope=DeleteRepositoryItemOnly.

5.2.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.2.1.4  Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be 
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within 
the request that was not resolved during the processing of the request.

 UnsignedRepositoryItemException: Indicates that the requestor attempted to submit a 
RepositoryItem that was not signed.

 QuotaExceededException: Indicates that the requestor attempted to submit more 
content than the quota allowed for them by the registry.

5.2.2 Audit Trail

The registry MUST create a single AuditableEvent object with eventType Updated for all RegistryObjects 
updated via an UpdateObjectsRequest. 

5.3 The Approve Objects Protocol
The Approve Objects protocol allows a client to approve one or more previously submitted 
RegistryObject objects using the LifeCycleManager service interface. 

Figure 7: Approve Objects Protocol

5.3.1 ApproveObjectsRequest

The ApproveObjectsRequest is used by a client to approve one or more existing RegistryObject 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 38 of 129

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1251

1252



instances in the registry. 

5.3.1.1 Syntax:

  <element name="ApproveObjectsRequest">
    <complexType>
      <complexContent>
        <extension base="rs:RegistryRequestType">
          <sequence>
            <element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" /> 
            <element ref="rim:ObjectRefList" minOccurs="0" maxOccurs="1" 
/>
          </sequence>
        </extension>
      </complexContent>
    </complexType>
  </element>

5.3.1.2 Parameters:

 AdhocQuery: This parameter specifies a query. A registry MUST approve all objects 
that match the specified query in addition to any other objects identified by other 
parameters.

 ObjectRefList:  This parameter specifies a collection of references to existing 
RegistryObject instances in the registry. A registry MUST approve all objects that are 
referenced by this parameter in addition to any other objects identified by other 
parameters.

5.3.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.3.1.4  Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be 
returned:

 ObjectNotFoundException: Indicates that the requestor requested an object within the 
request that was not found.

5.3.2 Audit Trail

The registry MUST create a single AuditableEvent object with eventType Approved for all RegistryObject 
instance approved via an ApproveObjectsRequest.

5.4 The Deprecate Objects Protocol
The Deprecate Object protocol allows a client to deprecate one or more previously submitted 
RegistryObject instances using the LifeCycleManager service interface. Once a RegistryObject is 
deprecated, no new references (e.g. new Associations, Classifications and ExternalLinks) to that object 
can be submitted. However, existing references to a deprecated object continue to function normally.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 39 of 129

1253

1254

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292



Figure 8: Deprecate Objects Protocol

5.4.1 DeprecateObjectsRequest

The DeprecateObjectsRequest is used by a client to deprecate one or more existing RegistryObject 
instances in the registry. 

5.4.1.1 Syntax:

  <element name="DeprecateObjectsRequest">
    <complexType>
      <complexContent>
        <extension base="rs:RegistryRequestType">
          <sequence>
            <element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" /> 
            <element ref="rim:ObjectRefList" minOccurs="0" maxOccurs="1" 
/>
          </sequence>
        </extension>
      </complexContent>
    </complexType>
  </element>

5.4.1.2 Parameters:

 AdhocQuery: This parameter specifies a query. A registry MUST deprecate all objects 
that match the specified query in addition to any other objects identified by other 
parameters.

 ObjectRefList:  This parameter specifies a collection of references to existing 
RegistryObject instances in the registry. A registry MUST deprecate all objects that are 
referenced by this parameter in addition to any other objects identified by other 
parameters.

5.4.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 40 of 129

1293

1294

1295

1296

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319



5.4.1.4  Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be 
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within 
the request that was not resolved during the processing of the request.

5.4.2 Audit Trail

The registry MUST create a single AuditableEvent object with eventType Deprecated for all 
RegistryObject deprecated via a DeprecateObjectsRequest. 

5.5 The Undeprecate Objects Protocol
The Undeprecate Objects protocol of the LifeCycleManager service interface allows a client to undo the 
deprecation of one or more previously deprecated RegistryObject instances. When a RegistryObject is 
undeprecated, it goes back to the Submitted status and new references (e.g. new Associations, 
Classifications and ExternalLinks) to that object can now again be submitted.

Figure 9: Undeprecate Objects Protocol

5.5.1 UndeprecateObjectsRequest

The UndeprecateObjectsRequest is used by a client to undeprecate one or more existing RegistryObject 
instances in the registry. The registry MUST silently ignore any attempts to undeprecate a RegistryObject 
that is not deprecated.

5.5.1.1 Syntax:

  <element name="UndeprecateObjectsRequest">
    <complexType>
      <complexContent>
        <extension base="rs:RegistryRequestType">
          <sequence>
            <element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" /> 
            <element ref="rim:ObjectRefList" minOccurs="0" maxOccurs="1" 
/>
          </sequence>
        </extension>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 41 of 129

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1334

1335

1336

1337

1338

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348



      </complexContent>
    </complexType>
  </element>
 </element>

5.5.1.2 Parameters:

 AdhocQuery: This parameter specifies a query. A registry MUST undeprecate all 
objects that match the specified query in addition to any other objects identified by other 
parameters.

 ObjectRefList:  This parameter specifies a collection of references to existing 
RegistryObject instances in the registry. A registry MUST undeprecate all objects that 
are referenced by this parameter in addition to any other objects identified by other 
parameters.

5.5.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.5.1.4  Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be 
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within 
the request that was not resolved during the processing of the request.

5.5.2 Audit Trail

The Registry Service MUST create a single AuditableEvent object with eventType Undeprecated for all 
RegistryObjects undeprecated via an UndeprecateObjectsRequest. 

5.6 The Remove Objects Protocol
The Remove Objects protocol allows a client to remove one or more RegistryObject instances and/or 
repository items using the LifeCycleManager service interface.   

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 42 of 129

1349
1350
1351
1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373



Figure 10: Remove Objects Protocol

For details on the schema for the business documents shown in this process refer to .

5.6.1 RemoveObjectsRequest

The RemoveObjectsRequest is used by a client to remove one or more existing RegistryObject and/or 
repository items from the registry. 

5.6.1.1 Syntax:

  <element name="RemoveObjectsRequest">
    <complexType>
      <complexContent>
        <extension base="rs:RegistryRequestType">
          <sequence>
            <element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" /> 
            <element ref="rim:ObjectRefList" minOccurs="0" maxOccurs="1" 
/>
          </sequence>
          <attribute name="deletionScope" 
default="urn:oasis:names:tc:ebxml-regrep:DeletionScopeType:DeleteAll" 
type="rim:referenceURI" use="optional"/>
        </extension>
      </complexContent>
    </complexType>
  </element>

5.6.1.2 Parameters:

 deletionScope: This parameter indicates the scope of impact of the 
RemoveObjectsRequest. The value of the deletionScope attribute MUST be a reference 
to a ClassificationNode within the canonical DeletionScopeType ClassificationScheme as 
described in appendix A of [ebRIM]. A Registry MUST support the deletionScope types 
as defined by the canonical DeletionScopeType ClassificationScheme. The canonical 
DeletionScopeType ClassificationScheme may easily be extended by adding additional 
ClassificationNodes to it. 

The following canonical ClassificationNodes are defined for the DeletionScopeType 
ClassificationScheme:

DeleteRepositoryItemOnly: This deletionScope specifies that the registry 
MUST delete the RepositoryItem for the specified ExtrinsicObjects but MUST 
NOT delete the specified ExtrinsicObjects. This is useful in keeping references to 
the ExtrinsicObjects valid. A registry MUST set the status of the ExtrinsicObject 
instance to Withdrawn in this case.

DeleteAll: This deletionScope specifies that the request MUST delete both the 
RegistryObject and the RepositoryItem (if any) for the specified objects. A 
RegistryObject can be removed using a RemoveObjectsRequest with 
deletionScope DeleteAll only if all references (e.g. Associations, Classifications, 
ExternalLinks) to that RegistryObject have been removed. 

 AdhocQuery: This parameter specifies a query. A registry MUST remove all objects that 
match the specified query in addition to any other objects identified by other parameters.

 ObjectRefList:  This parameter specifies a collection of references to existing 
RegistryObject instances in the registry. A registry MUST remove all objects that are 
referenced by this parameter in addition to any other objects identified by other 
parameters.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 43 of 129

1375

1376

1377

1378

1379

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421



5.6.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.6.1.4  Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be 
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object 
within the request that was not resolved during the processing of the request.

 ReferencesExistException: Indicates that the requestor attempted to remove a 
RegistryObject while references to it still exist. Note that it is valid to remove a 
RegistryObject and all RegistryObjects that refer to it within the same request. In such 
cases the ReferencesExistException MUST not be thrown.

5.7 Registry Managed Version Control
This section describes the version control features of the ebXML Registry. This feature is based upon 
[DeltaV]. The ebXML Registry provides a simplified façade that provides a small subset of [DeltaV] 
functionality.

5.7.1 Version Controlled Resources

All repository items in an ebXML Registry are implicitly version-controlled resources as defined by 
section 2.2.1 of [DeltaV]. No explicit action is required to make them a version-controlled resource. 

In addition RegistryObject instances are also implicitly version-controlled resources. However, a registry 
may limit version-controlled resources to a sub-set of RegistryObject classes based upon registry 
specific policies. 

Minimally, a registry implementing the version control feature SHOULD make the following types as 
version-controlled resources:

 ClassificationNode

 ClassificationScheme
 Organization

 ExtrinsicObject

 RegistryPackage

 Service

The above list is chosen to exclude all composed types and include most of remaining RegistryObject 
types for which there are known use cases requiring versioning.  

5.7.2 Versioning and Object Identification

Each version of a RegistryObject is a unique object and as such has its own unique value for its id 
attribute as defined by [ebRIM].

5.7.3 Logical ID

All versions of a RegistryObject are logically the same object and are referred to as the logical 
RegistryObject. A logical RegistryObject is a tree structure where nodes are specific versions of the 
RegistryObject.

A specific version of a logical RegistryObject is referred to as a RegistryObject instance.

A RegistryObject instance MUST have a Logical ID (LID) to identify its membership in a particular logical 
RegistryObject. Note that this is in contrast with the id attribute that MUST be unique for each version 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 44 of 129

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462



of the same logical RegistryObject. A client may refer to the logical RegistryObject in a version 
independent manner using its LID.

A RegistryObject is assigned a LID using the lid attribute of the RegistryObject class. If the submitter 
assigns the lid attribute, she must guarantee that it is a globally unique URN. A registry MUST honor a 
valid submitter-supplied LID. If the submitter does not specify a LID then the registry MUST assign a LID 
and the value of the LID attribute MUST be identical to the value of the id attribute of the first (originally 
created) version of the logical RegistryObject.

5.7.4 Version Identification

An ebXML Registry supports independent versioning of both RegistryObject metadata as well as 
repository item content. It is therefore necessary to keep distinct version information for a RegistryObject 
instance and its repository item if it happens to be an ExtrinsicObject instance.

5.7.4.1 Version Identification for a RegistryObject

A RegistryObject MUST have a versionInfo attribute whose type is the VersionInfo class defined by 
ebRIM. The versionInfo attributes identifies the version information for that RegistryObject instance. A 
registry MUST not allow two versions of the same RegistryObject to have the same 
versionInfo.versionName attribute value.  

5.7.4.2 Version Identification for a RepositoryItem

When a RegistryObject is an ExtrinsicObject with an associated repository item, the version identification 
for the repository item is distinct from the version identification for the ExtrinsicObject.

An ExtrinsicObject that has an associated repository item MUST have a contentVersionInfo attribute 
whose type is the VersionInfo class defined by ebRIM. The contentVersionInfo attributes identifies the 
version information for that repository item instance. 

An ExtrinsicObject that does not have an associated repository item MUST NOT have a 
contentVersionInfo attribute defined.

A registry MUST allow two versions of the same ExtrinsicObject to have the same 
contentVersionInfo.versionName attribute value because multiple ExtrinsicObject versions MAY share the 
same RepositoryItem version.

5.7.5 Versioning of ExtrinsicObject and Repository Items

An ExtrinsicObject and its associated repository item may be updated independently and therefore 
versioned independently.

A registry MUST maintain separate version trees for an ExtrinsicObject and its associated repository 
item as described earlier. 

Table 6 shows all the combinations for versioning an ExtrinsicObject and its repository item. After 
eliminating invalid or impossible combinations as well as those combinations where no action is needed, 
the only combinations that require versioning are showed in gray background rows. Of these there are 
only two unique cases (referred to as case A and B). Note that it is not possible to version a repository 
item without versioning its ExtrinsicObject.

ExtrinsicObject
Exists

RepositoryItem
Exists

ExtrinsicObject
Updated

RepositoryItem
Updated

Comment

No No Do nothing
No Yes Not possible

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 45 of 129

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500



Yes No
No No Do nothing
No Yes Not possible
Yes No Version 

ExtrinsicObject

(case A)
Yes Yes Not possible

Yes Yes
No No Do nothing
No Yes Not possible
Yes No Version 

ExtrinsicObject

(case A)
Yes Yes Version 

ExtrinsicObject 
and 
RepositoryItem

(case B)

Table 6: Versioning of ExtrinsicObject and Repository Item

5.7.5.1 ExtrinsicObject and Shared RepositoryItem

Because an ExtrinsicObject and its repository item are versioned independently (case B) it is possible for 
multiple versions of the ExtrinsicObject to share the same version of the repository item. In such cases 
the contentVersionInfo attributes MUST be the same across multiple version of the ExtrinsicObject.

5.7.6 Versioning and Composed Objects

When a registry creates a new version of a RegistryObject it MUST create copies of all composed1 

objects as new objects that are composed within the new version. This is because each version is a 
unique object and composed objects by definition are not shareable across multiple objects. Specifically, 
each new copy of a composed object MUST have a new id since it is a different object than the original 
composed object in the previous version. 

A registry MUST not version composed objects.

5.7.7 Versioning and References

An object reference from a RegistryObject references a specific version of the referenced RegistryObject. 
When a registry creates a new version of a referenced RegistryObject it MUST NOT move refrences 
from other objects from the previous version to the new version of the referenced object. Clients that wish 
to always reference the latest versions of an object MAY use the Event Notification feature to update 
references when new versions are created and thus always reference the latest version.

A special case is when a SubmitObjectsRequest or an UpdateObjectRequest contains an object that is 
being versioned by the registry and the request contains other objects that reference the object being 
versioned. In such case, the registry MUST update all references within the submitted objects to the 
object being versioned such that those objects now reference the new version of the object being created 
by the request.

1  Composed object types are identified in figure 1 in [ebRIM] figure 1 as classes with composition or 
“solid diamond” relationship with RegistryObject type.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 46 of 129

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523



5.7.8 Versioning and Audit Trail

The canonical EventType ClassificationScheme used by the Audit Trail feature defines an Updated event 
type and then defines a Versioned event type as a child of the Updated event type ClassificationNode. 
The semantic are that a Versioned event type is specialization of the Updated event type.

A registry MUST use the Updated event type in the AuditableEvent when it updates a RegistryObject 
without creating a new version.

A registry MUST use the Versioned event type in the AuditableEvent when it creates a new version of a 
logical RegistryObject.

A registry MUST NOT use the Created event type in the AuditableEvent when it creates a new version of 
a logical RegistryObject.

5.7.9 Inter-versions Association

Within any single branch within the version tree for an object any given version implicitly supersedes the 
version immediately prior to it. Sometimes it may be necessary to explicitly indicate which version 
supersedes another version for the same object. This is especially true when two versions are siblings 
branch roots of the version tree for the same object.

A client MAY specify an Association between any two versions of an object within the objects version tree 
using the canonical associationType “Supersedes” to indicate that the sourceObject supersedes the 
target targetObject within the Association.

A client MUST NOT specify an Association between two version of an object using the canonical 
associationType “Supersedes” if the sourceObject is an earlier version within the same branch in the 
version tree than the targetObject as this violates the implicit “Supersedes” association between the two 
version.

Note that this section is functionally equivalent to the predecessor-set successor-set elements of the 
Version Properties as defined by [DeltaV].

5.7.10 Client Initiated Version Removal

An ebXML Registry MAY allow clients to remove specified versions of a RegistryObject. A client MAY 
delete older version of an object using the RemoveObjectsRequest by specifying the version by its 
unique id. Removing an ExtrinsicObject instance MUST remove its repository item if no other version 
references that repository item.

5.7.11 Registry Initiated Version Removal

The registry MAY prune older versions based upon registry specific administrative policies in order to 
manage storage resources. 

5.7.12 Locking and Concurrent Modifications

This specification does not define a workspace feature with explicit checkin and checkout capabilities as 
defined by [DeltaV]. An ebXML Registry MAY support such features in an implementation specific 
manner.

This specification does not prescribe a locking or branching model. An implementation may choose to 
support an optimistic (non-locking) model. Alternatively or in addition, an implementation may support a 
locking model that supports explicit checkout and checkin capability. A future technical note or 
specification may address some of these capabilities.

5.7.13 Version Creation

The registry manages creation of new version of a RegistryObject or a repository item automatically. A 
registry that supports versioning MUST implicitly create a new version for a repository item if the 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 47 of 129

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566



repository item is updated via a SubmitObjectsRequest or UpdateObjectsRequest. In such cases it 
MUST also create a new version of its ExtrinsicObject.

If the client only wishes to update and version the ExtrisnicObject it may do so using an 
UpdateObjectsRequest without providing a repository item. In such cases the registry MUST assign the 
repository item version associated with the previous version of the ExtrinsicObject.

5.7.14 Versioning Override

A client MAY specify a dontVersion hint on a per RegistryObject basis when doing a submit or update of 
a RegistryObject. A registry SHOULD not create a new version for that RegistryObject when the 
dontVersion hint has value of “true”. The dontVersion hint MAY be specified as a canonical Slot with the 
following name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:dontVersion

The value of the dontVersion Slot, if specified, MUST be either “true” or “false”.

A client MAY specify a dontVersionContent hint on a per ExtrinsicObject basis when doing a submit or 
update of an ExtrinsicObject with a repository item. A registry SHOULD not create a new version for that 
repository item when the dontVersionContent hint has value of “true”. The dontVersionContent hint MAY 
be specified as a canonical Slot with the following name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:dontVersionContent

The value of the dontVersionContent Slot, if specified, MUST be either “true” or “false”.

A client MAY also specify the dontVersion and dontVersionContent Slots on the RegistryRequest using 
the <rs:RequstSlotList> element. A registry MUST treat these Slots when specified on the request as 
equivalent to being specified on every RegistryObject within the request. The value of these Slots as 
specified on the request take precedence over value of these Slots as specified on RegistryObjects 
within the request.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 48 of 129

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577
1578

1580

1581

1582

1583

1584

1585
1586

1588

1589

1590

1591

1592

1593



6 Query Management Protocols
This section defines the protocols supported by QueryManager service interface of the Registry. The 
Query Management protocols provide the functionality required by RegistryClients to query the  registry 
and discover RegistryObjects and RepositoryItems.

The XML schema for the  Query Management protocols is described in [RR-QUERY-XSD].

6.1 Ad Hoc Query Protocol
The Ad hoc Query protocol of the QueryManager service interface allows a client to query the registry 
and retrieve RegistryObjects and/or RepositoryItems that match the specified query.

A client submits an ad hoc query to the QueryManager by sending an AdhocQueryRequest. The 
AdhocQueryRequest contains a sub-element that specifies a query in one of the query syntaxes 
supported by the registry.

The QueryManager sends an AdhocQueryResponse back to the client as response. The 
AdhocQueryResponse returns a collection of objects that match the query. The collection is potentially 
heterogeneous depending upon the query expression and request options.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 49 of 129

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607



Figure 11: Ad Hoc Query Protocol

6.1.1 AdhocQueryRequest

The AdhocQueryRequest is used to submit a query to the registry. 

6.1.1.1 Syntax:

  <element name="AdhocQueryRequest">
    <complexType>
      <complexContent>
        <extension base="rs:RegistryRequestType">
          <sequence>
            <element maxOccurs="1" minOccurs="1"

ref="tns:ResponseOption"/>
            <element ref="rim:AdhocQuery" />
          </sequence>
          <attribute default="false" name="federated" 

type="boolean" use="optional"/>
          <attribute name="federation" type="anyURI" use="optional"/>
          <attribute default="0" name="startIndex" type="integer"/>
          <attribute default="-1" name="maxResults" type="integer"/>
        </extension>
      </complexContent>
    </complexType>
  </element>

 

6.1.1.2 Parameters:

 AdhocQuery:  This parameter specifies the actual query. It is decsribed in detail in 
section 6.1.3.

 federated:  This optional parameter specifies that the registry must process this query as 
a federated query. By default its value is false. This value MUST be false when a registry 
routes a federated query to another registry in order to avoid an infinite loop in federated 
query processing.

 federation:  This optional parameter specifies the id of the target Federation for a 
federated query in case the registry is a member of multiple federations. In the absence 
of this parameter a registry must route the federated query to all federations of which it is 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 50 of 129

1608

1609

1610

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638



a member. This value MUST be unspecified when a registry routes a federated query to 
another registry in order to avoid an infinite loop in federated query processing.

 maxResults:  This optional parameter specifies a limit on the maximum number of 
results the client wishes the query to return. If unspecified, the registry SHOULD return 
either all the results, or in case the result set size exceeds a registry specific limit, the 
registry SHOULD return a sub-set of results that are within the bounds of the registry 
specific limit. See section 6.2.1 for an illustrative example.

 ResponseOption: This required parameter allows the client to control the format and 
content of the AdhocQueryResponse generated by the registry in response to this 
request. See section 6.1.4 for details.

 startIndex:  This optional integer value is used to indicate which result must be returned 
as the first result when iterating over a large result set.   The default value is 0, which 
returns the result set starting with index 0 (first result). See section 6.2.1 for an illustrative 
example.

6.1.1.3 Returns:

This request returns an AdhocQueryResponse. See section  6.1.2 for details.

6.1.1.4  Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be 
returned:

 InvalidQueryException: signifies that the query syntax or semantics was invalid. Client 
must fix the query syntax or semantic error and re-submit the query.

6.1.2 AdhocQueryResponse

The AdhocQueryResponse is sent by the registry as a response to an AdhocQueryRequest.

6.1.2.1 Syntax:

  <element name="AdhocQueryResponse">
    <complexType>
      <complexContent>
        <extension base="rs:RegistryResponseType">
          <sequence>
            <element ref="rim:RegistryObjectList" />
          </sequence>
          <attribute default="0" name="startIndex" type="integer"/>
          <attribute name="totalResultCount" type="integer" 
use="optional"/>
        </extension>
      </complexContent>
    </complexType>
  </element>

 

6.1.2.2 Parameters:

 RegistryObjectList:  This is the element that contains the RegistryObject instances that 
matched the specified query.

 startIndex:  This optional integer value is used to indicate the index for the first result in 
the result set returned by the query, within the complete result set matching the query. By 
default, this value is 0. See section 6.2.1 for an illustrative example.

 totalResultCount:  This optional parameter specifies the size of the complete result set 
matching the query within the registry. When this value is unspecified, the client should 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 51 of 129

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676

1677

1678

1679

1680

1681

1682

1683

1684



assume it is the size of the result set contained within the result. See section 6.2.1 for an 
illustrative example.

6.1.3 AdhocQuery

A client specifies a <rim:AdhocQuery> element within an AdhocQueryRequest to specify the actual 
query being submitted.

6.1.3.1 Syntax:

  <complexType abstract="true" name="AdhocQueryType">
    <complexContent>
      <extension base="tns:RegistryObjectType">
        <sequence>
          <element ref="tns:QueryExpression" 

minOccurs="0" maxOccurs="1" />
        </sequence>
      </extension>
    </complexContent>
  </complexType>  
  <element name="AdhocQuery" type="tns:AdhocQueryType" 

substitutionGroup="tns:RegistryObject" />

6.1.3.2 Parameters:

 queryExpression:  This element contains the actual query expression. The schema for 
queryExpression is extensible and can support any query syntax supported by the 
registry.

6.1.4 ReponseOption

A client specifies a ResponseOption structure within an AdhocQueryRequest to indicate the format of the 
results within the corresponding AdhocQueryResponse.

 

6.1.4.1 Syntax:

  <complexType name="ResponseOptionType">
    <attribute default="RegistryObject" name="returnType">
      <simpleType>
        <restriction base="NCName">
          <enumeration value="ObjectRef"/>
          <enumeration value="RegistryObject"/>
          <enumeration value="LeafClass"/>
          <enumeration value="LeafClassWithRepositoryItem"/>
        </restriction>
      </simpleType>
    </attribute>
    <attribute default="false" name="returnComposedObjects" 
type="boolean"/>
  </complexType>
  <element name="ResponseOption" type="tns:ResponseOptionType"/>

6.1.4.2 Parameters:

 returnComposedObjects:  This optional parameter specifies whether the 
RegistryObjects returned should include composed objects as defined by Figure 1 in 
[ebRIM]. The default is to return all composed objects.

 returnType: This optional enumeration parameter specifies the type of RegistryObject to 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 52 of 129

1685

1686

1687

1688

1689

1690

1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728

1729

1730

1731

1732

1733



return within the response. Values for returnType are as follows:

• ObjectRef - This option specifies that the AdhocQueryResponse MUST 
contain a collection of <rim:ObjectRef> elements. The purpose of this option 
is to return references to registry objects rather than the actual objects.

• RegistryObject - This option specifies that the AdhocQueryResponse MUST 
contain a collection of <rim:RegistryObject> elements.

• LeafClass - This option specifies that the AdhocQueryResponse MUST 
contain a collection of elements that correspond to leaf classes as defined in 
[RR-RIM-XSD].

• LeafClassWithRepositoryItem - This option is same as LeafClass option 
with the additional requirement that the response include the 
RepositoryItems, if any, for every <rim:ExtrinsicObject> element in the 
response.

If “returnType” specified does not match a result returned by the query, then the registry 
must use the closest matching semantically valid returnType that matches the result. 

To illustrate, consider a case where OrganizationQuery is asked to return 
LeafClassWithRepositoryItem. As this is not possible, QueryManager will assume 
LeafClass option instead.

6.2 Iterative Query Support
The AdhocQueryRequest and AdhocQueryResponse support the ability to iterate over a large result set 
matching a logical query by allowing multiple AdhocQueryRequest requests to be submitted such that 
each query requests a different subset of results within the result set. This feature enables the registry to 
handle queries that match a very large result set, in a scalable manner. The iterative query feature is 
accessed via the startIndex and maxResults parameters of the AdhocQueryRequest and the startIndex 
and totalResultCount parameters of the AdhocQueryResponse as described earlier.

The iterative queries feature is not a true Cursor capability as found in databases. The registry is not 
required to maintain transactional consistency or state between iterations of a query. Thus it is possible 
for new objects to be added or existing objects to be removed from the complete result set in between 
iterations. As a consequence it is possible to have a result set element be skipped or duplicated between 
iterations. 

Note that while it is not required, an implementations MAY implement a transactionally consistent 
iterative query feature.

6.2.1 Query Iteration Example

Consider the case where there are 1007 Organizations in a registry. The user wishes to submit a query 
that matches all 1007 Organizations. The user wishes to do the query iteratively such that Organizations 
are retrieved in chunks of 100. The following table illustrates the parameters of the AdhocQueryRequest 
and those of the AdhocQueryResponses for each iterative query in this example.

AdhocQueryRequest Parameters AdhocQueryResponse Parameters

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 53 of 129

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772



startIndex maxResults startIndex totalResultCount # of Results
0 100 0 1007 100
100 100 100 1007 100
200 100 200 1007 100
300 100 300 1007 100
400 100 400 1007 100
500 100 500 1007 100
600 100 600 1007 100
700 100 700 1007 100
800 100 800 1007 100
900 100 900 1007 100
1000 100 1000 1007 7

6.3 Stored Query Support
The AdhocQuery protocol allow clients to submit queries that may be as general or as specific as the use 
case demands. As the queries get more specific they also get more complex. In these situations it is 
desirable to hide the complexity of the query from the client using parameterized queries stored in the 
registry. When using parameterized stored queries the client is only required to specify the identity of the 
query and the parameters for the query rather than the query expression itself. 

Parameterized stored queries are useful to Registry Administrators because they provide a system wide 
mechanism for the users of the registry to share a set of commonly used queries.

Parameterized stored queries are useful to vertical standards because the standard can define domain 
specific parameterized queries and require that they be stored within the registry.

An ebXML Registry MUST support parameterized stored queries as defined by this section.

6.3.1 Submitting a Stored Query

A stored query is submitted using the standard SubmitObjectsRequest protocol where the object 
submitted is an AdhocQueryType instance.

6.3.1.1 Declaring Query Parameters

When submitting a stored query, the submitter MAY declare zero or more parameters for that query. A 
parameter MUST be declared using a parameter name that begins with the ‘$’ character followed 
immediately by a letter and then followed by any combination of letters and numbers. The following BNF 
defines how a parameter name MUST be declared.

QueryParameter := '$' [a-zA-Z] ( [a-zA-Z] | [0-9] )*

A query parameter MAY be used as a placeholder for any part of the stored query.

The following example illustrates how a parameterized stored query may be submitted:

<SubmitObjectsRequest>  
  <rim:RegistryObjectList>
    <rim:AdhocQuery id="${QUERY_ID}">
      <rim:QueryExpression queryLanguage="${SQL_QUERY_LANG_ID}">
        SELECT * from $tableName ro, Name_ nm, Description d
        WHERE
        objectType = ''$objectType''
        AND (nm.parent = ro.id AND UPPER ( nm.value ) LIKE UPPER 
( ''$name'' ) )

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 54 of 129

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799
1800
1801
1802
1803
1804
1805
1806
1807



        AND (d.parent = ro.id AND UPPER ( d.value ) LIKE UPPER 
( ''$description'' ) )
        AND (ro.id IN ( SELECT classifiedObject FROM Classification 
WHERE classificationNode IN (  SELECT id
        FROM ClassificationNode WHERE path LIKE 
''$classificationPath1%'' ) ))
      </rim:QueryExpression>
    </rim:AdhocQuery>
  </rim:RegistryObjectList>
</SubmitObjectsRequest>

Listing 1: Example of Stored Query Submission

The above query takes parameters $objectType, $name, $description and $classificationPath1 and find 
all objects for that match specified objectType, name, description and classification.

6.3.1.2 Canonical Context Parameters

A query MAY contain one or more context parameters as defined in this section. Context parameters are 
special query parameters whose value does not need to be supplied by the client. Instead the value for a 
context parameter is supplied by the registry based upon the context within which the client request is 
being processed.

When processing a query, a registry MUST replace all context parameters present in the query with the 
context sensitive value for the parameter. A registry MUST ignore any context parameter values supplied 
by the client.

Context Parameter Replacement Value
$currentUser Must be replaced with the id attribute of the user 

associated with the query.
$currentTime Must be replaced with the currentTime. The time 

format is same as the format defined for the 
timestamp attribute of AuditableEvent class. 

6.3.2 Invoking a Stored Query

A stored query is invoked using the AdhocQueryRequest with the following constraints:

• The <rim:AdhocQuery> element MUST not contain a <rim:queryExpression> element.

• The <rim:AdhocQuery> element's id attribute value MUST match the id attribute value of the stored 
query.

• The <rim:AdhocQuery> element MAY have a Slot for each non-context parameter defined for the 
stored query being invoked. These Slots provide the value for the query parameters.

6.3.2.1 Specifying Query Invocation Parameters

A stored query MAY be defined with zero or more parameters. A client may specify zero or more of the 
parameters defined for the stored query when submitting the AdhocQueryRequest for the stored query. It 
is important to note that the client MAY specify fewer parameters than those declared for the stored 
query. A registry MUST prune any predicates of the stored query that contain parameters that were not 
supplied by the client during invocation of the stored query.

In essence, the client may narrow or widen the specificity of the search by supplying more or less 
parameters.

A client specifies a query invocation parameter by using a Slot whose name matches the parameter 
name and whose value MUST be a single value that matches the specified value for the parameter.

A registry MUST ignore any parameters specified by the client for a stored query that do not match the 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 55 of 129

1808
1809
1810
1811
1812
1813
1814
1815
1816
1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849



parameters defined by the stored query.

The following listing shows an example of how the stored query shown earlier is invoked. It shows:

• The stored query being identified by the value of the canonical slot with name 
"urn:oasis:names:tc:ebxml-regrep:rs:AdhocQueryRequest:queryId"

• The  value for the $name parameter being supplied

• The value of other parameters defined by the query not being supplied. This indicates that the client 
does not wish to use those parameters as search criterea.

<AdhocQueryRequest xmlns="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0" 
xmlns:lcm="urn:oasis:names:tc:ebxml-regrep:xsd:lcm:3.0" 
xmlns:query="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0" 
xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0" 
xmlns:rs="urn:oasis:names:tc:ebxml-regrep:xsd:rs:3.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0 
http://oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd">
  <rs:RequestSlotList>
    <rim:Slot name="urn:oasis:names:tc:ebxml-
regrep:rs:AdhocQueryRequest:queryId">
      <rim:ValueList>
        <rim:Value>urn:freebxml:registry:query:BusinessQuery</rim:Value> 
      </rim:ValueList>
    </rim:Slot>
    <rim:Slot name="$name">
      <rim:ValueList>
        <rim:Value>%ebXML% </rim:Value> 
      </rim:ValueList>
    </rim:Slot>
  </rs:RequestSlotList>
  <query:ResponseOption returnComposedObjects="true" 
returnType="LeafClassWithRepositoryItem" /> 
  <rim:AdhocQuery id="temporaryId">
    <rim:QueryExpression queryLanguage="urn:oasis:names:tc:ebxml-
regrep:QueryLanguage:SQL-92">
      <!-- No need for an actual query since it is fetched from registry 
using the queryId  --> 
    </rim:QueryExpression>
  </rim:AdhocQuery>
</AdhocQueryRequest>

Listing 2: Example of Stored Query Invocation

6.3.3 Response to Stored Query Invocation

A registry MUST send a standard AdhocQueryResponse when a client invokes a stored query using an 
AdhocQueryRequest.

6.3.4 Access Control on a Stored Query

A stored query is a RegistryObject. Like all RegistryObjects, access to the stored query is governed by 
the Access Control Policy defined the stored query. By default a stored query is assigned the default 
Access Control Policy that allows any client to read and invoke that query and only the owner of the 
query and the Registry Administrator role to update or delete the query. The owner of the query may 
define a custom Access Control Policy for the query that restricts the visibility of the query, and ability to 
invoke it, to specific users, roles or groups. Thus the owner of the query or the Registry Administrator 
may control who gets to invoke which stored queries.

6.3.5 Canonical Query: Get Client’s User Object

A registry MUST support a canonical stored query with 

id="urn:oasis:names:tc:ebxml-regrep:query:GetCallersUser".

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 56 of 129

1850

1851

1852

1853

1854

1855

1856

1857

1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902



This query MUST return the User object associated with the client invoking the stored query. The client 
MUST not provide any parameters for this query. The stored query SHOULD use the canonical context 
parameter $currentUser.

The following is a non-normative example of a stored SQL query that MAY be used by a registry for this 
canonical stored query:

<rim:AdhocQuery id="urn:oasis:names:tc:ebxml-
regrep:query:GetCallersUser">
  <rim:QueryExpression 
    queryLanguage="urn:oasis:names:tc:ebxml-regrep:QueryLanguage:SQL-
92">
    SELECT u.* FROM User u WHERE u.id = $currentUser; 
  </rim:QueryExpression>
</rim:AdhocQuery>

Note that a registry MAY use an equivalent stored filter query instead of a stored SQL query. 

6.4 SQL Query Syntax
An ebXML Registry MAY support SQL as a supported query syntax within the <rim:queryExpression> 
element of AdhocQueryRequest. This section normatively defines the SQL syntax that an ebXML 
Registry MAY support. Note that the support for SQL syntax within a registry does not imply a 
requirement that the registry must use a relational database in its implementation.

The registry SQL syntax is a proper subset of the “SELECT” statement of Intermediate level SQL as 
defined by ISO/IEC 9075:1992, Database Language SQL [SQL].

The terms below enclosed in angle brackets are defined in [SQL] or in [SQL/PSM].  The SQL query 
syntax conforms to the <query specification> with the following additional restrictions:

1. A <derived column> MAY NOT have an <as clause>.

2. A <table expression> does not contain the optional <group by clause> and <having clause> 
clauses.

3. A <table reference> can only consist of <table name> and <correlation name>.

4. A <table reference> does not have the optional AS between <table name> and <correlation 
name>.

5. Restricted use of sub-queries is allowed by the syntax as follows. The <in predicate> allows for the 
right hand side of the <in predicate> to be limited to a restricted <query specification> as defined 
above.

As defined by [SQL], a registry MUST process table names and attribute names in a case insensitive 
manner.

6.4.1 Relational Schema for SQL Queries

The normative Relational Schema definition that is the target of registry SQL queries can be found at the 
following location on the web:

http://www.oasis-open.org/committees/regrep/documents/3.0/sql/database.sql 

6.4.2 SQL Query Results

The result of an SQL query resolves to a collection of objects within the registry. It never resolves to 
partial attributes. The objects related to the result set may be returned as an ObjectRef, RegistryObject 
or leaf class depending upon the returnType attribute of the responseOption parameter specified by the 
client on the AdHocQueryRequest. The entire result set is returned as an <rim:RegistryObjectList>.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 57 of 129

1903

1904

1905

1906

1907

1908

1909
1910
1911
1912
1913
1914
1915
1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

http://www.oasis-open.org/committees/regrep/documents/2.1/sql/database.sql


6.5 Filter Query Syntax
This section normatively defines an XML syntax for querying an ebXML Registry called Filter Query 
syntax. An ebXML Registry MUST support the Filter Query syntax  as a supported query syntax within 
the <rim:queryExpression> element of AdhocQueryRequest.

The Filter Query syntax is defined in [RR-QUERY-XSD] and is derived from a mapping from [ebRIM] to 
XML Schema following certain mapping patterns.

The Filter Query operational model views the network of RegistryObjects in the registry as a virtual XML 
document and a query traverses a specified part of the tree and prunes or filters objects from the virtual 
document using filter expressions and ultimately returns a collection of objects that are left after filtering 
out all objects that do not match the filters specified in the query.

Unlike SQL query syntax, the filter query syntax does not support joins across classes. This constrains 
the expressive capabilities of the query and may also be somehat less efficient in processing.

6.5.1 Filter Query Structure

The <rim:queryExpression> element of AdhocQueryRequest MUST contain a Query element derived 
from the <query:RegistryObjectQueryType> type.

A Query element MAY contain a <query:PrimaryFilter> element and MAY contain additional Filter, 
Branch and Query elements within it as shown in the asbtract example below. The normative schema is 
defined by [RR-QUERY-XSD].

 
<${QueryElement}>
  <PrimaryFilter ... />
  <${OtherFilterElement} ... />
  <${BranchElement} .../>
  <${QueryElement} ... />
</${QueryElement}>

The role of Query, Filter and Branch elements will be defined next.

6.5.2 Query Elements

A Query element is the top level element in the Filter Query syntax to query the registry. The [RR-
QUERY-XSD] XML Schema defines a Query element for  the RegistryObject class and all its descendant 
classes as defined by [ebRIM] using the following pattern:

• For each class in model descendant from RegistryObject class define a complexType with name 
<class>QueryType. For example there is an OrganizationQueryType complexType defined for the 
Organization class in [ebRIM].

• The QueryType of a descendant of RegistryObject class MUST extend the QueryType for its super 
class. For example the OrganizationQueryType extends the RegistryObjectQueryType.

• For RegistryObject class and each of its descendants define an element with name <class>Query 
and with type <class>QueryType. For example the OrganizationQuery element is defined with type 
OrganizationQueryType.

The class associated with a Query element is referred to as the Query domain class.

The following example shows the Query syntax where the Query domain class is the Organization class 
defined by [ebRIM]:

  <complexType name="OrganizationQueryType">
    <complexContent>
      <extension base="tns:RegistryObjectQueryType">
        ...Relevant Filters, Queries and Branches are defined here...
      </extension>
    </complexContent>
  </complexType>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 58 of 129

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965
1966
1967
1968
1969
1970
1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990
1991

1992
1993
1994
1995
1996



  <element name="OrganizationQuery" type="tns:OrganizationQueryType"/>

A Query element MAY have Filter, Branch or nested Query Elements. These are described in 
subsequent sections.

6.5.3 Filter Elements

A Query element MAY contain one or more Filter sub-elements. A Filter element is used to filter or select 
a subset of instances of a specific [ebRIM] class. The class that a Filter filters is referred to as the Filter  
domain class. A Filter element specifies a restricted predicate clause over the attributes of the Filter 
domain class.

[RR-QUERY-XSD] XML Schema defines zero or more Filter elements within a Query element definition 
using the following pattern:

• PrimaryFilter: A Filter element is defined within the RegistryObjectQueryType with name 
PrimaryFilter. This Filter is used to filter the instances of the Query domain class based upon the 
value of its primitive attributes. The cardinality of the Filter element is zero or one. The PrimaryFilter 
element is inherited by all  descendant QueryTypes of  RegistryObjectQueryType.

• Additional Filters: Additional Filters in a Query element used to filter the instances of the Query 
domain class based upon whether the candidate domain class instance has a referenced object that 
satisfies the additional filter.
Additional filter elements are defined for those attributes of the Query domain class that satisfy all of 
the following criterea:

• The attribute's domain is not a primitive type (e.g. string, float, dateTime, int etc.).

• The attribute's domain class is not RegistryObject or its descendant.

• The attribute's domain class does not have any reference attributes (use Branch or sub-Query if 
attribute's domain class has reference attributes). 

The attribute for which the Filter is defined is referred to as the Filter domain attribute. The domain 
class of the Filter domain attribute is the Filter domain class for such Filters. This type of Filter is 
used to filter the instances of the Query domain class based upon the attribute values within the 
Filter domain class.

• The name of the Filter element is <Filter Domain Attribute Name>Filter.

• The type of the Filter element is the FilterType complex type that is decsribed in 6.5.3.1.

• The cardinality of the Filter element matches the cardinality of the Filter domain attribute in the 
Query domain class.

The following example shows the how [RR-QUERY-XSD] XML Schema uses the above pattern to define 
Filters for the OrganizationQueryType for the Organization class defined by [ebRIM].

  <complexType name="OrganizationQueryType">
    <complexContent>
      <extension base="tns:RegistryObjectQueryType">
        <sequence>
          <element maxOccurs="unbounded" minOccurs="0" 
            name="AddressFilter" type="tns:FilterType"/>
          <element maxOccurs="unbounded" minOccurs="0" 
            name="TelephoneNumberFilter" type="tns:FilterType"/>
          <element maxOccurs="unbounded" minOccurs="0" 
            name="EmailAddresseFilter" type="tns:FilterType"/>
          ...Branches and sub-Queries go here...
        </sequence>
      </extension>
    </complexContent>
  </complexType>

The following UML class diagram describing the Filter class structure as defined in [RR-QUERY-XSD] 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 59 of 129

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033
2034
2035
2036
2037

2038
2039

2040
2041

2042
2043
2044
2045
2046
2047

2048

2049



XML Schema. Note that the classes whose name ends in “Type” map to complexTypes and other Filter 
classes map to elements in the [RR-QUERY-XSD] XML Schema.

Figure 12: Filter Type Hierarchy

 

6.5.3.1 FilterType

The FilterType is an abstract complexType that is the root type in the inheritence hierarchy for all Filter 
types.

6.5.3.1.1 Parameters:

 negate:  This parameter specifies that the boolean value that the Filter evaluates to 
MUST be negated to complete the evaluation of the filter. It is functionally equivalent to 
the NOT operator in SQL syntax. 

6.5.3.2 SimpleFilterType

The SimpleFilter is the abstract base type for several concrete Filter types defined for primitive type such 
as boolean, float, integer and string.

6.5.3.2.1 Parameters:

 domainAttribute:  This parameter specifies the attribute name of a primitive attribute 
within the Filter domain class. A registry MUST return an InvalidQueryException if this 
parameter's value does not match the name of primitive attribute within the Filter domain 
class. A registry MUST perform the attribute name match in a case insensitive manner.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 60 of 129

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070



 comparator:  This parameter specifies the comparison operator for comparing the value 
of the attribute with the value supplied by the filter. The following comparators are 
defined:

• LE: abbreviation for LessThanOrEqual

• LT: abbreviation for LessThan

• GE: abbreviation for GreaterThanOrEqual

• GT: abbreviation for GreaterThan

• EQ: abbreviation for Equal

• NE: abbreviation for NotEqual

• Like: Same as LIKE operator in SQL-92. MUST only be used in StringFilter.

• NotLike: Same as NOT LIKE operator in SQL-92. MUST only be used in 
StringFilter.

6.5.3.3 BooleanFilter

The BooleanFilter MUST only be used for matching primitive attributes whose domain is of type boolean.

6.5.3.3.1 Parameters:

 value:  This parameter specifies the value that MUST be compared with the attribute 
value being tested by the Filter. It MUST be a boolean value.

The following example shows the use of a BooleanFilter to match the isInternal attribute of the 
ClassificationScheme class defined by [ebRIM]:

<BooleanFilter 
domainAtribute="isInternal" comparator="EQ" value="true"/>

6.5.3.4 FloatFilter

The FloatFilter MUST only be used for matching primitive attributes whose domain is of type float.

6.5.3.4.1 Parameters:

 value:  This parameter specifies the value that MUST be compared with the attribute 
value being tested by the Filter. It MUST be a float value.

The following example shows the use of a FloatFilter to match fictitious amount float attribute  since 
[ebRIM] currently has no float attributes defined:

<FloatFilter 
domainAtribute="amount" comparator="GT" value="9.99"/>

6.5.3.5 IntegerFilter

The IntegerFilter MUST only be used for matching primitive attributes whose domain is of type integer. 

6.5.3.5.1 Parameters:

 value:  This parameter specifies the value that MUST be compared with the attribute 
value being tested by the Filter. It MUST be an integer value.

The following example shows the use of a BooleanFilter to match a fictitious count integer attribute  since 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 61 of 129

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091
2092

2093

2094

2095

2096

2097

2098

2099

2100

2101
2102

2103

2104

2105

2106

2107

2108

2109



[ebRIM] currently has no integer attributes defined:

<IntegerFilter 
domainAtribute="amount" comparator="LT" value="100"/>

6.5.3.6 DateTimeFilter

The DateTimeFilter MUST only be used for matching primitive attributes whose domain is of type 
datetime. 

6.5.3.6.1 Parameters:

 value:  This parameter specifies the value that MUST be compared with the attribute 
value being tested by the Filter. It MUST be a datetime value.

The following example shows the use of a DateTimeFilter to match a the timestamp attribute of the 
Auditable class defined by [ebRIM] where the timestamp value is greater than (later than) the specified 
datetime value:

<DateTimeFilter 
domainAtribute="timestamp" 
comparator="GT" value="1997-07-16T19:20+01:00"/>

6.5.3.7 StringFilter

The StringFilter MUST only be used for matching primitive attributes whose domain is of type string. 

6.5.3.7.1 Parameters:

 value:  This parameter specifies the value that MUST be compared with the attribute 
value being tested by the Filter. It MUST be a string value.

The following example shows the use of a StringFilter to match a the firstName attribute of the Person 
class defined by [ebRIM] where the firstName value matches the pattern specified by the value:

<StringFilter 
domainAtribute="firstName" 
comparator="Like" value="Farid%"/>

6.5.3.8 CompoundFilter

The CompoundFilter MAY be used to specify a boolean conjunction (AND) or disjunction (OR) between 
two Filters. It allows a query to express a combination of predicate clauses within a Filter Query.

6.5.3.8.1 Parameters:

 LeftFilter:  This parameter specifies the first of two Filters for the CompoundFilter.

 RightFilter:  This parameter specifies the second of two Filters for the CompoundFilter.

 logicalOperator:  This parameter specifies the logical operator. The value of this 
parameter MUST be “AND” or “OR” 

The following example shows the use of a BooleanFilter to match the isInternal attribute of the 
ClassificationScheme class defined by [ebRIM]:

<CompoundFilter logicalOperator="AND">
  <LeftFilter domainAttribute="targetObject" comparator="EQ" 
    value="${REGISTRY_OBJECT_ID}" type="StringFilter"/>
  <RightFilter domainAttribute="associationType" comparator="EQ" 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 62 of 129

2110

2111
2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123
2124
2125

2126

2127

2128

2129

2130

2131

2132

2133

2134
2135
2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148
2149
2150
2151



    value="${HAS_MEMBER_ASSOC_TYPE_NODE_ID}" type="StringFilter"/>
</CompoundFilter>

6.5.4 Nested Query Elements

A Query element MAY contain one or more nested Query sub-elements. The purpose of the nested 
Query element is to allow traversal of the branches within the network of relationships defined by the 
information model and prune or filter those branches that do not meet the predicates specified in the 
corresponding Branch element. 

The  [RR-QUERY-XSD] XML Schema defines zero or more nested Query elements within a Query 
element definition using the following pattern:

• A nested Query element is defined for each attribute of the Query domain class that satisfy all of the 
following criterea:

• The attribute's domain class is a descendant type of the RegistryObjectType. 

• The attribute's domain class contains reference attributes that link the domain class to some third 
class via the reference. 

The attribute for which the nested Query is defined is referred to as the Nested Query domain 
attribute. The domain class of the nested Query domain attribute is the Query domain class for the 
nested Query element.

• The name of the nested Query element is <Nested Query Domain Attribute Name>Query.

• The type of the nested Query element matches the QueryType for the domain class for the Query 
domain attribute.

• The cardinality of the nested Query element matches the cardinality of the nested Query domain 
attribute in the Query domain class.

The following example shows the how [RR-QUERY-XSD] XML Schema uses the above pattern to define 
nested Query elements for the OrganizationQueryType for the Organization class defined by [ebRIM].

  <complexType name="OrganizationQueryType">
    <complexContent>
      <extension base="tns:RegistryObjectQueryType">
        <sequence>
          ...Filters and Branches go here ...
          <element maxOccurs="1" minOccurs="0" 
            name="ParentQuery" type="tns:OrganizationQueryType"/>
          <element maxOccurs="unbounded" minOccurs="0" 
            name="ChildOrganizationQuery" type="tns:OrganizationQueryType"/>
          <element maxOccurs="1" minOccurs="0" 
            name="PrimaryContactQuery" type="tns:PersonQueryType"/> 
        </sequence>
      </extension>
    </complexContent>
  </complexType>

6.5.5 Branch Elements

A Query element MAY contain one or more Branch sub-elements. A Branch element is similar to the 
nested Query element as it too can have sub-elements that are Filter, Branch and subQuery elements. 
However, it is different from Query elements because its type is not a descendant type of 
RegistryObjectQueryType. The purpose of the branch element is to allow traversal of the branches within 
the network of relationships defined by the information model and prune or filter those branches that do 
not meet the predicates specified in the corresponding Branch element. 

The  [RR-QUERY-XSD] XML Schema defines zero or more Branch elements within a Query element 
definition using the following pattern:

• A Branch element is defined for each attribute of the Query domain class that satisfies all of the 
following criterea:

• The attribute's domain is not a primitive type (e.g. String, float, dateTime, int etc.).

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 63 of 129

2152
2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177
2178
2179
2180
2181
2182

2183
2184

2185
2186

2187
2188
2189
2190
2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203



•  The attribute's domain class contains reference attributes that link the domain class to some third 
class via the reference. 

The attribute for which the Branch is defined is referred to as the Branch domain attribute. The 
domain class of the Branch domain attribute is the Branch domain class for the Branch element.

• The name of the Branch element is <Branch Domain Attribute Name>Branch.

• The cardinality of the Branch element matches the cardinality of the Branch domain attribute in the 
Query domain class.

The following example shows how the [RR-QUERY-XSD] XML Schema uses the above pattern to define 
Branches for the RegistryObjectQueryType for the RegistryObject class defined by [ebRIM].

  <complexType name="RegistryObjectQueryType">
    <complexContent>
      <extension base="tns:FilterQueryType">
        <sequence>
          <element maxOccurs="unbounded" minOccurs="0" 
            name="SlotBranch" type="tns:SlotBranchType"/>
          <element maxOccurs="1" minOccurs="0" name="NameBranch"                   
            type="tns:InternationalStringBranchType"/>
          <element maxOccurs="1" minOccurs="0" name="DescriptionBranch" 
            type="tns:InternationalStringBranchType"/>
          ... Relevant Filters, queries go here...
        </sequence>
      </extension>
    </complexContent>
  </complexType>

6.6 Query Examples
This section provides examples in both SQL and Filter Query syntax for some common query use cases. 
Each example gives the SQL syntax for the query followed by blank line followed by the equivalent Filter 
Query syntax for it.

6.6.1 Name and Description Queries

The following queries matches all RegistryObject instances whose name contains the word ‘Acme’ and 
whose description contains the word “bicycle”.

SELECT ro.* from RegistryObject ro, Name nm, Description d WHERE 
nm.value LIKE '%Acme%' AND 

d.value LIKE '%bicycle%' AND
(ro.id = nm.parent AND ro.id = d.parent);

<RegistryObjectQuery>
  <NameBranch>
    <LocalizedStringFilter comparator="Like" domainAttribute="value" 
      value="%Acme%" xsi:type="StringFilterType"/>
  </NameBranch>
  <DescriptionBranch>
    <LocalizedStringFilter comparator="Like" domainAttribute="value" 
      value="%bicycle%" xsi:type="StringFilterType"/>
  </DescriptionBranch>
</RegistryObjectQuery>

6.6.2 Classification Queries

This section describes various classification related queries. 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 64 of 129

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214
2215
2216
2217
2218

2219
2220
2221

2222
2223
2224
2225
2226
2227
2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253

2254

2255

2256



6.6.2.1 Retrieving ClassificationSchemes

The following query retrieves the collection of all ClassificationSchemes. Note that the above query may 
also specify additional Filters, Querys and Branches as search criterea  if desired.

SELECT scheme.* FROM ClassificationScheme scheme;

<ClassificationSchemeQuery/>

6.6.2.2 Retrieving Children of Specified ClassificationNode

The following query retrieves the children of a ClassificationNode given the “id” attribute of the parent 
ClassificationNode:

SELECT cn.* FROM ClassificationNode cn WHERE parent = ${PARENT_ID};

<ClassificationNodeQuery>
  <PrimaryFilter comparator="Like" domainAttribute="parent" 
    value="${PARENT_ID}" xsi:type="StringFilterType"/>
</ClassificationNodeQuery>

6.6.2.3 Retrieving Objects Classified By a ClassificationNode

The following query retrieves the collection of ExtrinsicObjects that are classified by the Automotive 
Industry and the Japan Geography. Note that the query does not match  ExtrinsicObjects classified by 
descendant ClassificationNodes of the  Automotive Industry and the Japan Geography. That would 
require a slightly more complex query.

SELECT eo.* FROM ExtrinsicObject eo WHERE
   id IN (SELECT classifiedObject FROM Classification

  WHERE 
       classificationNode IN (SELECT id FROM ClassificationNode

WHERE path = ‘/${GEOGRAPHY_SCHEME_ID}/Asia/Japan’))
  AND
   id IN (SELECT classifiedObject FROM Classification

  WHERE 
       classificationNode IN (SELECT id FROM ClassificationNode

WHERE path = ‘/${INDUSTRY_SCHEME_ID}/Automotive’))

<ExtrinsicObjectQuery>
  <ClassificationQuery>
    <ClassificationNodeQuery>
      <PrimaryFilter comparator="EQ" domainAttribute="path" 
        value="/${GEOGRAPHY_SCHEME_ID}/Asia/Japan" 
        xsi:type="StringFilterType"/>
    </ClassificationNodeQuery>
  </ClassificationQuery>
  <ClassificationQuery>
    <ClassificationNodeQuery>
      <PrimaryFilter comparator="EQ" domainAttribute="path"
        value="/${INDUSTRY_SCHEME_ID}/Automotive"
        xsi:type="StringFilterType"/>
    </ClassificationNodeQuery>
  </ClassificationQuery>
</ExtrinsicObjectQuery>

6.6.2.4 Retrieving Classifications that Classify an Object

The following query retrieves the collection of Classifications that classify a object with id matching ${ID}:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 65 of 129

2257

2258

2259

2260

2261
2262
2263

2264

2265

2266

2267

2268

2269
2270
2271
2272
2273
2274

2275

2276

2277

2278

2279

2280

2281

2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308

2309

2310

2311



SELECT c.* FROM Classification c 
WHERE c.classifiedObject = ${ID};

<ClassificationQuery>
  <PrimaryFilter comparator="EQ" domainAttribute="classifiedObject" 
    value="${ID}" xsi:type="StringFilterType"/>
</ClassificationQuery>

6.6.3 Association Queries

This section describes various Association related queries.

6.6.3.1 Retrieving All Associations With Specified Object As Source

The following query retrieves the collection of Associations that have the object with id matching 
${SOURCE_ID} as their source:

SELECT a.* FROM Association a WHERE sourceObject = ${SOURCE_ID}

<AssociationQuery>
  <PrimaryFilter comparator="EQ" domainAttribute="sourceObject" 
    value="${SOURCE_ID}" xsi:type="StringFilterType"/>
</AssociationQuery>

6.6.3.2 Retrieving All Associations With Specified Object As Target

The following query retrieves the collection of Associations that have the object with id matching 
${TARGET_ID} as their target:

SELECT a.* FROM Association a WHERE targetObject = ${TARGET_ID}

<AssociationQuery>
  <PrimaryFilter comparator="EQ" domainAttribute="targetObject" 
    value="${TARGET_ID}" xsi:type="StringFilterType"/>
</AssociationQuery>

6.6.3.3 Retrieving Associated Objects Based On Association Type

Select Associations whose associationType attribute value matches the value specified by the 
${ASSOC_TYPE_ID}. The ${ASSOC_TYPE_ID} value MUST reference a ClassificationNode that is a 
descendant of the canonical AssociationType ClassificationScheme.

SELECT a.* FROM Association a WHERE 
associationType = ${ASSOC_TYPE_ID}

<AssociationQuery>
  <PrimaryFilter comparator="EQ" domainAttribute="associationType" 
    value="${ASSOC_TYPE_ID}" xsi:type="StringFilterType"/>
</AssociationQuery>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 66 of 129

2312

2313
2314
2315
2316
2317
2318
2319

2320

2321

2322

2323

2324

2325

2326

2327
2328
2329
2330
2331
2332

2333

2334

2335

2336

2337

2338
2339
2340
2341
2342
2343

2344

2345

2346

2347

2348

2349

2350

2351
2352
2353
2354
2355
2356
2357

2358

2359



6.6.3.4 Complex Association Query

The various forms of Association queries may be combined into complex predicates. The following query 
selects Associations that match specified specific sourceObject, targetObject and associationType:

SELECT a.* FROM Association a WHERE 
sourceObject = ${SOURCE_ID} AND
targetObject = ${TARGET_ID} AND
associationType = ${ASSOC_TYPE_ID};

<AssociationQuery>
  <PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
    <LeftFilter comparator="EQ" domainAttribute="sourceObject" 
      xsi:type="StringFilterType" value="${SOURCE_ID}"/>
    <RightFilter logicalOperator="AND" xsi:type="CompoundFilterType">
      <LeftFilter comparator="EQ" domainAttribute="targetObject" 
        xsi:type="StringFilterType" value="${TARGET_ID}"/>
      <RightFilter comparator="EQ" domainAttribute="associationType" 
        xsi:type="StringFilterType" value="${ASSOC_TYPE_ID}"/>
    </RightFilter>
  </PrimaryFilter>
</AssociationQuery>

6.6.4 Package Queries

The following query retrieves all Packages that have as member the RegistryObject specified by 
${REGISTRY_OBJECT_ID}:

SELECT p.* FROM Package p, Association a WHERE 
a.sourceObject = p.id AND
a.targetObject = ${REGISTRY_OBJECT_ID} AND
a.associationType = ${HAS_MEMBER_ASSOC_TYPE_NODE_ID};

<RegistryPackageQuery>
  <SourceAssociationQuery>
    <PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
      <LeftFilter comparator="EQ" domainAttribute="targetObject" 
        value="${REGISTRY_OBJECT_ID}" 
        xsi:type="StringFilterType"/>
      <RightFilter comparator="EQ" domainAttribute="associationType" 
        value="${HAS_MEMBER_ASSOC_TYPE_NODE_ID}" 
        xsi:type="StringFilterType"/>
    </PrimaryFilter>
  </SourceAssociationQuery>
</RegistryPackageQuery>

Note that the ${HAS_MEMBER_ASSOC_TYPE_NODE_ID} is a placeholder for the value of the id 
attribute of the canonical HasMember AssociationType ClassificationNode.

6.6.5 ExternalLink Queries

The following query retrieves all ExternalLinks that serve as ExternalLink for the RegistryObject specified 
by ${REGISTRY_OBJECT_ID}:

SELECT el.* From ExternalLink el, Association a WHERE
a.sourceObject = el.id AND
a.targetObject = ${REGISTRY_OBJECT_ID} AND
a.associationType = ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID};

<ExternalLinkQuery>
  <SourceAssociationQuery>
    <PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 67 of 129

2360

2361

2362

2363

2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380

2381

2382

2383

2384

2385

2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402

2403

2404

2405

2406

2407

2408

2409

2410
2411
2412
2413
2414
2415
2416
2417



      <LeftFilter comparator="EQ" domainAttribute="targetObject" 
        value="${REGISTRY_OBJECT_ID}" 
        xsi:type="StringFilterType"/>
      <RightFilter comparator="EQ" domainAttribute="associationType" 
        value="${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID}" 
        xsi:type="StringFilterType"/>
    </PrimaryFilter>
  </SourceAssociationQuery>
</ExternalLinkQuery>

Note that the ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID} is a placeholder for the value of the id 
attribute of the canonical ExternallyLinks AssociationType ClassificationNode.

The following query retrieves all ExtrinsicObjects that are linked to an ExternalLink specified by 
${EXTERNAL_LINK_ID}:

SELECT eo.* From ExtrinsicObject eo, Association a WHERE 
a.sourceObject = ${EXTERNAL_LINK_ID} AND
a.targetObject = eo.id AND
a.associationType = ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID};

<ExtrinsicObjectQuery>
  <TargetAssociationQuery>
    <PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
      <LeftFilter comparator="EQ" domainAttribute="sourceObject" 
        value="${EXTERNAL_LINK_ID}" 
        xsi:type="StringFilterType"/>
      <RightFilter comparator="EQ" domainAttribute="associationType" 
        value="${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID}" 
        xsi:type="StringFilterType"/>
    </PrimaryFilter>
  </TargetAssociationQuery>
</ExtrinsicObjectQuery>

6.6.6 Audit Trail Queries

The following query retrieves all the AuditableEvents for the RegistryObject specified by 
${REGISTRY_OBJECT_ID}:

SELECT ae.* FROM AuditableEvent ae, AffectedObject ao WHERE 
ao.eventId = ae.id AND
ao.id = ${REGISTRY_OBJECT_ID}

<AuditableEventQuery>
  <AffectedObjectQuery>
    <PrimaryFilter comparator="EQ" domainAttribute="id" 
      value="${REGISTRY_OBJECT_ID}" xsi:type="StringFilterType"/>
  </AffectedObjectQuery>
</AuditableEventQuery>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 68 of 129

2418
2419
2420
2421
2422
2423
2424
2425
2426

2427

2428

2429

2430

2431

2432

2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449

2450

2451

2452

2453

2454

2455
2456
2457
2458
2459
2460
2461
2462
2463
2464

2465



7 Event Notification Protocols
This chapter defines the Event Notification feature of the OASIS ebXML Registry.

Event Notification feature allows OASIS ebXML Registries to notify its users and / or other registries 
about events of interest. It allows users to stay informed about registry events without being forced to 
periodically poll the registry. It also allows a registry to propagate internal changes to other registries 
whose content might be affected by those changes.

ebXML registries support content-based Notification where interested parties express their interest in 
form of a query. This is different from subject–based (sometimes referred to as topic-based) notification, 
where information is categorized by subjects and interested parties express their interests in those 
predefined subjects.

7.1 Use Cases
The following use cases illustrate different ways in which ebXML registries notify users or other registries.

7.1.1 CPP Has Changed

A user wishes to know when the CPP [ebCPP] of a partner is updated or superseded by another CPP. 
When that happens he may wish to create a CPA [ebCPP] based upon the new CPP.

7.1.2 New Service is Offered

A user wishes to know when a new plumbing service is offered in her town and be notified every 10 days. 
When that happens, she might try to learn more about that service and compare it with her current 
plumbing service provider’s offering.

7.1.3 Monitor Download of Content

User wishes to know whenever his CPP [ebCPP] is downloaded in order to evaluate on an ongoing basis 
the success of his recent advertising campaign. He might also want to analyze who the interested parties 
are.

7.1.4 Monitor Price Changes

User wishes to know when the price of a product that she is interested in buying drops below a certain 
amount. If she buys it she would also like to be notified when the product has been shipped to her.

7.1.5 Keep Replicas Consistent With Source Object

In order to improve performance and availability of accessing some registry objects, a local registry MAY 
make replicas of certain objects that are hosted by another registry. The registry would like to be notified 
when the source object for a replica is updated so that it can synchronize the replica with the latest state 
of the source object.

7.2 Registry Events
Activities within a registry result in meaningful events. Typically, registry events are generated when a 
registry processes client requests. In addition, certain registry events may be caused by administrative 
actions performed by a registry operator. [ebRIM] defines the AuditableEvent class, instances of which 
represent registry events. When such an event occurs, an AuditableEvent instance is generated by the 
registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 69 of 129

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502



7.3 Subscribing to Events
A user MAY create a subscription with a registry if he or she wishes to receive notification for a specific 
type of event. A user creates a subscription by submitting a Subscription instance to a registry using the 
SubmitObjectsRequest. If a Subscription is submitted to a registry that does not support event 
notification then the registry MUST return an UnsupportedCapabilityException.

The listing below shows a sample Subscription using a pre-defined SQL query as its selector that will 
result in an email notification to the user whenever a Service is created that is classified as a “Plumbing” 
service and located in “A Little Town.”

The SQL query within the selector in plain English says the following:

Find all Services that are Created AND classified by ClassificationNode
where ClassificationNode's Path ends with string "Plumbing", AND classified by ClassificationNode 
where ClassificationNode's Code contains string "A Little Town.”

<rim:Subscription id="${SUBSCRIPTION_ID}" selector="${QUERY_ID}">
  <!--
       The selector is a reference to a query object that has the 
following query defined
       SELECT * FROM Service s, AuditableEvent e, AffectectedObject ao,
       Classification c1, Classification c2
       ClassificationNode cn1, ClassificationNode cn2 WHERE
       e.eventType = 'Created' AND ao.id = s.id AND ao.parent=e.id AND
       c1.classifiedObject = s.id AND c1.classificationNode = cn1.id AND
       cn1.path LIKE '%Plumbing' AND
       c2.classifiedObject = s.id AND c2.classificationNode = cn2.id AND
       cn2.path LIKE '%A Little Town%'
  -->
  <!-- Next endPoint is an email address -->
  <rim:NotifyAction notificationOption="urn:oasis:names:tc:ebxml-
regrep:NotificationOptionType:Objects" 
endPoint="mailto:farrukh.najmi@sun.com"/>
  <!-- Next endPoint is a service via reference to its ServiceBinding 
object -->
  <rim:NotifyAction notificationOption="urn:oasis:names:tc:ebxml-
regrep:NotificationOptionType:ObjectRefs" 
endPoint="urn:freebxml:registry:demoDB:serviceBinding:EpidemicAlertListe
nerServiceBinding"/>
</rim:Subscription>

7.3.1 Event Selection

In order to only be notified of specific events of interest, the user MUST specify a reference to a stored 
AdHocQuery object via the selector attribute within the Subscription instance. The query determines 
whether an event qualifies for that Subscription or not. For details on query syntax see chapter 6. 

7.3.2 Notification Action

When creating a Subscription, a user MAY also specify Actions within the subscription that specify what 
the registry must do when an event matching the Subscription (subscription event) transpires. 

A user MAY omit specifying an Action within a Subscription if he does not wish to be notified by the 
registry. A user MAY periodically poll the registry and pull the pending Notifications.

[ebRIM] defines two standard ways that a NotifyAction may be used:

• Email NotifyAction that allows delivery of event notifications via email to a human user or to an 
email end point for a software component or agent.

• Service NotifyAction that allows delivery of event notifications via a programmatic interface by 
invoking a specified listener web service.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 70 of 129

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555



If the registry supports event notification, at some time after the successful processing of each request, it 
MUST check all registered and active Subscriptions and see if any Subscriptions match the event. If a 
match is found then the registry performs the Notification Actions required for the Subscription. A registry 
MAY periodically perform such checks and corresponding notification actions in a batch mode based 
upon registry specific policies.

7.3.3 Subscription Authorization

A registry operator or content owner MAY use custom Access Control Policies to decide which users are 
authorized to create a subscription and to what events. A Registry MUST return an 
AuthorizationException in the event that an unauthorized user submits a Subscription to a registry.  It is 
up to registry implementations whether to honour the existing subscription if an access control policy 
governing subscriptions becomes more restrictive after subscription have already been created based on 
the older policy. 

7.3.4 Subscription Quotas

A registry MAY use registry specific policies to decide an upper limit on the number of Subscriptions a 
user is allowed to create. A Registry MUST return a QuotaExceededException in the event that an 
authorized user submits more Subscriptions than allowed by their registry specific quota.

7.3.5 Subscription Expiration

Each subscription defines a startTime and and endTime attribute which determines the period within 
which a Subscription is active. Outside the bounds of the active period, a Subsription MAY exist in an 
expired state within the registry. A registry MAY remove an expired Subscription at any time. In such 
cases the identity of a RegistryOperator user MUST be used for the request in order to have sufficient 
authorization to remove a user’s Subscription.

A Registry MUST NOT consider expired Subscriptions when delivering notifications for an event to its 
Subscriptions. An expired Subscription MAY be renewed by submitting a new Subscription. 

7.3.6 Subscription Rejection

A Registry MAY reject a Subscription if it is too costly to support. For instance a Subscription that wishes 
to be notified of any change in any object may be too costly for most registries. A Registry MUST return a 
SubscriptionTooCostlyException in the event that an Authorized User submits a Subscription that is too 
costly for the registry to process.

7.4 Unsubscribing from Events
A user MAY terminate a Subscription with a registry if he or she no longer wishes to be notified of events 
related to that Subscription. A user terminates a Subscription by deleting the corresponding Subscription 
object using the RemoveObjectsRequest to the registry.

Removal of a Subscription object follows the same rules as removal of any other object.

7.5 Notification of Events
A registry performs the Actions for a Subscription in order to actually deliver the events information to the 
subscriber.  However, regardless of the specific delivery Action, the registry MUST communicate the 
Subscription events. The Subscription events are delivered within a Notification instance as described by 
[ebRIM]. In case of Service NotifyAction, the Notification is delivered to a handler service conformant to 
the RegistryClient interface. In case of an Email NotifyAction the notification is delivered an email 
address.

The listing below shows a sample Notification matching the subscription example in section 7.3:  

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 71 of 129

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598



<rim:Notification subscription="${SUBSCRIPTION_ID}">
  <rim:RegistryObjectList>
    <rim:Service id="f3373a7b-4958-4e55-8820-d03a191fb76a">
      <rim:Name>
        <rim:LocalizedString value="A Little Town Plumbing"/>
      </rim:Name>
      <rim:Classification id="a3373a7b-4958-4e55-8820-d03a191fb76a" 
classifiedObject="f3373a7b-4958-4e55-8820-d03a191fb76a"/>
      <rim:Classification id="b3373a7b-4958-4e55-8820-d03a191fb76a" 
classifiedObject="f3373a7b-4958-4e55-8820-d03a191fb76a"/>
    </rim:Service>
  </rim:RegistryObjectList>
</rim:Notification>

A Notification MAY contain actual RegistryObjects or ObjectRefs to RegistryObjects within the 
<rim:RegistryObjectList>. A client MAY specify the whether they wish to receive RegistryObjects or 
ObjectRefs to RegistryObjects  using the notificationOption attribute of the Action within the Subscription. 
The registry MAY override this notificationOption based upon registry specific operational policies.

7.6 Retrieval of Events
The registry provides asynchronous PUSH style delivery of Notifications via notify Actions as described 
earlier. However, a client MAY also use a PULL style to retrieve any pending events for their 
Subscriptions. Pulling of events is done using the AdHocQuery protocol and querying the Notification 
class. A registry SHOULD buffer undelivered notifications for some period to allow clients to PULL those 
notifications. The period that a registry SHOULD buffer undelivered notifications MAY be defined using 
registry specific policies.

7.7 Pruning of Events
A registry MAY periodically prune AuditableEvents in order to manage its resources. It is up to the 
registry when such pruning occurs. It is up to the registry to determine when undelivered events are 
purged. A registry SHOULD perform such pruning by removing the older information in its Audit Trail 
content. However, it MUST not remove the original Create Event at the beginning of the audit trail since 
the Create Event establishes the owner of the RegistryObject.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 72 of 129

2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629



8 Content Management Services
This chapter describes the Content Management services of the ebXML Registry. Examples of Content 
Management Services include, but are not limited to, content validation and content cataloging. Content 
Management Services result in improved quality and integrity of registry content and metadata as well as 
improved ability for clients to discover that content and metadata.

The Content Management Services facility of the registry is based upon a pluggable architecture that 
allows clients to publish and discover new Content Management Services as Service objects that 
conform to a normative web service interface specified in this chapter. Clients MAY configure a Content 
Management Service that is specialized for managing a specific type of content.

8.1 Content Validation
The Content Validation feature provides the ability to enforce domain specific validation rules upon 
submitted content and metadata in a content specific manner.

   Content 

Validation

Service

Invocation Control File

Success | Failure

Original 
Content

Content +
Metadata

 Figure 13: Content Validation Service

A registry uses one or more Content Validation Services to automatically validate the RegistryObjects 
and repository items when they are submitted to the registry. A registry MUST reject a submission 
request in its entirety if it contains invalid data. In such cases a ValidationException MUST be returned to 
the client.

Content Validation feature improves the quality of data in the registry.

8.1.1 Content Validation: Use Cases

The following use cases illustrate the Content Validation feature:

8.1.1.1 Validation of HL7 Conformance Profiles

The Healthcare Standards organization HL7 uses content validation to enforce consistency rules and 
semantic checks whenever an HL7 member submits an HL7 Conformance Profile. HL7 is also planning 
to use the feature to improve the quality of other types of HL7 artifacts.

8.1.1.2 Validation of Business Processes

Content validation may be used to enforce consistency rules and semantic checks whenever a Business 
Process is submitted to the registry. This feature may be used by organizations such as UN/CEFACT, 
OAGi, and RosettaNet.

8.1.1.3 Validation of UBL Business Documents

Content validation may be used by the UBL technical committee to enforce consistency rules and 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 73 of 129

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660



semantic checks whenever a UBL business document is submitted to the registry.

8.2 Content Cataloging
The Content Cataloging feature provides the ability to selectively convert submitted RegistryObject and 
repository items into metadata defined by [ebRIM], in a content specific manner.

   Content 

Cataloging

Service

Original 
Content

Content +
Metadata

Cataloged 
Content

Content +
Metadata

Invocation Control File

 Figure 14: Content Cataloging Service

A registry uses one or more Content Cataloging Services to automatically catalog RegistryObjects and 
repository items. Cataloging creates and/or updates RegistryObject metadata such as ExtrinsicObject or 
Classification instances. The cataloged metadata enables clients to discover the repository item based 
upon content from the repository item, using standard query capabilities of the registry. This is referred to 
as Content-based Discovery. 

The main benefit of the Content Cataloging feature is to enable Content-based Discovery.

8.2.1 Content-based Discovery: Use Cases

There are many scenarios where content-based discovery is necessary.

8.2.1.1 Find All CPPs Where Role is “Buyer”

A company that sells a product using the RosettaNet PIP3A4 Purchase Order process wants to find 
CPPs for other companies where the Role element of the CPP is that of “Buyer”.

8.2.1.2 Find All XML Schema’s That Use Specified Namespace

A client may wish to discover all XML Schema documents in the registry that use an XML namespace 
containing the word “oasis”.

8.2.1.3 Find All WSDL Descriptions with a SOAP Binding

An ebXML registry client is attempting to discover all repository items that are WSDL descriptions that 
have a SOAP binding defined. Note that SOAP binding related information is content within the WSDL 
document and not metadata.

8.3 Abstract Content Management Service
This section describes in abstract terms how the registry supports pluggable, user-defined Content 
Management Services. A Content Management Service is invoked in response to content being 
submitted to the registry via the standard Submit/UpdateObjectsRequest method. The Service invocation 
is on a per request basis where one request may result in many invocations, one for each RegistryObject 
for which a Content Management Service is configured within the registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 74 of 129

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690



The registry may perform such invocation in one of two ways.

• Inline Invocation Model: Content Management Service may be invoked inline with the 
processing of the Submit/UpdateObjectsRequest and prior to committing the content. This is 
referred to as Inline Invocation Model.

• Decoupled Invocation Model: Content Management Service may be invoked decoupled from 
the processing of the Submit/UpdateObjectsRequest and some time after committing the 
content. This is referred to as Decoupled Invocation Model.

8.3.1 Inline Invocation Model 

In an inline invocation model a registry MUST invoke a Content Management Service inline with 
Submit/UpdateObjectsRequest processing and prior to committing the Submit/UpdateObjectsRequest. 
All metadata and content from the original Submit/UpdateObjectsRequest request or from the Content 
Management Service invocation MUST be committed as an atomic transaction.

Figure 15 shows an abstract Content Management Service and how it is used by an ebXML Registry 
using an inline invocation model. The steps are as follows:

1. A client submits a Content Management Service S1 to an ebXML Registry. The client 
typically belongs to an organization responsible for defining a specific type of content. 
For example the client may belong to RosettaNet.org and submit a Content Validation 
Service for validating RosettaNet PIPs. The client uses the standard 
Submit/UpdateObjectsRequest interface to submit the Service. This is a one-time step to 
configure this Content Management Service in the registry.

2. Once the Content Management Service has been submitted, a potentially different client 
may submit content to the registry that is of the same object type for which the Content 
Management Service has been submitted. The client uses the standard 
Submit/UpdateObjectsRequest interface to submit the content.

3. The registry determines there is a Content Management Service S1 configured for the 
object type for the content submitted. It invokes S1 using a 
ContentManagementServiceRequest and passes it the content.

4. The Content Management Service S1 processes the content and sends back a 
ContentManagementServiceResponse.

5. The registry then commits the content to the registry if there are no errors encountered.
6. The registry returns a RegistryResponse to the client for the 

Submit/UpdateObjectsRequest in step 2.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 75 of 129

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726



   Content 

Management

Service

2. SubmitObjectRequest

 ebXML RegistryRegistry Client

3. Content

Management

Service

Request

4. Content

Management

Service

Response

Content +
Metadata

Content +
Metadata

Invocation
Control

File

6. RegistryResponse

5. commit

1. SubmitObjectRequest Service

Persistent
Store

 Figure 15: Content Management Service:  Inline Invocation Model

8.3.2 Decoupled Invocation Model

In a decoupled invocation model a registry MUST invoke a Content Management Service independent of 
or decoupled from the Submit/UpdateObjectsRequest processing. Any errors encountered during 
Content Management Service invocation MUST NOT have any impact on the original 
Submit/UpdateObjectsRequest processing.

All metadata and content from the original Submit/UpdateObjectsRequest request MUST be committed 
as an atomic transaction that is decoupled from the metadata and content that may be generated by the 
Content Management Service invocation.

Figure 16 shows an abstract Content Management Service and how it is used by an ebXML Registry 
using a decoupled invocation model. The steps are as follows:

1. Same as in inline invocation model (Content Management Service is submitted).
2. Same as in inline invocation model (client submits content using 

Submit/UpdateObjectsRequest).
3. The registry processes the Submit/UpdateObjectsRequest and commits it to persistent 

store.
4. The registry returns a RegistryResponse to the client for the 

Submit/UpdateObjectsRequest in step 2.
5. The registry determines there is a Content Management Service S1 configured for the 

object type for the content submitted. It invokes S1 using a 
ContentManagementServiceRequest and passes it the content.

6. The Content Management Service S1 processes the content and sends back a 
ContentManagementServiceResponse.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 76 of 129

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751



7. If the ContentManagementServiceResponse includes any generated or modified content it 
is committed to the persistent store as separate transaction. If there are any errors 
encountered during decoupled invocation of a Content Management Service then these 
errors are logged by the registry in a registry specific manner and MUST NOT be 
reported back to the client.

   Content 

Management

Service

2. SubmitObjectRequest

 ebXML RegistryRegistry Client

5. Content

Management

Service

Request

6. Content

Management

Service

Response

Content +
Metadata

Content +
Metadata

Invocation
Control

File

4. RegistryResponse

3. commit

1. SubmitObjectRequest Service

7. commit

Persistent
Store

 Figure 16: Content Management Service: Decoupled Invocation Model

8.4 Content Management Service Protocol
This section describe the abstract Content Management Service protocol that is the base- protocol for 
other concrete protocols such as Validate Content protocol and Catalog Content protocol. The concrete 
protocols will be defined later in this document.

8.4.1 ContentManagementServiceRequestType

The ContentManagementServiceRequestType MUST be the abstract base type for all requests sent from 
a registry to a Content Management Service.

8.4.1.1 Syntax:

<complexType name="ContentManagementServiceRequestType">
   <complexContent>
     <extension base="rs:RegistryRequestType">
       <sequence>
         <element name="OriginalContent" 
type="rim:RegistryObjectListType"/>
         <element name="InvocationControlFile" 
type="rim:ExtrinsicObjectType" maxOccurs="unbounded" minOccurs="0"/>
       </sequence>
     </extension>
   </complexContent>
 </complexType>



regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 77 of 129

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779

2780



8.4.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and 
have additional semantics beyond those defined in the base type description.

 InvocationControlFile: This parameter specifies the ExtrinsicObject for a repository item 
that the caller wishes to specify as the Invocation Control File. This specification does not 
specify the format of this file. There MUST be a corresponding repository item as an 
attachment to this request. The corresponding repository item SHOULD follow the same 
rules as attachments in Submit/UpdateObjectsRequest.

 OriginalContent:  This parameter specifies the RegistryObjects that will be processed by 
the content management service. In case of ExtrinsicObject instances within the 
OriginalContent there MAY be repository items present as attachments to the 
ContentManagementServiceRequest. This specification does not specify the format of 
such repository items. The repository items SHOULD follow the same rules as 
attachments in Submit/UpdateObjectsRequest.

8.4.1.3 Returns:

This request returns a ContentManagementServiceResponse. See section 8.4.2 for details.

8.4.1.4  Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

 MissingRepositoryItemException: signifies that the caller did not provide a repository 
item as an attachment to this request when the Service requires it.

 InvocationControlFileException: signifies that the InvocationControlFile(s) provided by 
the caller do not match the InvocationControlFile(s) expected by the Service.

 UnsupportedContentException: signifies that this Service does not support the content 
provided by the caller.

8.4.2 ContentManagementServiceResponseType

The ContentManagementServiceResponseType is sent by a Content Management Service as a 
response to a ContentManagementServiceRequestType. The 
ContentManagementServiceResponseType is the abstract base type for all responses sent to a registry 
from a Content Management Service. It extends the RegistryResponseType and does not define any 
new parameters.

 

8.4.2.1 Syntax:

<complexType name="ContentManagementServiceResponseType">
   <complexContent>
     <extension base="rs:RegistryResponseType">
       <sequence>
       </sequence>
     </extension>
   </complexContent>
 </complexType>



8.4.2.2 Parameters:

No new parameters are defined other than those inherited from RegistryResponseType.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 78 of 129

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815
2816
2817
2818
2819
2820
2821
2822

2823

2824

2825



8.5 Publishing / Configuration of a Content Management Service
Any Submitter MAY submit an arbitrary Content Management Service to an ebXML Registry. The 
Content Management Service MUST be published using the standard LifeCycleManager interface. 

The Submitter MUST use the standard Submit/UpdateObjectsRequest to publish: 

o A Service instance for the Content Management Service. In Figure 17 this is exemplified by the 
defaultXMLCatalogingService in the upper-left corner. The Service instance MUST have an 
Association with a ClassificationNode in the canonical ObjectType ClassificationScheme as 
defined by [ebRIM]. The Service MUST be the sourceObject while a ClassificationNode MUST 
be the targetObject. This association binds the Service to that specific ObjectType. The 
associationType for this Association instance MUST be “ContentManagementServiceFor.”  The 
Service MUST be classified by the canonical ContentManagementService ClassificationScheme 
as defined by [ebRIM]. For example it may be classified as a “ContentValidationService” or a 
“ContentCatalogingService.”  

o The Service instance MAY be classified by a ClassificationNode under the canonical 
InvocationModel ClassificationScheme as defined by [ebRIM], to determine whether it uses the 
Inline Invocation model or the Decoupled Invocation model. 

o The Service instance MAY be classified by a ClassificationNode under the canonical 
ErrorHandlingModel ClassificationScheme as defined by [ebRIM], to determine whether the 
Service should fail on first error or simply log the error as a warning and continue. See section 
8.6.4 for details.

o A ServiceBinding instance contained within the Service instance that MUST provide the 
accessURI to the Cataloging Service.

o An optional ExternalLink instance on the ServiceBinding that is resolvable to a web page 
describing:

 The format of the supported content to be Cataloged 

 The format of the supported Invocation Control File

Note that no SpecificationLink is required since this specification [ebRS] is implicit for Content 
Cataloging Services. 

o One or more Invocation Control File(s) consisting of an ExtrinsicObject and a repository item 
pair. The ExtrinsicObject for the Invocation Control File MUST have a required Association with 
associationType value that references a descendant ClassificationNode of the canonical 
ClassificationNode “InvocationControlFileFor.”  This is exemplified by the 
cppCatalogingServiceXSLT and the oagBODCatalogingServiceXSLT objects in Figure 17 (left 
side of picture). The Invocation Control File MUST be the sourceObject while a 
ClassificationNode in the canonical ObjectType ClassificationScheme MUST be the targetObject.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 79 of 129

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862



 Figure 17: Cataloging Service Configuration

Figure 17 shows an example of the configuration of the Canonical XML Cataloging Service associated 
with the objectType for XML content. This Cataloging Service may be used with any XML content that 
has its objectType attribute hold a reference to the xmlObjectType ClassificationNode or one of its 
descendants.

The figure also shows two different Invocation Control Files, cppCatalogingServiceXSLT and 
oagBODCatalogingServiceXSLT that may be used to catalog ebXML CPP and OAG Business Object 
Documents (BOD) respectively.

8.5.1 Multiple Content Management Services and Invocation Control 
Files

This specification allows clients to submit multiple Content Management Services of the same type (e.g. 
validation, cataloging) and multiple Invocation Control Files for the same objectType. Content 
Management Services of the same type of service for the same ObjectType are referred to as peer 
Content Management Services.

When there are multiple Content Management Services and Invocation Control Files for the same 
ObjectType there MUST be an unambiguous association between a Content Management Service and 
its Invocation Control File(s). This MUST be defined by an Association instance with associationType 
value that references  a ClassificationNode that is a descendant of the canonical ClassificationNode 
“InvocationControlFileFor” where the ExtrinsicObject for each Invocation Control File is the sourceObject 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 80 of 129

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883



and the Service is the targetObject.

The order of invocation of peer Content Management Services is undefined and MAY be determined in a 
registry specific manner.

8.6 Invocation of a Content Management Service
This section describes how a registry invokes a Content Management Service.

8.6.1 Resolution Algorithm For Service and Invocation Control File

When a registry receives a submission of a RegistryObject, it MUST use the following algorithm to 
determine or resolve the Content Management Services and Invocation Control Files to be used for 
dynamic content management for the RegistryObject:

1. Get the objectType attribute of the RegistryObject. 

2. Query to see if the ClassificationNode referenced by the objectType is the targetObject of an Association 
with associationType of ContentManagementServiceFor. If the desired Association is not found for this 
ClassificationNode then repeat this step with its parent ClassificationNode. Repeat until the desired 
Association is found or until the parent is the ClassificationScheme. If desired Association(s) is found then 
repeat following steps for each such Association instance.

3. Check if the sourceObject of the desired Association is a Service instance. If not, log an 
InvalidConfigurationException. If it is a Service instance, then use this Service as the Content 
Management service for the RegistryObject.

4. Query to see if the objectType ClassificationNode is the targetObject of one or more Associations whose 
associationType value references a ClassificationNode that is a descendant of the canonical 
ClassificationNode InvocationControlFileFor. If desired Association is not found for this 
ClassificationNode then repeat this step with its parent ClassificationNode. Repeat until the desired 
Association is found or until the parent is the ClassificationScheme. 

5. If desired Association(s) is found then check if the sourceObject of the desired Association is an 
ExtrinsicObject instance. If not, log an InvalidConfigurationException. If sourceObject is an 
ExtrinsicObject instance, then use its repository item as an Invocation Control File. If there are multiple 
InvocationControlFiles then all of them MUST be provided when invoking the Service.

The above algorithm allows for objectType hierarchy to be used to configure Content Management 
Services and Invocation Control Files with varying degrees of specificity or specialization with respect to 
the type of content.

8.6.2 Audit Trail and Cataloged Content

The Cataloged Content generated as a result of the invocation of a Content Management Service has an 
audit trail consistent with RegistryObject instances that are submitted by Registry Clients. However, since 
a Registry Client does not submit Cataloged Content, the user attribute of the AuditableEvent instances 
for such Cataloged Content references the Service object for the Content Management Service that 
generated the Cataloged Content. This allows an efficient way to distinguish Cataloged Content from 
content submitted by Registry Clients.

8.6.3 Referential Integrity

A registry MUST maintain referential integrity between the RegistryObjects and repository items 
invocation of a Content Management Service.

8.6.4 Error Handling

If the Content Management Service is classified by the “FailOnError” ClassificationNode under canonical 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 81 of 129

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926



ErrorHandlingModel ClassificationScheme as defined by [ebRIM], then the registry MUST stop further 
processing of the Submit/UpdateObjectsRequest and return status of “Failure” upon first error returned 
by a Content Management Service Invocation.

If the Content Management Service is classified by the “LogErrorAndContinue” ClassificationNode under 
ErrorHandlingModel then the registry MUST continue to process the Submit/UpdateObjectsRequest and 
not let any Content Management Service invocation error affect the storing of the RegistryObjects and 
repository items that were submitted. Such errors SHOULD be logged as Warnings within the 
RegistryResponse returned to the client. In this case a registry MUST return a normal response with 
status of “Success” if the submitted content and metadata is stored successfully even when there are 
errors encountered during dynamic invocation of one or more Content Management Services. 

8.7 Validate Content Protocol
The interface of a Content Validation Service MUST implement a single method called validateContent. 
The validateContent method accepts a ValidateContentRequest as parameter and returns a 
ValidateContentResponse as its response if there are no errors. 

The OriginalContent element within a ValidateContentRequest MUST contain exactly one RegistryObject 
that needs to be cataloged. The resulting ValidateContentResponse contains the status attribute that 
communicates whether the RegistryObject (and its content) are valid or not.

The Validate Content protocol does not specify the implementation details of any specific Content 
Validation Service. 

 Figure 18: Validate Content Protocol

8.7.1 ValidateContentRequest

The ValidateContentRequest is used to pass content to a Content Validation Service so that it can 
validate the specified RegistryObject and any associated content. The RegistryObject typically is an 
ExternalLink (in the case of external content) or an ExtrinsicObject. The ValidateContentRequest extends 
the base type ContentManagementServiceRequestType.

8.7.1.1 Syntax:

<element name="ValidateContentRequest">
   <complexType>
     <complexContent>
       <extension base="cms:ContentManagementServiceRequestType">
         <sequence>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 82 of 129

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954
2955
2956
2957
2958



         </sequence>
       </extension>
     </complexContent>
   </complexType>
 </element>



8.7.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and 
have additional semantics beyond those defined in the base type description.

 InvocationControlFile: Inherited from base type. This parameter may not be present. If 
present its format is defined by the Content Validation Service.

 OriginalContent:  Inherited from base type. This parameter MUST contain exactly one 
RegistryObject (e.g. ExternalLink, ExtrinsicObject) and potentially an associated content. 
This specification does not specify the format of the content. If it is an ExtrinsicObject 
then there MAY be a corresponding repository item as an attachment to this request that 
is the content. The corresponding repository item SHOULD follow the same rules as 
attachments in Submit/UpdateObjectsRequest.

8.7.1.3 Returns:

This request returns a ValidateContentResponse. See section 8.7.2 for details.

8.7.1.4  Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

 InvalidContentException: signifies that the specified content was found to be invalid. The 
exception SHOULD include enough detail for the client to be able to determine how to 
make the content valid.

8.7.2 ValidateContentResponse

The ValidateContentResponse is sent by the Content Validation Service as a response to a 
ValidateContentRequest. 

 

8.7.2.1 Syntax:

<element name="ValidateContentResponse">
   <complexType>
     <complexContent>
       <extension base="cms:ContentManagementServiceResponseType">
         <sequence>
         </sequence>
       </extension>
     </complexContent>
   </complexType>
 </element>



8.7.2.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and 
have additional semantics beyond those defined in the base type description.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 83 of 129

2959
2960
2961
2962
2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990
2991
2992
2993
2994
2995
2996
2997
2998
2999

3000

3001

3002

3003



 status:  Inherited attribute. This enumerated value is used to indicate the status of the 
request. Values for status are as follows:

• Success - This status specifies that the content specified in the 
ValidateContentRequest was valid.

• Failure - This status specifies that the request failed. If the error returned is 
an InvalidContentException then the content specified in the 
ValidateContentRequest was invalid. If there was some other failure 
encountered during the processing of the request then a different error 
MAY be returned.

8.8 Catalog Content Protocol
The interface of the Content Cataloging Service MUST implement a single method called 
catalogContent. The catalogContent method accepts a CatalogContentRequest as parameter and 
returns a CatalogContentResponse as its response if there are no errors. 

The CatalogContentRequest MAY contain repository items that need to be cataloged. The resulting 
CatalogContentResponse contains the metadata and possibly content that gets generated or updated by 
the Content Cataloging Service as a result of cataloging the specified repository items.

The Catalog Content protocol does not specify the implementation details of any specific Content 
Cataloging Service. 

 Figure 19: Catalog Content Protocol

8.8.1 CatalogContentRequest

The CatalogContentRequest is used to pass content to a Content Cataloging Service so that it can 
create catalog metadata for the specified RegistryObject and any associated content. The RegistryObject 
typically is an ExternalLink (in case of external content) or an ExtrinsicObject. The 
CatalogContentRequest extends the base type ContentManagementServiceRequestType.

8.8.1.1 Syntax:

<element name="CatalogContentRequest">

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 84 of 129

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032



   <complexType>
     <complexContent>
       <extension base="cms:ContentManagementServiceRequestType">
         <sequence>
         </sequence>
       </extension>
     </complexContent>
   </complexType>
 </element>



8.8.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and 
have additional semantics beyond those defined in the base type description.

 InvocationControlFile: Inherited from base type. If present its format is defined by the 
Content Cataloging Service.

 OriginalContent:  Inherited from base type. This parameter MUST contain exactly one 
RegistryObject (e.g. ExternalLink, ExtrinsicObject) and potentially an associated content. 
This specification does not specify the format of the content. If it is an ExtrinsicObject 
then there MAY be a corresponding repository item as an attachment to this request that 
is the content. The corresponding repository item SHOULD follow the same rules as 
attachments in Submit/UpdateObjectsRequest.

8.8.1.3 Returns:

This request returns a CatalogContentResponse. See section 8.8.2 for details.

8.8.1.4  Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

 CatalogingException: signifies that an exception was encountered in the Cataloging 
algorithm for the service.

8.8.2 CatalogContentResponse

The CatalogContentResponse is sent by the Content Cataloging Service as a response to a 
CatalogContentRequest.

 

8.8.2.1 Syntax:

<element name="CatalogContentResponse">
   <complexType>
     <complexContent>
       <extension base="cms:ContentManagementServiceResponseType">
         <sequence>
           <element name="CatalogedContent" 
type="rim:RegistryObjectListType"/>
         </sequence>
       </extension>
     </complexContent>
   </complexType>
 </element>



regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 85 of 129

3033
3034
3035
3036
3037
3038
3039
3040
3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079

3080



8.8.2.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and 
have additional semantics beyond those defined in the base type description.

 CatalogedContent:  This parameter specifies a collection of RegistryObject instances 
that were created or updated as a result of dynamic content cataloging by a content 
cataloging service. The Content Cataloging Service may add metadata such as 
Classifications, ExternalIdentifiers, name, description etc. to the CatalogedContent 
element. There MAY be an accompanying repository item as an attachment to this 
response message if the original repository item was modified by the request.

8.9 Illustrative Example: Canonical XML Cataloging Service
Figure 20 shows a UML instance diagram to illustrate how a Content Cataloging Service is used. This 
Content Cataloging Service is the normative Canonical XML Cataloging Service described in section 
8.10. 

o In the center we see a Content Cataloging Service name defaultXMLCataloger Service.
o On the left we see a CPP repository item and its ExtrinsicObject inputExtObjForCPP being input 

as Original Content to the defaultXMLCataloging Service. 

o On top we see an XSLT style sheet repository item and its ExtrinsicObject that is configured as 
an Invocation Control File for the defaultXMLCataloger Service.

o On the right we see the outputExtObjForCPP, which is the modified ExtrinsicObject for the CPP. 
We also see a Classification roleClassification, which classifies the CPP by the Role element 
within the CPP. These are the Cataloged Content generated as a result of the Cataloging Service 
cataloging the CPP.

Invocation Control File

CatalogedContentOriginalContent

 Figure 20: Example of CPP cataloging using Canonical XML Cataloging Service

    

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 86 of 129

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107



8.10 Canonical XML Content Cataloging Service
An ebXML Registry MUST provide the canonical XML Content Cataloging Service natively as a built-in 
service with the following constraints:

• There is exactly one Service instance for the Canonical XML Content Cataloging Service

• The Service is an XSLT engine

• The Service may be invoked with exactly one Invocation Control File

• The Original Content for the Service MUST be XML document(s)

• The Cataloged Content for the Service MUST be XML document(s)

• The Invocation Control File MUST be an XSLT style sheet

• Each invocation of the Service MAY be with different Invocation Control File (XSLT style sheet) 
depending upon the objectType of the RegistryObject being cataloged. Each objectType 
SHOULD have its own unique XSLT style sheet. For example, ebXML CPP documents SHOULD 
have a specialized ebXML CPP Invocation Control XSLT style sheet.

• The Service MUST have at least one input XML document that is a RegistryObject. Typically this 
is an ExtrinsicObject or an ExternalLink.

• The Service MAY have at most one additional input XML document that is the content 
represented by the RegistryObject (e.g. a CPP document or an HL7 Conformance Profile). The 
optional second input MUST be referenced within the XSLT Style sheet by a using the 
“document” function with the document name specified by variable “repositoryItem” as in 
“document($repositoryItem).”  A registry MUST define the variable “repositoryItem” when 
invoking the Canonical XML Cataloging Service.

• The canonical XML Content Cataloging Service MUST apply the XSLT style sheet to the input 
XML instance document(s) in an XSLT transformation to generate the Cataloged Output.

The Canonical XML Content Cataloging Service is a required normative feature of an ebXML Registry.

8.10.1 Publishing of Canonical XML Content Cataloging Service

An ebXML Registry MUST provide the canonical XML Content Cataloging Service natively as a built-in 
service. This built-in service MUST be published to the registry as part of the intrinsic bootstrapping of 
required canonical data within the registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 87 of 129

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135



9 Cooperating Registries Support
This chapter describes the capabilities and protocols that enable multiple ebXML registries to cooperate 
with each other to meet advanced use cases.

9.1  Cooperating Registries Use Cases
The following is a list of use cases that illustrate different ways that ebXML registries cooperate with each 
other.

9.1.1 Inter-registry Object References

A Submitting Organization wishes to submit a RegistryObject to a registry such that the submitted object 
references a RegistryObject in another registry. 

An example might be where a RegistryObject in one registry is associated with a RegistryObject in 
another registry.

 Figure 21: Inter-registry Object References

9.1.2 Federated Queries

A client wishes to issue a single query against multiple registries and get back a single response that 
contains results based on all the data contained in all the registries. From the client’s perspective it is 
issuing its query against a single logical registry that has the union of all data within all the physical 
registries. 

9.1.3 Local Caching of Data from Another Registry

A destination registry wishes to cache some or all the data of another source registry that is willing to 
share its data. The shared dataset is copied from the source registry to the destination registry and is 
visible to queries on the destination registry even when the source registry is not available.

Local caching of data may be desirable in order to improve performance and availability of accessing that 
object.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in 
another registry, and the first registry caches the second RegistryObject locally.

9.1.4 Object Relocation

A Submitting Organization wishes to relocate its RegistryObjects and/or repository items from the 
registry where it was submitted to another registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 88 of 129

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165



9.2 Registry Federations
A registry federation is a group of registries that have voluntarily agreed to form a loosely coupled union. 
Such a federation may be based on common business interests and specialties that the registries may 
share. Registry federations appear as a single logical registry to registry clients.

 Figure 22: Registry Federations

Registry federations are based on a peer-to-peer (P2P) model where all participating registries are 
equal. Each participating registry is called a registry peer. There is no distinction between the registry 
operator that created a federation and those registry operators that joined that Federation later.

Any registry operator MAY form a registry federation at any time. When a federation is created it MUST 
have exactly one registry peer which is the registry operated by the registry operator that created the 
federation.

Any registry MAY choose to voluntarily join or leave a federation at any time.

9.2.1 Federation Metadata

The Registry Information model defines the Registry and Federation classes. Instances of these classes 
and the associations between these instances describe a federation and its members. Such instance 
data is referred to as Federation Metadata. The Registry and Federation classes are described in detail 
in [ebRIM]. 

The Federation information model is summarized here as follows:

o A Federation instance represents a registry federation.

o A Registry instance represents a registry that is a member of the Federation.

o An Association instance with associationType of HasFederationMember represents membership 
of the registry in the federation. This Association links the Registry instance and the Federation 
instance.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 89 of 129

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190



 Figure 23: Federation Metadata Example

9.2.2 Local Vs. Federated Queries

A federation appears to registry clients as a single unified logical registry. An AdhocQueryRequest sent 
by a client to a federation member MAY be local or federated. A new boolean attribute named federated 
is added to AdhocQueryRequest to indicate whether the query is federated or not. 

9.2.2.1 Local Queries

When the federated attribute of AdhocQueryRequest has the value of false then the query is a local 
query. In the absence of a federated attribute the default value of federated attribute is false.

A local AdhocQueryRequest is only processed by the registry that receives the request.  A local 
AdhocQueryRequest does not operate on data that belongs to other registries.

9.2.2.2 Federated Queries

When the federated attribute of AdhocQueryRequest has the value of true then the query is a federated 
query.

A federation member MUST route a federated query received by it to all other federation member 
registries on a best attempt basis. If a member is not reachable for any reason then it MAY be skipped.

When a registry routes a federated query to other federation members it MUST set the federated 
attribute value to false and the federation attribute value to null to avoid infinite loops.

A federated query operates on data that belongs to all members of the federation. 

When a client submits a federated query to a registry such that the query specifies no federation and no 
federations exist in the registry, then the registry MUST treat it as a local query.

When a client submits a federated query that invokes a parameterized stored query, the registry MUST 
resolve the parameterized stored query into its non-stored formed and MUST replace all variables with 
user-supplied parameters on registry supplied contextual parameters before routing it to a federation 
member. 

When a client submits a federated iterative query, the registry MUST use the startIndex attribute value of 
the original request as the startIndex attribute value of the routed request sent to each federation 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 90 of 129

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217



member. The response to the original request MUST be the union of the results from each routed query. 
In such cases the registry MUST return a totalResultCount attribute value on the federated query 
response to be equal to the maximum of all totalResultCount attribute values returned by each federation 
member.

9.2.2.3 Membership in Multiple Federations

A registry MAY be a member of multiple federations. In such cases if the federated attribute of 
AdhocQueryRequest has the value of true then the registry MUST route the federated query to all 
federations that it is a member of.

Alternatively, the client MAY specify the id of a specific federation that the registry is a member of, as the 
value of the federation parameter. The type of the federation parameter is anyURI and identifies the “id” 
attribute of the desired Federation.

In such cases the registry MUST route the federated query to the specified federation only.

9.2.3 Federated Lifecycle Management Operations

Details on how to create and delete federations and how to join and leave a federation are described in 
9.2.8.

All lifecycle operations SHOULD be performed on a RegistryObject within its home registry using the 
operations defined by the LifeCycleManager interface. Unlike query requests, lifecycle management 
requests do not support any federated capabilities.

9.2.4 Federations and Local Caching of Remote Data

A federation member is not required to maintain a local cache of replicas of RegistryObjects and 
repository items that belong to other members of the federation. 

A registry MAY choose to locally cache some or all data from any other registry whether that registry is a 
federation member or not. Data caching is orthogonal to registry federation and is described in section 
9.3.

Since by default there is minimal replication in the members of a federation, the federation architecture 
scales well with respect to memory and disk utilization at each registry.

Data replication is often necessary for performance, scalability and fault-tolerance reasons.

9.2.5 Caching of Federation Metadata

A special case for local caching is the caching of the Federation and Registry instances and related 
Associations that define a federation and its members. Such data is referred to as federation metadata. A 
federation member is required to locally cache the federation metadata, from the federation home for 
each federation that it is a member of. The reason for this requirement is consistent with a Peer-to-Peer 
(P2P) model and ensures fault-tolerance in case the Federation home registry is unavailable.

The federation member MUST keep the cached federation metadata synchronized with the master copy 
in the Federation home, within the time period specified by the replicationSyncLatency attribute of the 
Federation. Synchronization of cached Federation metadata may be done via synchronous polling or 
asynchronous event notification using the event notification feature of the registry.

9.2.6 Time Synchronization Between Registry Peers

Federation members are not required to synchronize their system clocks with each other. However, each 
Federation member SHOULD keep its clock synchronized with an atomic clock server within the latency 
described by the replicationSyncLatency attribute of the Federation.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 91 of 129

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258



9.2.7 Federations and Security

Federated operations abide by the same security rules as standard operations against a single registry. 
However, federation operations often require registry-to-registry communication. Such communication is 
governed by the same security rules as a Registry Client to registry communication. The only difference 
is that the requesting registry plays the role of Registry Client. Such registry-to-registry communication 
SHOULD be conducted over a secure channel such as HTTP/S. Federation members SHOULD be part 
of the same SAML Federation if member registries implement the Registry SAML Profile described in 
chapter 11.

9.2.8 Federation Lifecycle Management Protocols 

This section describes the various operations that manage the lifecycle of a federation and its 
membership. Federation lifecycle operations are done using standard LifeCycleManager interface of the 
registry in a stylized manner. Federation lifecycle operations are privileged operations. A registry 
SHOULD restrict Federation lifecycle operations to registry User’s that have the RegistryAdministrator 
role.

9.2.8.1 Joining a Federation

The following rules govern how a registry joins a federation:

• Each registry SHOULD have exactly one Registry instance within that registry for which it is a 
home. The Registry instance is owned by the RegistryOperator and may be placed in the registry 
using any operator specific means. The Registry instance SHOULD never change its home 
registry.

• A registry MAY request to join an existing federation by submitting an instance of an Extramural 
Association that associates the Federation instance as sourceObject, to its Registry instance as 
targetObject, using an associationType of HasFederationMember. The home registry for the 
Association and the Federation objects MUST be the same.

9.2.8.2 Creating a Federation

The following rules govern how a federation is created:

• A Federation is created by submitting a Federation instance to a registry using 
SubmitObjectsRequest.

• The registry where the Federation is submitted is referred to as the federation home.

• The federation home may or may not be a member of that Federation.

• A federation home MAY contain multiple Federation instances.

9.2.8.3 Leaving a Federation

The following rules govern how a registry leaves a federation:

A registry MAY leave a federation at any time by removing its HasFederationMember Association 
instance that links it with the Federation instance. This is done using the standard 
RemoveObjectsRequest.

9.2.8.4 Dissolving a Federation

The following rules govern how a federation is dissolved:

• A federation is dissolved by sending a RemoveObjectsRequest to its home registry and removing 
its Federation instance.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 92 of 129

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299



• The removal of a Federation instance is controlled by the same Access Control Policies that 
govern any RegistryObject. 

• The removal of a Federation instance is controlled by the same lifecycle management rules that 
govern any RegistryObject. Typically, this means that a federation MUST NOT be dissolved while 
it has federation members. It MAY however be deprecated at any time. Once a Federation is 
deprecated no new members can join it.

9.3 Object Replication
RegistryObjects within a registry MAY be replicated in another registry. A replicated copy of a remote 
object is referred to as its replica. The remote object MAY be an original object or it MAY be a replica. A 
replica from an original is referred to as a first-generation replica. A replica of a replica is referred to as a 
second-generation replica (and so on).

The registry that replicates a remote object locally is referred to as the destination registry for the 
replication. The registry that contains the remote object being replicated is referred to as the source 
registry for the replication.

 Figure 24: Object Replication

9.3.1 Use Cases for Object Replication

A registry MAY create a local replica of a remote object for a variety of reasons. A few sample use cases 
follow:

o Improve access time and fault tolerance by locally caching remote objects. For example, a 
registry MAY automatically create a local replica when a remote ObjectRef is submitted to the 
registry.

o Improve scalability by distributing access to hotly contested objects, such as NAICS scheme, 
across multiple replicas.

o Enable cooperating registry features such as hierarchical registry topology and local caching of 
federation metadata.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 93 of 129

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328



9.3.2 Queries And Replicas

A registry MUST support client queries to consider a local replica of remote object as if it were a local 
object. Local replicas are considered within the extent of the data set of a registry as far as local queries 
are concerned.

When a client submits a local query that retrieves a remote object by its id attribute, if the registry 
contains a local replica of that object then the registry SHOULD return the state defined by the local 
replica.

9.3.3 Lifecycle Operations And Replicas

LifeCycle operations on an original object MUST be performed at the home registry for that object. 
LifeCycle operations on replicas of an original object should result in an InvalidRequestException.

9.3.4 Object Replication and Federated Registries

Object replication capability is orthogonal to the registry federation capability. Objects MAY be replicated 
from any registry to any other registry without any requirement that the registries belong to the same 
federation.  

9.3.5 Creating a Local Replica

Any Submitting Organization can create a replica by using the standard SubmitObjectsRequest. If a 
registry receives a SubmitObjectsRequest that has a RegistryObjectList containing a remote ObjectRef, 
then it MUST create a replica for that remote ObjectRef. In such cases the User that submitted the 
ObjectRef (via a SubmitObjectsRequest) owns the replica while the original RegistryObject is owned by 
its original owner.

In addition to Submitting Organizations, a registry itself MAY create a replica under specific situations in 
a registry specific manner.

Creating a local replica requires the destination registry to read the state of the remote object from the 
source registry and then create a local replica of the remote object. 

A registry SHOULD use standard QueryManager interface to read the state of a remote object (whether 
it is an original or a replica). No new APIs are needed to read the state of a remote object. Since query 
functionality does not need prior registration, no prior registration or contract is needed for a registry to 
read the state of a remote object.

Once the state of the remote object has been read, a registry MAY use registry specific means to create 
a local replica of the remote object. Such registry specific means MAY include the use of the 
LifeCycleManager interface.

A replica of a RegistryObject may be distinguished from an original since a replica MUST have its home 
attribute point to the remote registry where the original for the replica resides. 

9.3.6 Transactional Replication

Transactional replication enables a registry to replicate events in another registry in a transactionally 
consistent manner. This is typically the case when entire registries are replicated to another registry. 

This specification defines a more loosely coupled replication model as an alternative to transactional 
replication for the following reasons:

• Transactional replication requires a tight coupling between registries participating in the 
replication

• Transactional replication is not a typical use case for registries

• Loosely coupled replication as defined by this specification typically suffices for most use cases

• Transaction replication is very complex and error prone

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 94 of 129

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371



Registry implementations are not required to implement transactional replication.

9.3.7 Keeping Replicas Current

A registry MUST keep its replicas current within the latency specified by the value of the 
replicationSyncLatency attribute defined by the registry. This includes removal of the replica when its 
original is removed from its home registry.

Replicas MAY be kept current using the event notification feature of the registry or via periodic polling.

9.3.8 Lifecycle Management of Local Replicas

Local Replicas are read-only objects. Lifecycle management actions are not permitted on local replicas 
with the exception of the Delete action which is used to remove the replica. All other lifecycle 
management actions MUST be performed on the original RegistryObject in the home registry for the 
object.

9.3.9 Tracking Location of a Replica

A local replica of a remote RegistryObject instance MUST have exactly one ObjectRef instance within 
the local registry. The home attribute of the ObjectRef associated with the replica tracks its home 
location. A RegistryObject MUST have exactly one home. The home for a RegistryObject MAY change 
via Object Relocation as described in section 9.4. It is optional for a registry to track location changes for 
replicas within it.

9.3.10 Remote Object References to a Replica

It is possible to have a remote ObjectRef to a RegistryObject that is a replica of another RegistryObject. 
In such cases the home attribute of the ObjectRef contains the base URI to the home registry for the 
replica.

9.3.11 Removing a Local Replica

A client can remove a replica by using the RemoveObjectsRequest. If a registry receives a 
RemoveObjectsRequest that has an ObjectRefList containing a remote ObjectRef, then it MUST remove 
the local replica for that remote ObjectRef assuming that the client was authorized to remove the replica.

9.4 Object Relocation Protocol
Every RegistryObject has a home registry and a User within the home registry that is the Submitter or 
owner of that object. Initially, the home registry is the where the object is originally submitted. Initially, the 
owner is the User that submitted the object.

A RegistryObject MAY be relocated from one home registry to another home registry using the Object 
Relocation protocol. 

Within the Object Relocation protocol, the new home registry is referred to as the destination registry 
while the previous home registry is called the source registry. 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 95 of 129

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405



 Figure 25: Object Relocation

The User at the source registry who owns the objects being relocated is referred to as the 
ownerAtSource. The User at the destination registry, who is the new owner of the objects, is referred to 
as the ownerAtDestination. While the ownerAtSource and the ownerAtDestination may often be the 
same, the Object Relocation protocol treats them as two distinct identities.

A special case usage of the Object Relocation protocol is to transfer ownership of RegistryObjects from 
one User to another within the same registry. In such cases the protocol is the same except for the fact 
that the source and destination registries are the same.

Following are some notable points regarding object relocation:

• Object relocation does not require that the source and destination registries be in the same 
federation or that either registry have a prior contract with the other.

• Object relocation MUST preserve object id. While the home registry for a RegistryObject MAY 
change due to object relocation, its id never changes.

• ObjectRelocation MUST preserve referential integrity of RegistryObjects. Relocated objects that 
have references to an object that did not get relocated MUST preserve their reference. Similarly 
objects that have references to a relocated object MUST also preserve their reference. Thus, 
relocating an object may result in making the value of a reference attribute go from being a local 
reference to being a remote reference or vice versa.

• AcceptObjectsRequest does not include ObjectRefList. It only includes an opaque transactonId 
identifying the relocateObjects transaction.

• The requests defined by the Relocate Objects protocol MUST be sent to the source or 
destination registry only.

• When an object is relocated an AuditableEvent of type “Relocated” MUST be recorded by the 
sourceRegistry. Relocated events MUST have the source and destination registry’s base URIs 
recorded as two Slots on the Relocated event. The names of these Slots are:

o urn:oasis:names:tc:ebxml-regrep:rs:events:sourceRegistry

o urn:oasis:names:tc:ebxml-regrep:rs:events:destinationRegistry

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 96 of 129

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434



 Figure 26: Relocate Objects Protocol

Figure 26 illustrates the Relocate Objects Protocol. The participants in the protocol are the 
ownerAtSource and ownerAtDestination User instances as well as the LifeCycleManager interfaces of 
the sourceRegistry and destinationRegistry.

The steps in the protocol are described next:

1. The protocol is initiated by the ownerAtSource sending a RelocateObjectsRequest message to 
the LifeCycleManager interface of the sourceRegistry. The sourceRegistry MUST make sure that 
the ownerAtSource is authorized to perform this request. The id of this RelocateObjectsRequest 
is used as the transaction identifier for this instance of the protocol. This 
RelocateObjectsRequest message MUST contain an ad hoc query that specifies the objects that 
are to be relocated.

2. Next, the sourceRegistry MUST relay the same RelocateObjectsRequest message to the 
LifeCycleManager interface of the destinationRegistry. This message enlists the 
detsinationRegistry to participate in relocation protocol. The destinationRegistry MUST store the 
request information until the protocol is completed or until a registry specific period after which 
the protocol times out.

3. The destinationRegistry MUST relay the RelocateObjectsRequest message to the 
ownerAtDestination. This notification MAY be done using the event notification feature of the 
registry as described in chapter 7. The notification MAY be done by invoking a listener Service for 
the ownerAtDestination or by sending an email to the ownerAtDestination. This concludes the 
first phase of the Object Relocation protocol.

4. The ownerAtDestination at a later time MAY send an AcceptObjectsRequest message to the 
destinationRegistry. This request MUST identify the object relocation transaction via the 
correlationId. The value of this attribute MUST be the id of the original RelocateObjectsRequest.

5. The destinationRegistry sends an AdhocQueryRequest message to the sourceRegistry. The 
source registry returns the objects being relocated as an AdhocQueryResponse. In the event of 
a large number of objects this may involve multiple AdhocQueryRequest/responses as described 
by the iterative query feature described in section 6.2.

6. The destinationRegistry submits the relocated data to itself assigning the identity of the 
ownerAtDestination as the owner. The relocated data MAY be submitted to the destination 
registry using any registry specific means or a SubmitObjectsRequest. However, the effect 
SHOULD be the same as if a SubmitObjectsRequest was used.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 97 of 129

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467



7. The destinationRegistry notifies the sourceRegistry that the relocated objects have been safely 
committed using the Event Notification feature of the registry as described in chapter 7. 

8. The sourceRegistry removes the relocated objects using any registry specific means and logging 
an AuditableEvent of type Relocated. This concludes the Object Relocation transaction.

9.4.1 RelocateObjectsRequest
<element name="RelocateObjectsRequest">
   <complexType>
     <complexContent>
       <extension base="rs:RegistryRequestType">
         <sequence>
           <element name="Query" type="rim:AdhocQueryType"/>
           <element name="SourceRegistry" type="rim:ObjectRefType"/>
           <element name="DestinationRegistry" 
type="rim:ObjectRefType"/>
           <element name="OwnerAtSource" type="rim:ObjectRefType"/>
           <element name="OwnerAtDestination" type="rim:ObjectRefType"/>
         </sequence>
       </extension>
     </complexContent>
   </complexType>
 </element>



9.4.1.1 Parameters:

 id:  the attribute id provides the transaction identifier for this instance of the protocol.
 AdhocQuery: This element specifies an ad hoc query that selects the RegistryObjects that are 

being relocated.
 sourceRegistry: This element specifies the ObjectRef to the sourceRegistry Registry instance. The 

value of this attribute MUST be a local reference when the message is sent by the ownerAtSource 
to the sourceRegistry.

 destinationRegistry: This element specifies the ObjectRef to the destinationRegistry Registry 
instance.

 ownerAtSource: This element specifies the ObjectRef to the ownerAtSource User instance.
 ownerAtDestination: This element specifies the ObjectRef to the ownerAtDestination User 

instance.

9.4.1.2 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

9.4.1.3  Exceptions:

In addition to the exceptions common to all requests, the following exceptions MAY be returned:

 ObjectNotFoundException: signifies that the specified Registry or User was not found in 
the registry.

9.4.2 AcceptObjectsRequest
<element name="AcceptObjectsRequest">
   <complexType>
     <complexContent>
       <extension base="rs:RegistryRequestType">
         <attribute name="correlationId" use="required" 
type="{http://www.w3.org/2001/XMLSchema}anyURI" />

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 98 of 129

3468

3469

3470

3471

3472

3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511
3512
3513
3514
3515
3516



       </extension>
     </complexContent>
   </complexType>
 </element>



9.4.2.1 Parameters:

 correlationId:  Provides the transaction identifier for this instance of the protocol.

9.4.2.2 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

9.4.2.3  Exceptions:

In addition to the exceptions common to all requests, the following exceptions MAY be returned:

 InvalidRequestException: signifies that the specified correlationId was not found to 
match an ongoing RelocateObjectsRequest in the registry.

9.4.3 Object Relocation and Remote ObjectRefs

The following scenario describes what typically happens when a person moves:

1. When a person moves from one house to another, other persons may have their old postal 
addresses. 

2. When a person moves, they leave their new address as the forwarding address with the post 
office. 

3. The post office forwards their mail for some time to their new address.

4. Eventually the forwarding request expires and the post office no longer forwards mail for that 
person. 

5. During this forwarding interval the person notifies interested parties of their change of address.

The Object Relocation feature supports a similar model for relocation of RegistryObjects. The following 
steps describe the expected behavior when an object is relocated.

1. When a RegistryObject O1 is relocated from one registry R1 to another registry R2, other 
RegistryObjects may have remote ObjectRefs to O1.

2. The registry R1 MUST create an AuditableEvent of type Relocated that includes the home URI 
for the new registry R2. 

3. As long as the AuditableEvent exists in R1, if R1 gets a request to retrieve O1 by id, it MUST 
forward the request to R2 and transparently retrieve O1 from R2 and deliver it to the client. The 
object O1 MUST include the home URI to R2 within the optional home attribute of 
RegistryObject. Clients are advised to check the home attribute and update the home attribute of 
their local ObjectRef to match the new home URI value for the object.

4. Eventually the AuditableEvent is cleaned up after a registry specific interval. R1 is no longer 
required to relay requests for O1 to R2 transparent to the client. Instead R1 MUST return an 
ObjectNotFoundException. 

5. Clients that are interested in the relocation of O1 and being notified of its new address may 
choose to be notified by having a prior subscription using the event notification facility of the 
registry. For example a Registry that has a remote ObjectRefs to O1 may create a subscription 
on relocation events for O1. This however, is not required behavior.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 99 of 129

3517
3518
3519
3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559



9.4.4 Notification of Object Relocation To ownerAtDestination

This section describes how the destinationRegistry uses the event notification feature of the registry to 
notify the ownerAtDestination of a Relocated event.

The destinationRegistry MUST send a Notification with the following required characteristics:

• The notification MUST be an instance of a Notification element.

• The Notification instance MUST have at least one Slot as follows:

o The Slot MUST have the name:
urn:oasis:names:tc:ebxml-regrep:rs:events:correlationId

o The Slot MUST have the correlationId for the Object Relocation transaction as the value 
of the Slot. 

9.4.5 Notification of Object Commit To sourceRegistry

This section describes how the destinationRegistry uses the event notification feature of the registry to 
notify the sourceRegistry that it has completed committing the relocated objects.

The destinationRegistry MUST send a Notification with the following required characteristics:

• The notification MUST be an instance of a Notification element.

• The Notification instance MUST have at least one Slot as follows:

o The Slot MUST have the name 
urn:oasis:names:tc:ebxml-regrep:rs:events:objectsCommitted

o The Slot MUST have the value of true. 

9.4.6 Object Ownership and Owner Reassignment

A registry MUST determine the ownership of a RegistryObject based upon the most recent 
AuditableEvent that has the eventType matching the canonical EventType ClassificationNode for Create 
or Relocate events. 

A special case of Object Relocation is when an ObjectRelocationRequest to a registry specifies the 
same registry as sourceRegistry and destinationRegistry. In such cases the request is effectively to 
change the owner of the specified objects from current owner to a new owner. 

In such case if the client does not have the RegistryAdministrator role then the protocol requires the 
ownerAtDestination to issue an AcceptObjectsRequest as described earlier.

However, if the client does have the RegistryAdministrator role then the registry MUST change the owner 
of the object to the user specified as ownerAtDestination without the ownerAtDestination to issue an 
AcceptObjectsRequest.

9.4.7 Object Relocation and Timeouts

No timeouts are specified for the Object Relocation protocol. Registry implementations MAY cleanup 
incomplete Object Relocation transactions in a registry specific manner as an administrative task using 
registry specific policies.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 100 of 129

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597



10 Registry Security
This chapter describes the security features of ebXML Registry. A glossary of security terms can be 
referenced from [RFC 2828]. The registry security specification incorporates by reference the following 
specifications:

• [WSI-BSP] WS-I Basic Security Profile 1.0

• [WSS-SMS] Web Services Security: SOAP Message Security 1.0

• [WSS-SWA] Web Services Security: SOAP Messages with Attachments (SwA) Profile 1.0

This chapter provides registry specific details not present in above specifications.

10.1 Security Use Cases
This section describes various use cases that require security features from the registry. Subsequent 
sections describe specific registry mechanisms that enable each of these use cases.

10.1.1 Identity Management

An organization deploys an ebXML Registry and needs to define the set of users and services that are 
authorized to use the services offered by the registry. They require that the registry provide some 
mechanism for registering and subsequently managing the identity and credentials associated with such 
authorized users and services.

10.1.2 Message Security

A Registered User sends a request message to the registry and receives a response back from the 
registry. The user requires that the message integrity be protected during transmission from tampering 
(man-in-the-middle attack). The user may also require that the message communication is not available 
to unauthorized parties (confidentiality).  

10.1.3 Repository Item Security

A Registered User submits a repository item to the registry. The user requires that the registry provide 
mechanisms to protect the integrity of the repository item during transmission on the wire and as long as 
it is stored in the registry. The user may also require that the content of the RepositoryItem is not 
available to unauthorized parties (confidentiality).

10.1.4 Authentication

An organization that deploys an ebXML Registry requires that when a Registered User sends a request 
to the registry, the registry checks the credentials provided by the user to ensure that the user is a 
Registered User and to unambiguously determine the user’s identity.

10.1.5 Authorization and Access Control

An organization that deploys an ebXML Registry requires that the registry provide a mechanism that 
protect its resources from unauthorized access. Specifically, when a Registry Requestor sends a request 
to the registry, the registry restricts the actions of the requestor to specific actions on specific resources 
for which the requestor is authorized.

10.1.6 Audit Trail

An organization that deploys an ebXML Registry requires that the registry keep a journal or Audit Trail of 
all significant actions performed by Registry Requestors on registry resources. This provides a basic form 
of non-repudiation where a Registry Requestor cannot repudiate that that they performed actions that 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 101 of 129

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636



are logged in the Audit Trail.

10.2 Identity Management
An ebXML Registry MUST provide an Identity Management mechnism that allows identities and 
credentials to be registered for authorized users of the registry and subsequently managed.

If a registry implements the Registry SAML Profile as described in chapter 11 then the Identity 
Management capability MUST be provided by an Identity Provider service that integrates with the 
registry using the SAML 2.0 protocols as defined by [SAMLCore].

If a registry does not implement the Registry SAML Profile then it MUST provide User Registration and 
Identity Management functionality in an implementation specific manner.  

10.3 Message Security
A registry MUST provide mechanisms to securely exchange messages between a Registry Requestor 
and the registry to ensure data and source integrity as described in this section.

10.3.1 Transport Layer Security

A registry MUST support HTTP/S communication between an HTTP Requestor and its HTTP interface 
binding. A registry MUST also support HTTP/S communication between a SOAP Requestor and its 
SOAP interface binding when the underlying transport protocol is HTTP.

HTTP/S support SHOULD allow for both SSL and TLS as transport protocols.

10.3.2 SOAP Message Security

A registry MUST support signing and verification of all registry protocol messages (requests and 
responses) between a SOAP Requestor and its SOAP binding. Such mechanisms MUST conform to 
[WSI-BSP], [WSS-SMS], [WSS-SWA] and [XMLDSIG]. The reader should refer to these specifications for 
details on these message security mechanisms.

10.3.2.1 Request Message Signature

When a Registered User sends a request message to the registry, the requestor SHOULD sign the 
request message with a Message Signature. This ensures the integrity of the message and also enables 
the registry to perform authentication and authorization for the request. If the registry receives a request 
that does not include a Message signature then it MUST implicitly treat the request as coming from a 
Registry Guest. A Registered User need not sign a request message with a Message Signature when 
the SOAP communication is conducted over HTTP/S as the message security is handled by the 
transport layer security provided by HTTP/S in this case.

When a Registered User sends a request message to the registry that contains a RepositoryItem as a 
SOAP Attachment, the requestor MUST also reference and sign the RepositoryItem from the message 
signature. This MUST conform to [RFC2392] and [WSS-SWA].

If the registry receives a request containing an unsigned RepositoryItem then it MUST return an 
UnsignedRepositoryItemException.

10.3.2.2 Response Message Signature

When a Registered User sends a request message to the registry, the registry MAY use a pre-
established preference policy or a default policy to determine whether the response message SHOULD 
be signed with a Message Signature.  When a Registry Guest sends a request, the Registration Authority 
MAY use a default policy to determine whether the response contains a header signature. A registry 
need not sign a response message with a Message Signature when the SOAP communication is 
conducted over HTTP/S as the message security is handled by the transport layer security provided by 
HTTP/S in this case.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 102 of 129

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679



When a registry sends a signed response message to a Registry Client that contains a RepositoryItem 
as a SOAP Attachement, the registry MUST also reference and sign the RepositoryItem from the 
message signature. This MUST conform to [RFC2392] and [WSS-SWA].

If the Registry Client receives a signed response with a RepositoryItem that does not include a 
RepositoryItem Signature then it SHOULD not trust the integrity of the response and treat it as an error 
condition.

10.3.2.3 KeyInfo Requirements

The sender of a registry protocol message (Registry Requestor and Registry) SHOULD provide their 
public key under the <wsse:Security> element. If provided, it MUST be contained in a 
<wsse:BinarySecurityToken> element and MUST be referenced from the <ds:KeyInfo> element in the 
Message Signature. The value of wsu:Id attribute of the <wsse:BinarySecurityToken> containing the 
senders public key MUST be urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert. 
The <wsse:BinarySecurityToken> SHOULD contain a X509 Certificate.

Listing 3 shows an example of Message signature including specifying the KeyInfo.

10.3.2.4 Message Signature Validation

Signature validation ensures message and attached RepositoryItems integrity and security, concerning 
both data and source.

If the registry receives a request containing a Message Signature then it MUST validate the Message 
Signature as defined by [WSS-SMS]. In case the request contains an attached RepositoryItem it MUST 
validate the RepositoryItems signature as defined by [WSS-SWA].

If the Registry Requestor receives a response containing a Message Signature then it SHOULD validate 
the Message Signature as defined by [WSS-SMS]. In case the response contains an attached 
RepositoryItem then it SHOULD validate the RepositoryItem signature as defined by [WSS-SWA].

10.3.2.5 Message Signature Example

The following example shows the format of a Message Signature:
<soap:Envelope>
  <soap:Header>
    <wsse:Security>
      <wsse:BinarySecurityToken EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3" 
wsu:Id="urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert">
        lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sHET/uxxVBovT7JV1A2RnWS
WkXm9jAEdsm/
        hs+f3NwvK23bh46mNmnCQVsUYHbYAREZpykrd/eRwNgx8T+ByeFhmSviW77n6yTc
I7XU7xZT54S9
        hTSyBLN2Sce1dEQpQXh5ssZK9aZTMrsFT1NBvNHC3Qq7w0Otr5V4axH3MXffsuI9
WzxPCfHdalN4
        rLRfNY318pc6bn00zAMw0omUWwBEJZxxBGGUc9QY3VjwNALgGDaEAT7gpURkCI85
HjdnSA5SM4cY
        7jAsYX/CIpEkRJcBULlTEFrBZIBYDPzRWlSdsJRJngF7yCoGWJ+/HYOyP8P4OM59
FDi0kM8GwOE0
        WgYrJHH92qaVhoiPTLi7
      </wsse:BinarySecurityToken>
      <ds:Signature>

<!--The Message Signature -->
        <ds:SignedInfo>
          <ds:CanonicalizationMethod 
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#&quot; ">
            <c14n:InclusiveNamespaces PrefixList="wsse soap" 
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
          </ds:CanonicalizationMethod>
          <ds:SignatureMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
          <ds:Reference URI="#TheBody">

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 103 of 129

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735



            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#">
                <c14n:InclusiveNamespaces PrefixList="" 
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
              </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            <ds:DigestValue>i3qi5GjhHnfoBn/jOjQp2mq0Na4=</ds:DigestValue
>
          </ds:Reference>
        </ds:SignedInfo>
        <ds:SignatureValue>PipXJ2Sfc+LTDnq4pM5JcIYt9gg=</ds:SignatureVal
ue>
        <ds:KeyInfo>
          <wsse:SecurityTokenReference>
            <wsse:Reference URI="#urn:oasis:names:tc:ebxml-
regrep:rs:security:SenderCert" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>
          </wsse:SecurityTokenReference>
        </ds:KeyInfo>
      </ds:Signature>
    </wsse:Security>
  </soap:Header>
  <soap:Body wsu:Id="TheBody">
    <lcm:SubmitObjectsRequest/>
  </soap:Body>
</soap:Envelope>

 Listing 3:  Message Signature Example

10.3.2.6 Message With RepositoryItem: Signature Example

The following example shows the format of a Message Signature that also signs the 
attached RespositoryItem:

Content-Type: multipart/related; boundary=”BoundaryStr” type=”text/xml”
--BoundaryStr
Content-Type: text/xml
<soap:Envelope>
  <soap:Header>
    <wsse:Security>
      <wsse:BinarySecurityToken EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3" 
wsu:Id="urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert">
        lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sHET/uxxVBovT7JV1A2RnWS
WkXm9jAEdsm/
        hs+f3NwvK23bh46mNmnCQVsUYHbYAREZpykrd/eRwNgx8T+ByeFhmSviW77n6yTc
I7XU7xZT54S9
        hTSyBLN2Sce1dEQpQXh5ssZK9aZTMrsFT1NBvNHC3Qq7w0Otr5V4axH3MXffsuI9
WzxPCfHdalN4
        rLRfNY318pc6bn00zAMw0omUWwBEJZxxBGGUc9QY3VjwNALgGDaEAT7gpURkCI85
HjdnSA5SM4cY
        7jAsYX/CIpEkRJcBULlTEFrBZIBYDPzRWlSdsJRJngF7yCoGWJ+/HYOyP8P4OM59
FDi0kM8GwOE0
        WgYrJHH92qaVhoiPTLi7
      </wsse:BinarySecurityToken>
      <ds:Signature>
        <!-- The Message Signature -->
        <ds:SignedInfo>
          <ds:CanonicalizationMethod 
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#&quot; ">
            <c14n:InclusiveNamespaces PrefixList="wsse soap" 
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
          </ds:CanonicalizationMethod>
          <ds:SignatureMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 104 of 129

3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764

3765

3766

3767

3768

3769

3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802



          <ds:Reference URI="#TheBody">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#">
                <c14n:InclusiveNamespaces PrefixList="" 
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
              </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            <ds:DigestValue>i3qi5GjhHnfoBn/jOjQp2mq0Na4=</ds:DigestValue
>
          </ds:Reference>
        </ds:SignedInfo>

        <!--A reference to a RepositoryItem (one for each 
RepositoryItem) -->
        <ds:SignedInfo>
          <ds:CanonicalizationMethod 
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#&quot; ">
            <c14n:InclusiveNamespaces PrefixList="wsse soap" 
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
          </ds:CanonicalizationMethod>
          <ds:SignatureMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
          <ds:Reference URI="cid:${REPOSITORY_ITEM1_ID}">
            <ds:Transforms>
              <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-
exc-c14n#">
              <ds:Transform Algorithm="http://docs.oasis-
open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-
Content-Only-Transform"/>
              </ds:Transform>
            </ds:Transforms>
            <ds:DigestMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
            <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue
>
          </ds:Reference>
        </ds:SignedInfo>

        <ds:SignatureValue>PipXJ2Sfc+LTDnq4pM5JcIYt9gg=</ds:SignatureVal
ue>

        <ds:KeyInfo>
          <wsse:SecurityTokenReference>
            <wsse:Reference URI="#urn:oasis:names:tc:ebxml-
regrep:rs:security:SenderCert" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>
          </wsse:SecurityTokenReference>
        </ds:KeyInfo>

      </ds:Signature>
    </wsse:Security>
  </soap:Header>
  <soap:Body wsu:Id="TheBody">
    <lcm:SubmitObjectsRequest/>
  </soap:Body>
</soap:Envelope>
--BoundaryStr
Content-Type: image/png
Content-ID: <${REPOSITORY_ITEM1_ID}>
Content-Transfer-Encoding: base64
the repository item (e.g. PNG Image) goes here..

Listing 4:  RepositoryItem Signature Example

10.3.2.7 SOAP Message Security and HTTP/S

When using HTTP/S between a Registry Client and a registry, SOAP message security MUST NOT be 
used. Specifically:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 105 of 129

3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866

3867

3868

3869

3870



• The Registry Client MUST NOT sign the request message or any repository items in the request. 

• The registry MUST NOT verify request or RepositoryItem signatures.

• The registry MUST NOT sign the response message or any repository items in the response.

• The Registry Client MUST NOT verify response or RepositoryItem signatures.

10.3.3 Message Confidentiality

A registry SHOULD support encryption of protocol messages as defined section 9 of [WSI-BSP] as a 
mechanism to support confidentiality of protocol messages during transmission on the wire.

A Registry Client MAY use encryption of RepositoryItems as defined by [WSS-SWA] as a mechanism to 
support confidentiality of RepositoryItems during transmission on the wire.

A registry SHOULD support the submission of encrypted repository items.

10.3.4 Key Distribution Requirements

The registry and Registered Users MUST mutually exchange their public keys. This is necessary to 
enable:

• Mutual Authentication of Registry Client and registry using SSL/TLS handshake for transport 
layer security over HTTP/S

• Validation of Message Signature and RepositoryItem Signature (described in section ).

• Decryption of encrypted messages

In order to enable Message Security the following requirements MUST be met:

1. A Certificate is associated with the registry.

2. A Certificate is associated with Registry Client.

3. A Registry Client registers its public key certificate with the registry. This is typically done during User 
Registration and is implementation specific. 

4. Registry Client obtains the registry’s public key certificate and stores it in its own local key store. This 
is done in an implementation specific manner.

10.4 Authentication
The Registry MUST be able to authenticate the identity of the User associated with client requests in 
order to perform authorization and access control and to maintain an Audit Trail of registry access. In 
security terms a service that provides the ability to authenticate requestors is referred to as an 
Authentication Authority.

A registry MUST provide one or more of the following Authentication mechanisms: 

• Registry as Authentication Authority

• External Authentication Authority

10.4.1 Registry as Authentication Authority

A registry MAY provide authentication capability by serving as an Authentication Authority. In this role the 
registry uses the <ds:KeyInfo> in the Message Signature as credentials to authenticate the requestor. 
This typically requires checking that the public key supplied in the <ds:KeyInfo> of the Message 
Signature matches the public key of a Registered User. This also requires that the registry maintain a 
“registry keystore” that contains the public keys of Registered Users. The remaining details of registry as 
an authentication authority are implementation specific. 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 106 of 129

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911



Alternatively, if the Registry Client communicates with the registry over HTTP/S, the registry MUST 
authenticate the Registry Client User if a registered certificate is provided through SSL Client 
Authentication. If the certificate is not known to the registry then the Registry MUST assign the 
RegistryGuest principal with the Registry Client.

10.4.2 External Authentication Authority

A registry MAY also use an external Authentication Authority to auhenticate client requests. The use of 
an external Authentication Authority requires that the registry implement the Registry SAML Profile as 
described in chapter 11.

10.4.3 Authenticated Session Support

Once a request is authenticated a Registry SHOULD establish an authenticated session using 
implementation specific means to avoid having to re-authenticate subsequent request from the same 
requestor. When the underlying transport protocol is HTTP, a registry SHOULD implement authenticated 
session support based upon HTTP session capability as defined by  [RFC2965].

10.5 Authorization and Access Control
Once a registry has authenticated the identity of the Registered User associated with a client request it 
MUST perform authorization and subsequently enforce access control rules based upon the 
authorization decision. 

Authorization and access control is an operation conducted by the registry that decides WHO can do 
WHAT ACTION on WHICH RESOURCE. 

• The WHO is the User determined by the authentication step. 

• The WHAT ACTION is determined by the registry protocol request sent by the client. 

• The WHICH RESOURCE consists of the RegistryObjects and RepositoryItems impacted by the 
registry protocol request.  

The Access Control Policy associated with the resource that is impacted by the action determines 
authorization and access control.

A registry MUST provide an access control and authorization mechanism based upon chapter titled 
“Access Control Information Model” in [ebRIM]. This model defines a default access control policy that 
MUST be supported by the registry. In addition it also defines a binding to [XACML] that allows fine-
grained access control policies to be defined. 

10.6 Audit Trail
Once a registry has performed authorization checks, enforced access control and allowed a client 
request to proceed it services the client request. A registry MUST create an Audit Trail of all 
LifeCycleManager operations. A registry MAY create an Audit Trail of QueryManager operations. To 
conserve storage resources, a registry MAY prune the Audit Trail information it stores in an 
implementation specific manner. A registry SHOULD perform such pruning by removing the older 
information in its Audit Trail content. However, it MUST not remove the original Create Event at the 
beginning of the audit trail since the Create Event establishes the owner of the RegistryObject.

Details of how a registry maintains an Audit Trail of client requests is described in the chapter title “Event 
Information Model” of [ebRIM]. 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 107 of 129

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950



11 Registry SAML Profile
This chapter defines the Registry SAML Profile that a registry MAY implement in order to support SAML 
2.0 protocols defined by [SAMLCore]. A specific focus of the Registry SAML Profile is the Web Single 
Sign On (SSO) profile defined by [SAMLProf]. 

11.1 Terminology
The reader should refer to the SAML Glossary [SAMLGloss] for various terms used in the Registry SAML 
profile. A few terms are described here for convenience:

Term Definition
Authentication 
Authority

An Authentication Authority is a system entity (typically a service) that enables 
other system entities (typically a user or service) to establish an authenticated 
session by proving their identity by providing necessary credentials (e.g. 
username / password, certificate alias / password). An Authentication Authority 
produces authentication assertions as a result of successful authentication.

Enhanced Client 
Proxy (ECP)

Describes a client that operates under certain constraints such as not being able 
to support HTTP Redirect protocol. Typically these are clients that do not have a 
Web Browser environment. In this document the main example of an ECP is a 
Registry Client that uses SOAP to communicate with the registry (SOAP 
Requestor). 

Identity Provider 
(IdP)

A kind of service provider that creates, maintains, and manages identity 
information for principals (e.g. users).  An Identity Provider is usually also an 
Authentication Authority.

Principal A system entity whose identity can be authenticated. This maps to User in 
[ebRIM].

SAML Requestor A system entity that utilizes the SAML protocol to request

services from another system entity (a SAML authority, a

responder). The term “client” for this notion is not used because

many system entities simultaneously or serially act as both

clients and servers.

Service Provider 
(SP)

A role donned by a system entity where the system entity provides services to 
principals or other system entities. The Registry Service is a SP

Single Sign On 
(SSO)

The ability to share a single authenticated session across multiple SSO enabled 
services and application. The client may establish the authenticated session by 
authenticating with any Authentication Authority within the system. The client may 
then perform secure operations with any SSO enabled service within the system 
using the authenticated session.

Single Logout The ability to logout nearly simultaneously from multiple Service Providers within a 
federated system.

11.2 Use Cases for SAML Profile
The Registry SAML Profile is intended to address following use cases using the protocols defined by 
[SAMLCore].

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 108 of 129

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962



11.2.1 Registry as SSO Participant: 

A large enterprise is deploying an ebXML Registry. The enterprise already has an existing Identity 
Provider  (e.g. an Access Manager service) where it maintains user information and credentials. The 
enterprise also has an existing Authentication Authority (which may be the same service as the Identity 
Provider) that is used to authenticate users and enable Single Sign On (SSO) across all their enterprise 
services applications.

The enterprise wishes to use its existing Identity Provider to manage registry users and to avoid 
duplicating the user database contained in the Identity Provider within the registry. The enterprise also 
wishes to use its existing Authentication Authority to authenticate registry users and expects the registry 
to participate in SSO capability provided by their Authentication Authority service.

 

Destination Web Site
(Travel.com)

Source Web Site
(Company.com)

Web  User

Asserting Party

Relying Party

1.  A
uthenticate

2.  Access  Resource

 Figure 27: SAML SSO Typical Scenario

11.3 SAML Roles Played By Registry
In order to conform to the registry SAML Profile an ebXML Registry plays the Service Provider (SP) role 
based upon conformance with SAML 2.0 protocols.

11.3.1 Service Provider Role

The Service Provider role enables the registry to participate in SAML protocols. Specifically it allows the 
registry to utilize an Identity Provider to perform client authentication on its behalf.

11.3.1.1 Service Provider Requirements

The following are a list of requirements for the Service Provider role of the registry: 

• MUST support the protocols, messages and bindings that are the responsibility of the Service 
Provider as defined by Web SSO Profile in [SAMLProf]. Specifically it MUST be able to intiate 
and participate in the Authentication Request Protocol with an Identity Provider.

• MUST be able to use a SAML Identity Provider to authenticate client requests.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 109 of 129

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987



• MUST support the ability to maintain a security context for registry clients across multiple client 
requests. 

11.4 Registry SAML Interface
In order to conform to the registry SAML Profile an ebXML Registry MUST implement a new SAML 
interface in addition to its service interfaces such as QueryManager and LifeCycleManager.

Details of the registry’s SAML interface are not described by this specification. Instead they are described 
by the SAML 2.0 specifications and MUST support SAML HTTP and SOAP requests.

A registry uses its SAML interface to participate in SAML protocols with SAML Clients and SAML Identity 
Providers. Specifically, an IdentityProvider uses the registry’s SAML Service Provider interface to deliver 
the Response to an Authentication Request. 

11.5 Requirements for Registry SAML Profile  
In order to conform to the Registry SAML Profile a registry MUST implement specific SAML protocol that 
support specific SAML protocol message exchanges using specific protocol bindings.

Table 7 lists the matrix of SAML Profiles, Protocols Messages and their Bindings that a registry MUST 
support in order to conform to the registry SAML Profile.

The reader should refer to:

• [SAMLProf] for description of profiles listed

• [SAMLCore] for description of Message Flows listed

• [SAMLBind] for description of Bindings listed

Profile Message Flows Binding Implementation

Requirement

Web SSO <AuthnRequest> from Registry 
to IdentityProvider

HTTP redirect MUST

IdentityProvider <Response> to 
Registry

HTTP POST MUST

HTTP artifact MUST

Single Logout <LogoutRequest> HTTP redirect MUST

SOAP MAY

<LogoutResponse> HTTP redirect MUST

SOAP MAY

Artifact Resolution
<ArtifactResolve>, SOAP MUST

<ArtifactResponse> SOAP MUST

Enhanced Client/Proxy 
SSO

ECP to Registry, Registry to ECP 
to IdentityProvider

PAOS MUST

IdentityProvider to ECP to 
Registry, Registry to ECP

PAOS MUST

 Table 7: Required SAML Profiles, Protocols and Bindings

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 110 of 129

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010



11.6 SSO Operation
This section describes the interaction sequnce for various types of SSO operations.

11.6.1 Scenario Actors

The following are the actors that will be participating the various SSO Operation scenarios described in 
subsequent section:

• HTTP Requestor: This represents a Registry Client that accesses the registry using the HTTP 
binding of the registry protocols typically through a User Agent such as a Web Browser.

• SOAP Requestor: This represents a Registry Client that accesses the registry using the SOAP 
binding of the registry protocols.

• Registry: This represents a Registry and includes all Registry interfaces such as QueryManager, 
LifeCycleManager and the registry’s SAML Service Provider. The Registry participates in ebXML 
Registry protocols as well as SAML protocols.

• IdentityProvider: This represents the IdentityProvider used by the registry to perform 
Authentication on its behalf.

11.6.2 SSO Operation – Unauthenticated HTTP Requestor

Figure 28 shows a high level view of the Single Sign On (SSO) operation when the SOAP Requestor is 
unauthenticated and accesses the registry over HTTP via a User Agent such as a Web Browser.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 111 of 129

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027



 Figure 28: SSO Operation – Unauthenticated HTTP Requestor

11.6.2.1 Scenario Sequence

Figure 28 shows the following sequence of steps for the operation:

1 The HTTP Requestor sends a HTTP GET or POST request to a Registry interface such as the 
QueryManager or LifeCycleManager.

1.1 The Registry checks to see if it already has a security context established for the Subject 
associated with the request. It determines that there is no pre-existing security context.

1.2 In order to establish a security context, the Registry therefor initiates the <samlp:AuthnRequest> 
protocol with the IdentityProvider. The <AuthnRequest> is sent using HTTP Redirect via the User 
Agent (e.g. Web Browser) used by the HTTP Requestor.

1.2.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this 
requires communicating with the User Agent being used by the HTTP Requestor to get the 
credentials associated with the Subject and then using the credentials to authenticate that the 
IdentityProvider knows the Subject. In case of SSL/TLS based communication the credetials are 
acquired without any user intervention directly from the User Agent. The figure assumes that the 
IdentityProvider is able to authenticate the Subject.

1.2.2 The IdentityProvider sends a <sampl:Response> message containing a 
<saml:AuthenticationStatement> to the Registry using either HTTP POST or HTTP Artifact 
SAML Binding via the User Agent.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 112 of 129

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047



1.2.2.1 The Registry uses implementation specific means to establish a security context for the Subject 
authenticated by the IdentityProvider based upon the information contained about the Subject 
in the <samlp:Response> message. This may include creating an HTTP Session for the HTTP 
Requestor.

1.2.2.2 The Registry maps the information about the Subject in the <samlp:Response> message into a 
<rim:User> instance. This establishes the <rim:User>context for the security context.

1.2.2.3 The Registry then performs authorization decision based upon the original HTTP request and 
the <rim:User>. The figure assumes that authorization decision was to allow the request to be 
processed. The Registry processes the request and subsequently return the requested 
resource to the HTTP Requestor via the HTTP response.

11.6.3 SSO Operation – Authenticated HTTP Requestor

This is the case where the HTTP Requestor first authenticates with an IdentityProvider and then 
accesses the registry over HTTP via a User Agent such as a Web Browser.

Currently there are no standard means defined for carrying SAML Assertions resulting from the Registry 
Requestor authenticating with an IdentityProvider over HTTP protocol to a Service Provider such as the 
registry. A registry MAY support this scenario in an implementation specific manner. Typically, the Identity 
Provider will define any such implementation specific manner.

11.6.4 SSO Operation – Unuthenticated SOAP Requestor

This is the case where an unauthenticated Registry Requestor accesses the registry over SOAP.

Figure 29 shows the steps involved.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 113 of 129

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069



 Figure 29: SSO Operation - Unauthenticated SOAP Requestor

11.6.4.1 Scenario Sequence

Figure 29 shows the following sequence of steps for the operation:

1 The SOAP Requestor sends a <rs:RegistryRequest> SOAP message such as a 
<lcm:SubmitObjectsRequest> to a Registry interface such as the LifeCycleManagerManager. In the 
request header the SOAP Requestor declares that it is an ECP requestor as defined by the ECP 
Profile in [SAMLProf]. 

1.1 The Registry checks to see if it already has a security context established for the Subject 
associated with the request. It determines that there is no pre-existing security context.

1.2 Because the request is from an ECP client, the registry uses the ECP Profile defined by 
[SAMLProf] and sends a <samlp:AuthnRequest> SOAP message as response to the 
<rs:RegistryRequest> SOAP message to the SOAP Requestor using the PAOS Binding as defined 
by [SAMLBind]. The response has an HTTP Response status of OK.

1.2.1 The SOAP Requestor then initiates the <samlp:AuthnRequest> protocol with the IdentityProvider. 
The <sampl:AuthnRequest> is sent using HTTP POST or Artifact Binding directly to the 
IdentityProvider.

1.2.1.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this 
requires communicating with the SOAP Requestor to get the credentials associated with the 
Subject and then using the credentials to authenticate that the IdentityProvider knows the 
Subject. In case of SSL/TLS based communication the credetials are acquired without any user 
intervention directly from the SOAP Requestor. The figure assumes that the IdentityProvider is 
able to authenticate the Subject.

1.2.1.2 The IdentityProvider sends a <sampl:Response> message containing a 
<saml:AuthenticationStatement> to the SOAP Requestor using SAML SOAP Binding. The 
HTTP header specifies the Registry as the ultimate target of the response.

1.2.1.2.1 The SOAP Requestor forwards the <sampl:Response> message containing a 
<saml:AuthenticationStatement> to the Registry using PAOS Binding via HTTP POST.

1.2.1.2.1.1 The Registry uses implementation specific means to establish a security context for the 
Subject authenticated by the IdentityProvider based upon the information contained about 
the Subject in the <samlp:Response> message. This may include creating an HTTP 
Session for the HTTP Requestor.

1.2.1.2.1.2 The Registry maps the information about the Subject in the <samlp:Response> message 
into a <rim:User> instance. This establishes the <rim:User>context for the security context.

1.2.1.2.1.3 The Registry then performs authorization decision based upon the original SOAP request 
and the <rim:User>. The figure assumes that authorization decision was to allow the request 
to be processed. The Registry processes the request and subsequently return a 
<rs:RegistryResponse> SOAP message as response to the original <rs:RegistryRequest> 
SOAP request.

11.6.5 SSO Operation – Authenticated SOAP Requestor

This is the case where the Registry Requestor first authenticates with an IdentityProvider directly and 
then makes a request to the registry using SOAP.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 114 of 129

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111



Figure 30: SSO Operation - Authenticated SOAP Requestor

11.6.5.1 Scenario Sequence

The figure shows the following sequence of steps for the operation:

1 The SOAP Requestor then initiates the <samlp:AuthnRequest> protocol directly with the 
IdentityProvider. The <sampl:AuthnRequest> is sent using HTTP POST or Artifact Binding.

1.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this 
requires communicating with the SOAP Requestor to get the credentials associated with the 
Subject and then using the credentials to authenticate that the IdentityProvider knows the Subject. 
In case of SSL/TLS based communication the credetials are acquired without any user 
intervention directly from the SOAP Requestor. The figure assumes that the IdentityProvider is 
able to authenticate the Subject.

1.2 The IdentityProvider sends a <sampl:Response> message containing a 
<saml:AuthenticationStatement> to the SOAP Requestor using SAML HTTP POST or HTTP 
Artifact Binding. 

2 The SOAP Requestor sends a <rs:RegistryRequest> SOAP message such as a 
<lcm:SubmitObjectsRequest> to a Registry interface such as the LifeCycleManagerManager. The 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 115 of 129

4112
4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128



<rs:RegistryRequest> SOAP message includes SAML Tokens in the <soap:Header> of the SOAP 
message as defined by [WSS-SAML]. The SAML Tokens are based upon the <sampl:Response> 
during authentication.

2.1 The registry maps the SAML Tokens from the <soap:Header> of the <rs:RegistryRequest> to a 
<rim:User> instance. This establishes the <rim:User> context for the request.

2.2 The Registry then performs authorization decision based upon the original SOAP request and the 
<rim:User>. The figure assumes that authorization decision was to allow the request to be 
processed. The Registry processes the request and subsequently return a <rs:RegistryResponse> 
SOAP message as response to the original <rs:RegistryRequest> SOAP request.

11.6.6 <samlp:AuthnRequest> Generation Rules

The following rules MUST be observed when the registry or Registry Client issues a 
<samlp:AuthnRequest>:

• A registry MUST specify a NameIDPolicy within the <samlp:AuthRequest>

• The Format of the NameIDPolicy MUST be urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent as defined by section in [SAMLCore]. Note that it is the Persistent Identifier that 
maps to the id attribute of <rim:User>.

−

11.6.7 <samlp:Response> Processing Rules

This section describes how the registry processes the <sampl:Response> to a <sampl:AuthnRequest>:

<samlp:Response> Processing

• Response Processing: The registry MUST verify the <ds:Signature> for the <sampl:Response> if 
present.

• The registry MUST check the <samlp:Status> associated with <sampl:Response> for errors. If 
the <samlp:Status> has a top level <samlp:StatusCode> whose value is NOT 
urn:oasis:names:tc:SAML:2.0:status:Success then the registry MUST throw 
an AuthenticationException. The  AuthenticationException message SHOULD include the 
information from the StatusCode, StatusMessage and StatusDetail from the <samlp:Status>.

<saml:Assertion> Processing

• The registry SHOULD check the <saml:Assertion> for Conditions and honour any standard 
Conditions defined by [SAMLCore] if any are specified.

<saml:AuthnStatement> Processing

• The registry MUST check the SessionNotOnOrAfter attribute of the <saml:AuthnStatement> for 
validity of the authenticated session.

<saml:Subject> Processing

• A registry MUST map the <saml:Subject> to a <rim:User> instance as described in 11.6.8.

11.6.8 Mapping Subject to User

As required by [SAMLCore] a <samlp:Response> to a <samlp:AuthnRequest> MUST contain a 
<saml:Subject> that identifies the Subject that was authenticated by the IdentityProvider. In addition it 
MUST contain a <sampl:AuthnStatement> which asserts that the IdentityProvider indeed authenticated 
the Subject.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 116 of 129

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154
4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170



The following table defines the mapping between a <saml:Subject> and a <rim:User>:

− Subject 
Attribute

− User Attribute − Description

− NameID content − id attribute NameID Format MUST be 
“urn:oasis:names:tc:SAML:1.1:nameid-
format:persistent”

Table 8: Mapping Subject to User

Note that any attribute of Subject not specified above SHOULD be ignored when mapping Subject to 
User. Note that any attribute of User not specified above MUST be left unspecified when mapping 
Subject to User.

11.7 External Users
The SAML Profile allows registry Users to be registered in an Identity Provider external to the registry. 
These are referred to as “External Users”. A registry dynamically creates such External Users by 
mapping a SAML Subject to a User instance dynamically. 

The following are some restrictions on External User instances: 

• External User instances are transient from the registry’s perspective and MUST not be stored 
within the registry as User instances

• A RegistryObject MUST not have a reference to an External User unless it is composed within 
that RegistryObject. Composed RegistryObjects such as Classification instances are allowed to 
reference their parent External User instance.

• Since External User instances are transient they MUST not match a registry Query.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 117 of 129

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192



12 Native Language Support (NLS)
This chapter describes the Native Languages Support (NLS) features of ebXML Registry.

12.1 Terminology
The following terms are used in NLS.

NLS Term Description

Coded Character Set (CCS) CCS is a mapping from a set of abstract characters 
to a set of integers. [RFC 2130]. Examples of CCS 
are ISO-10646, US-ASCII, ISO-8859-1, and so on.

Character Encoding Scheme (CES) CES is a mapping from a CCS (or several) to a set 
of octets. [RFC 2130]. Examples of CES are ISO-
2022, UTF-8.

Character Set (charset) • charset is a set of rules for mapping from a 
sequence of octets to a sequence of 
characters.[RFC 2277],[RFC 2278]. 
Examples of character set are ISO-2022-JP, 
EUC-KR.

• A list of registered character sets can be 
found at [IANA].

12.2 NLS and Registry Protcol Messages
For the accurate processing of data in both registry client and registry services, it is essential for the 
recipient of a protocol message to know the character set being used by it. 

A Registry Client  SHOULD specify charset parameter in MIME header when they specify text/xml as 
Content-Type. A registry MUST specify charset parameter in MIME header when they specify text/xml as 
Content-Type.

The following is an example of specifying the character set in the MIME header.

Content-Type: text/xml; charset=ISO-2022-JP

If a registry receives a protocol message with the charset parameter omitted then it MUST use the 
default charset value of "us-ascii" as defined in [RFC 3023].

Also, when an application/xml entity is used, the charset parameter is optional, and registry client and 
registry services MUST follow the requirements in Section 4.3.3 of [REC-XML] which directly address 
this contingency.

If another Content-Type is used, then usage of charset MUST follow [RFC 3023].

12.3 NLS Support in RegistryObjects 
The information model XML Schema [RR-RIM-XSD] defines the <rim:InternationalStringType> for 
defining elements that contains a locale senstive string value.

  <complexType name="InternationalStringType">
    <sequence maxOccurs="unbounded" minOccurs="0">
      <element ref="tns:LocalizedString"/>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 118 of 129

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204
4205
4206
4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219
4220
4221



    </sequence>
  </complexType>

An InternationalStringType may contain zero or more LocalizedStrings within it where each 
LocalizedString contain a string value is a specified local language and character set.

 
<complexType name="LocalizedStringType">    
  <attribute ref="xml:lang" default="en-US"/> 
  <attribute default="UTF-8" name="charset"/>
  <attribute name="value" type="tns:FreeFormText" use="required"/>
</complexType>

Examples of such attributes are the “name” and “description” attributes of the RegistryObject class 
defined by [ebRIM] as shown below.

  <complexType name="InternationalStringType">
    <sequence maxOccurs="unbounded" minOccurs="0">
      <element ref="tns:LocalizedString"/>
    </sequence>
  </complexType>
  <element name="InternationalString" 
type="tns:InternationalStringType"/>
  <element name="Name" type="tns:InternationalStringType"/>
  <element name="Description" type="tns:InternationalStringType"/>
  
  <complexType name="LocalizedStringType">
    <attribute ref="xml:lang" default="en-US"/> 
    <!--attribute name = "lang" default = "en-US" form = "qualified" 
type = "language"/-->
    <attribute default="UTF-8" name="charset"/>
    <attribute name="value" type="tns:FreeFormText" use="required"/>
  </complexType>
  <element name="LocalizedString" type="tns:LocalizedStringType"/>

An element InternationalString is capable of supporting multiple locales within its collection of 
LocalizedStrings.

The above schema allows a single RegistryObject instance to include values for any NLS sensitive 
element in multiple locales.

The following example illustrates how a single RegistryObject can contain NLS sesnitive <rim:Name> 
and “<rim:Description> elements with their value specified in multiple locales. Note that the <rim:Name> 
and <rim:Description>  use the <rim:InternationalStringType> as their type.

    <rim:ExtrinsicObject id="${ID}"  mimeType="text/xml">
      <rim:Name>
        <rim:LocalizedString xml:lang="en-US" value="customACP1.xml"/>
        <rim:LocalizedString xml:lang="fi-FI" value="customACP1.xml"/>
        <rim:LocalizedString xml:lang="pt-BR" value="customACP1.xml"/>
      </rim:Name>
      <rim:Description>
        <rim:LocalizedString xml:lang="en-US" value="A sample custom 
ACP"/>
        <rim:LocalizedString xml:lang="fi-FI" value="Esimerkki custom 
ACP"/>
        <rim:LocalizedString xml:lang="pt-BR" value="Exemplo de ACP 
customizado
"/>
      </rim:Description>
    </rim:ExtrinsicObject>

Since locale information is specified at the sub-element level there is no language or character set 
associated with a specific RegistryObject instance.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 119 of 129

4222
4223

4224

4225

4226

4227
4228
4229
4230
4231
4232

4233

4234

4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253

4254

4255

4256

4257

4258

4259

4260

4261

4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277

4278

4279

4280



12.3.1 Character Set of LocalizedString

The character set used by a locale specific String (LocalizedString) is defined by the charset attribute. 
Registry Clients SHOULD specify UTF-8 or UTF-16 as the value of the charset attribute of 
LocalizedStrings for maximum interoperability. 

12.3.2 Language of LocalizedString

The language MAY be specified in xml:lang attribute (Section 2.12  [REC-XML]). 

12.4 NLS and Repository Items 
While a single instance of an ExtrinsicObject  is capable of supporting multiple locales, it is always 
associated with a single repository item. The repository item MAY be in a single locale or MAY be in 
multiple locales. This specification does not specify any NLS requirements for repository items.

12.4.1 Character Set of Repository Items

When a submitter submits a repository item, they MAY specify the character set used by the respository 
item using the MIME Content-Type mime header for the mime multipart containing the repository item 
as shown below:

Content-Type: text/xml; charset="UTF-8"

Registry Clients SHOULD specify UTF-8 or UTF-16 as the value of the charset attribute of 
LocalizedStrings for maximum interoperability. A registry MUST preserve the charset of a repository item 
as it is originally specified when it is submitted to the registry.

12.4.2 Language of Repository Items

The Content-language mime header for the mime bodypart containing the repository item MAY specify 
the language for a locale specific repository item. The value of the Content-language mime header 
property MUST conform to [RFC 1766].

This document currently specifies only the method of sending the information of character set and 
language, and how it is stored in a registry. However, the language information MAY be used as one of 
the query criteria, such as retrieving only DTD written in French. Furthermore, a language negotiation 
procedure, like registry client is asking a favorite language for messages from registry services, could be 
another functionality for the future revision of this document.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 120 of 129

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310



13 Conformance
This chapter defines the technical conformance requirements for ebXML Registry. Note that it does not 
define specific conformance tests to verify compliance with various conformance profiles.

13.1 Conformance Profiles
An ebXML Registry MUST comply with one of the following conformance profiles:

• Registry Lite – This conformance profile requires the regsitry to implement a minimal set of core 
features defined by this specification.

• Registry Full – This conformance profile requires the registry to implement additional set of features in 
addition to those required by the Registry Lite conformance profile.

13.2 Feature Matrix
The following table identifies the implementation requirements for each feature defined by this 
specification for each conformance profile defined above.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 121 of 129

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322



Table 9: Feature Conformance Matrix

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 122 of 129



Feature Registry Lite Registry Full

SOAP Binding

QueryManager binding MUST MUST

LifeCycleManager binding MUST MUST

HTTP Binding

RPC Encoded URL MUST MUST

User Defined URL MAY MUST

File Path URL MAY MUST

LifeCycleManager

SubmitObjects Protocol MUST MUST

UpdateObjects Protocol MUST MUST

ApproveObjects Protocol MUST MUST

DeprecateObjects Protocol MUST MUST

UnderprecateObjects Protocol MUST MUST

RemoveObjects Protocol MUST MUST

 Registry Managed Version Control MAY MUST

QueryManager

SQL Query MAY MUST

Filter Query MUST MUST

Stored Parameterized Query MAY MUST

Iterative Query MAY MUST

Event Notification MAY MUST

Content Management Services

Validate Content Protocol MAY MUST

Catalog Content Protocol MAY MUST

Canonical XML Cataloging Service MAY MUST

Cooperating Registries

Remote object references MAY MUST

Federated queries MAY MUST

Object Replication MAY MUST

Object Relocation MAY MUST

Registry Security

 Identity Management MUST MUST

Message Security

 Transport layer security MAY MUST

SOAP Message Security MUST MUST

Repository Item Security MUST MUST

Authorization and Access Control

Default Access Control Policy MUST MUST

Custom Access Control Policies MAY MUST

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 123 of 129



Feature Registry Lite Registry Full

Audit Trail MUST MUST

Registry SAML Profile MAY MUST

NLS MUST MUST

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 124 of 129

4323



14 References

14.1 Normative References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF 

RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.
[ebRIM] ebXML Registry Information Model Version 3.0.1

http://www.oasis-open.org/committees/regrep/documents/3.0.1/specs/regrep-
rim-3.0.1-cs-01.pdf 

[REC-XML] W3C Recommendation. Extensible Markup language(XML)1.0(Second Edition)
http://www.w3.org/TR/REC-xml

[RFC 1766] IETF (Internet Engineering Task Force). RFC 1766:
Tags for the Identification of Languages, ed. H. Alvestrand. 1995.
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html

[RFC 2130] IETF (Internet Engineering Task Force). RFC 2130
The Report of the IAB Character Set Workshop held 29 February - 1 March, 
1996
http://www.faqs.org/rfcs/rfc2130.html

[RFC 2277] IETF (Internet Engineering Task Force). RFC 2277:
IETF policy on character sets and languages, ed. H. Alvestrand. 1998. 
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html

[RFC 2278] IETF (Internet Engineering Task Force). RFC 2278:
IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html

[RFC2616] IETF (Internet Engineering Task Force). RFC 2616: 
Fielding et al. Hypertext Transfer Protocol -- HTTP/1.1 . 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[RFC2965] IETF (Internet Engineering Task Force). RFC 2965: 
D. Kristol et al. HTTP State Management Mechanism. 2000.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[RR-CMS-XSD] ebXML Registry Content Management Services XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd 

[RR-LCM-XSD] ebXML Registry LifeCycleManager XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd 

[RR-RIM-XSD] ebXML Registry Information Model XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd 

[RR-RS-XSD] ebXML Registry Service Protocol XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd 

[RR-QM-XSD] ebXML Registry QueryManager XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd 

[SAMLBind] S. Cantor et al., Bindings for the OASIS Security Assertion Markup Language 
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-bindings-
2.0-cd-03.
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAMLConform] P. Mishra et al. Conformance Requirements for the OASIS Security Assertion 
Markup Language (SAML) V2.0. OASIS SSTC, September 2004. Document ID 
sstc-saml-conformance-2.0-cd-03. 

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 125 of 129

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.w3.org/TR/REC-xml
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
http://www.faqs.org/rfcs/rfc2130.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.ietf.org/rfc/rfc2119.txt


http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAMLCore] S. Cantor et al., Assertions and Protocols for the OASIS Security Assertion 
Markup Language (SAML) V2.0. OASIS SSTC, December 2004. Document ID 
sstc­saml­core­2.0­cd­03. 
http://www.oasis­open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAMLProf] S. Cantor et al., Profiles for the OASIS Security Assertion Markup Language 
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-profiles-
2.0-cd-03. 
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAMLP-XSD] S. Cantor et al., SAML protocols schema. OASIS SSTC, September 2004. 
Document ID sstc-saml-schema-protocol-2.0. 
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAML-XSD] S. Cantor et al., SAML assertions schema. OASIS SSTC, September 2004. 
Document ID sstc-saml-schema-assertion-2.0. 
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SOAP11] W3C Note. Simple Object Access Protocol, May 2000 
http://www.w3.org/TR/SOAP

[SwA] W3C Note: SOAP with Attachments, Dec 2000
http://www.w3.org/TR/SOAP-attachments

[SQL] Structured Query Language (FIPS PUB 127-2)
http://www.itl.nist.gov/fipspubs/fip127-2.htm

[SQL/PSM] Database Language SQL — Part 4: Persistent Stored Modules
  (SQL/PSM) [ISO/IEC 9075-4:1996] 
[UUID] DCE 128 bit Universal Unique Identifier

http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
[WSDL] W3C Note. Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl
[XML] T. Bray, et al. Extensible Markup Language (XML) 1.0 (Second Edition). World 

Wide Web Consortium, October 2000. 
http://www.w3.org/TR/REC-xml

[XMLDSIG] XML-Signature Syntax and Processing
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/

[WSI-BSP] WS-I: Basic Security Profile 1.0
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
Note: when this document is finalized, this URL will be updated.

[WSS-SMS] Web Services Security: SOAP Message Security 1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0.pdf

[WSS-SWA] Web Services Security: SOAP Message with Attachments (SwA) Profile 1.0
http://www.oasis-open.org/apps/org/workgroup/wss/download.php/10902/wss-
swa-profile-1.0-cd-01.pdf
Note: when this document is finalized, this URL will be updated.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 126 of 129

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/wsdl
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.itl.nist.gov/fipspubs/fip127-2.htm
http://www.w3.org/TR/SOAP-attachments
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/


14.2 Informative
[ebBPSS] ebXML Business Process Specification Schema

http://www.ebxml.org/specs
[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification

http://www.ebxml.org/specs/
[ebMS] ebXML Messaging Service Specification, Version 1.0 

http://www.ebxml.org/specs/
[DeltaV] Versioning Extension to WebDAV, IETF RFC 3253

http://www.webdav.org/deltav/protocol/rfc3253.html
[XPT] XML Path Language (XPath) Version 1.0

http://www.w3.org/TR/xpath
[IANA] IANA (Internet Assigned Numbers Authority). 

Official Names for Character Sets, ed. Keld Simonsen et al.
http://www.iana.org/

[RFC2392] E. Levinson, Content-ID and Message-ID Uniform Resource Locators, IETF 
RFC 2392,

http://www.ietf.org/rfc/rfc2392.txt

[RFC 2828] IETF (Internet Engineering Task Force). RFC 2828:
Internet Security Glossary, ed. R. Shirey. May 2000.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2828.html

[RFC 3023] IETF (Internet Engineering Task Force). RFC 3023: 
XML Media Types, ed. M. Murata. 2001.
ftp://ftp.isi.edu/in-notes/rfc3023.txt

[SAMLMeta] S. Cantor et al., Metadata for the OASIS Security Assertion Markup Language 
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-
metadata-2.0-cd-02. 
http://www.oasis-open.org/committees/security/.

[SAMLGloss] J. Hodges et al., Glossary for the OASIS Security Assertion Markup Language 
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-glossary-
2.0-cd-02. 
http://www.oasis-open.org/committees/security/.

[SAMLSecure] F. Hirsch et al., Security and Privacy Considerations for the OASIS Security 
Assertion Markup Language (SAML) V2.0. OASIS SSTC, September 2004. 
Document ID sstc-saml-sec-consider-2.0-cd-02. 
http://www.oasis-open.org/committees/security/.

[SAMLTech ] J.Hughes et al.,Technical Overview of the OASIS Security 
Assertion Markup Language (SAML)V2.0.
http://www.oasis-open.org/committees/download.php/7874/sstc-saml-tech-
overview-2.0-draft-01.pdf

[UML] Unified Modeling Language
http://www.uml.org
http://www.omg.org/cgi-bin/doc?formal/03-03-01

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 127 of 129

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.uml.org/
http://www.w3.org/TR/xpath
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
ftp://ftp.isi.edu/in-notes/rfc3023.txt
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.ietf.org/rfc/rfc2392.txt
http://www.iana.org/
http://www.w3.org/TR/xpath
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs
http://www.ebxml.org/specs


A. Acknowledgments

The editors would like to acknowledge the contributions of the OASIS ebXML Registry Technical 
Committee, whose voting members at the time of publication are listed as contributors on the title page of 
this document.

• Finally, the editors wish to acknowledge the following people for their contributions of material used 
as input to the OASIS ebXML Registry specifications:

Name Affiliation
Aziz Abouelfoutouh Government of Canada
Ed Buchinski Government of Canada
Asuman Dogac Middle East Technical University, 

Ankara Turkey
Michael Kass NIST
Richard Lessard Government of Canada
Evan Wallace NIST
David Webber Individual

•

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 128 of 129

4460

4461

4462

4463

4464

4465

4466

4467



B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 
might be claimed to pertain to the implementation or use of the technology described in this document or 
the extent to which any license under such rights might or might not be available; neither does it 
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with 
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights 
made available for publication and any assurances of licenses to be made available, or the result of an 
attempt made to obtain a general license or permission for the use of such proprietary rights by 
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, 
or other proprietary rights which may cover technology that may be required to implement this 
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that 
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published 
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright 
notice and this paragraph are included on all such copies and derivative works. However, this document 
itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, 
except as needed for the purpose of developing OASIS specifications, in which case the procedures for 
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required 
to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS 
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 129 of 129

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

4490

4491

4492

4493

4494


	1 Introduction
	1.1 Audience
	1.2 Terminology
	1.3 Notational Conventions
	1.3.1 UML Diagrams
	1.3.2 Identifier Placeholders
	1.3.3 Constants
	1.3.4 Bold Text
	1.3.5 Example Values

	1.4 XML Schema Conventions
	1.4.1 Schemas Defined by ebXML Registry
	1.4.2 Schemas Used By ebXML Registry

	1.5 Registry Actors
	1.6 Registry Use Cases
	1.7 Registry Architecture
	1.7.1 Registry Clients
	1.7.1.1 Client API

	1.7.2 Registry Service Interfaces
	1.7.3 Service Interface: Protocol Bindings
	1.7.4 Authentication and Authorization
	1.7.5 Metadata Registry and Content Repository


	2 Registry Protocols
	2.1 Requests and Responses
	2.1.1 RegistryRequestType
	2.1.1.1 Syntax:
	2.1.1.2 Parameters:
	2.1.1.3 Returns:
	2.1.1.4  Exceptions:

	2.1.2 RegistryRequest
	2.1.3 RegistryResponseType
	2.1.3.1 Syntax:
	2.1.3.2 Parameters:

	2.1.4 RegistryResponse
	2.1.5 RegistryErrorList
	2.1.5.1 Syntax:
	2.1.5.2 Parameters:

	2.1.6 RegistryError
	2.1.6.1 Syntax:
	2.1.6.2 Parameters:



	3 SOAP Binding
	3.1 ebXML Registry Service Interfaces: Abstract Definition
	3.2 ebXML Registry Service Interfaces SOAP Binding
	3.3 ebXML Registry Service Interfaces SOAP Service Template
	3.4 Mapping of Exception to SOAP Fault 

	4 HTTP Binding
	4.1 HTTP Interface URL Pattern
	4.2 RPC Encoding URL
	4.2.1 Standard URL Parameters
	4.2.2 QueryManager Binding
	4.2.2.1 Sample getRegistryObject Request
	4.2.2.2 Sample getRegistryObject Response
	4.2.2.3 Sample getRepositoryItem Request
	4.2.2.4 Sample getRepositoryItem Response

	4.2.3 LifeCycleManager HTTP Interface

	4.3 Submitter Defined URL
	4.3.1 Submitter defined URL Syntax
	4.3.2 Assigning URL to a RegistryObject 
	4.3.3 Assigning URL to a Repository Item 

	4.4 File Path Based URL
	4.4.1 File Folder Metaphor
	4.4.2 File Path of a RegistryObject
	4.4.2.1 File Path Example

	4.4.3 Matching URL To Objects
	4.4.4 URL Matches a Single Object
	4.4.5 URL Matches Multiple Object
	4.4.6 Directory Listing
	4.4.7 Access Control In RegistryPackage Hierarchy

	4.5 URL Resolution Algorithm
	4.6 Security Consideration
	4.7 Exception Handling

	5 Lifecycle Management Protocols
	5.1 Submit Objects Protocol
	5.1.1 SubmitObjectsRequest
	5.1.1.1 Syntax:
	5.1.1.2 Parameters:
	5.1.1.3 Returns:
	5.1.1.4 Exceptions:

	5.1.2 Unique ID Generation
	5.1.3 ID Attribute And Object References
	5.1.4 Audit Trail
	5.1.5 Sample SubmitObjectsRequest

	5.2 The Update Objects Protocol
	5.2.1 UpdateObjectsRequest
	5.2.1.1 Syntax:
	5.2.1.2 Parameters:
	5.2.1.3 Returns:
	5.2.1.4  Exceptions:

	5.2.2 Audit Trail

	5.3 The Approve Objects Protocol
	5.3.1 ApproveObjectsRequest
	5.3.1.1 Syntax:
	5.3.1.2 Parameters:
	5.3.1.3 Returns:
	5.3.1.4  Exceptions:

	5.3.2 Audit Trail

	5.4 The Deprecate Objects Protocol
	5.4.1 DeprecateObjectsRequest
	5.4.1.1 Syntax:
	5.4.1.2 Parameters:
	5.4.1.3 Returns:
	5.4.1.4  Exceptions:

	5.4.2 Audit Trail

	5.5 The Undeprecate Objects Protocol
	5.5.1 UndeprecateObjectsRequest
	5.5.1.1 Syntax:
	5.5.1.2 Parameters:
	5.5.1.3 Returns:
	5.5.1.4  Exceptions:

	5.5.2 Audit Trail

	5.6 The Remove Objects Protocol
	5.6.1 RemoveObjectsRequest
	5.6.1.1 Syntax:
	5.6.1.2 Parameters:
	5.6.1.3 Returns:
	5.6.1.4  Exceptions:


	5.7 Registry Managed Version Control
	5.7.1 Version Controlled Resources
	5.7.2 Versioning and Object Identification
	5.7.3 Logical ID
	5.7.4 Version Identification
	5.7.4.1 Version Identification for a RegistryObject
	5.7.4.2 Version Identification for a RepositoryItem

	5.7.5 Versioning of ExtrinsicObject and Repository Items
	5.7.5.1 ExtrinsicObject and Shared RepositoryItem

	5.7.6 Versioning and Composed Objects
	5.7.7 Versioning and References
	5.7.8 Versioning and Audit Trail
	5.7.9 Inter-versions Association
	5.7.10 Client Initiated Version Removal
	5.7.11 Registry Initiated Version Removal
	5.7.12 Locking and Concurrent Modifications
	5.7.13 Version Creation
	5.7.14 Versioning Override


	6 Query Management Protocols
	6.1 Ad Hoc Query Protocol
	6.1.1 AdhocQueryRequest
	6.1.1.1 Syntax:
	6.1.1.2 Parameters:
	6.1.1.3 Returns:
	6.1.1.4  Exceptions:

	6.1.2 AdhocQueryResponse
	6.1.2.1 Syntax:
	6.1.2.2 Parameters:

	6.1.3 AdhocQuery
	6.1.3.1 Syntax:
	6.1.3.2 Parameters:

	6.1.4 ReponseOption
	6.1.4.1 Syntax:
	6.1.4.2 Parameters:


	6.2 Iterative Query Support
	6.2.1 Query Iteration Example

	6.3 Stored Query Support
	6.3.1 Submitting a Stored Query
	6.3.1.1 Declaring Query Parameters
	6.3.1.2 Canonical Context Parameters

	6.3.2 Invoking a Stored Query
	6.3.2.1 Specifying Query Invocation Parameters

	6.3.3 Response to Stored Query Invocation
	6.3.4 Access Control on a Stored Query
	6.3.5 Canonical Query: Get Client’s User Object

	6.4 SQL Query Syntax
	6.4.1 Relational Schema for SQL Queries
	6.4.2 SQL Query Results

	6.5 Filter Query Syntax
	6.5.1 Filter Query Structure
	6.5.2 Query Elements
	6.5.3 Filter Elements
	6.5.3.1 FilterType
	6.5.3.1.1 Parameters:

	6.5.3.2 SimpleFilterType
	6.5.3.2.1 Parameters:

	6.5.3.3 BooleanFilter
	6.5.3.3.1 Parameters:

	6.5.3.4 FloatFilter
	6.5.3.4.1 Parameters:

	6.5.3.5 IntegerFilter
	6.5.3.5.1 Parameters:

	6.5.3.6 DateTimeFilter
	6.5.3.6.1 Parameters:

	6.5.3.7 StringFilter
	6.5.3.7.1 Parameters:

	6.5.3.8 CompoundFilter
	6.5.3.8.1 Parameters:


	6.5.4 Nested Query Elements
	6.5.5 Branch Elements

	6.6 Query Examples
	6.6.1 Name and Description Queries
	6.6.2 Classification Queries
	6.6.2.1 Retrieving ClassificationSchemes
	6.6.2.2 Retrieving Children of Specified ClassificationNode
	6.6.2.3 Retrieving Objects Classified By a ClassificationNode
	6.6.2.4 Retrieving Classifications that Classify an Object

	6.6.3 Association Queries
	6.6.3.1 Retrieving All Associations With Specified Object As Source
	6.6.3.2 Retrieving All Associations With Specified Object As Target
	6.6.3.3 Retrieving Associated Objects Based On Association Type
	6.6.3.4 Complex Association Query

	6.6.4 Package Queries
	6.6.5 ExternalLink Queries
	6.6.6 Audit Trail Queries


	7 Event Notification Protocols
	7.1 Use Cases
	7.1.1 CPP Has Changed
	7.1.2 New Service is Offered
	7.1.3 Monitor Download of Content
	7.1.4 Monitor Price Changes
	7.1.5 Keep Replicas Consistent With Source Object

	7.2 Registry Events
	7.3 Subscribing to Events
	7.3.1 Event Selection
	7.3.2 Notification Action
	7.3.3 Subscription Authorization
	7.3.4 Subscription Quotas
	7.3.5 Subscription Expiration
	7.3.6 Subscription Rejection

	7.4 Unsubscribing from Events
	7.5 Notification of Events
	7.6 Retrieval of Events
	7.7 Pruning of Events

	8 Content Management Services
	8.1 Content Validation
	8.1.1 Content Validation: Use Cases
	8.1.1.1 Validation of HL7 Conformance Profiles
	8.1.1.2 Validation of Business Processes
	8.1.1.3 Validation of UBL Business Documents


	8.2 Content Cataloging
	8.2.1 Content-based Discovery: Use Cases
	8.2.1.1 Find All CPPs Where Role is “Buyer”
	8.2.1.2 Find All XML Schema’s That Use Specified Namespace
	8.2.1.3 Find All WSDL Descriptions with a SOAP Binding


	8.3 Abstract Content Management Service
	8.3.1 Inline Invocation Model 
	8.3.2 Decoupled Invocation Model

	8.4 Content Management Service Protocol
	8.4.1 ContentManagementServiceRequestType
	8.4.1.1 Syntax:
	8.4.1.2 Parameters:
	8.4.1.3 Returns:
	8.4.1.4  Exceptions:

	8.4.2 ContentManagementServiceResponseType
	8.4.2.1 Syntax:
	8.4.2.2 Parameters:


	8.5 Publishing / Configuration of a Content Management Service
	8.5.1 Multiple Content Management Services and Invocation Control Files

	8.6 Invocation of a Content Management Service
	8.6.1 Resolution Algorithm For Service and Invocation Control File
	8.6.2 Audit Trail and Cataloged Content
	8.6.3 Referential Integrity
	8.6.4 Error Handling

	8.7 Validate Content Protocol
	8.7.1 ValidateContentRequest
	8.7.1.1 Syntax:
	8.7.1.2 Parameters:
	8.7.1.3 Returns:
	8.7.1.4  Exceptions:

	8.7.2 ValidateContentResponse
	8.7.2.1 Syntax:
	8.7.2.2 Parameters:


	8.8 Catalog Content Protocol
	8.8.1 CatalogContentRequest
	8.8.1.1 Syntax:
	8.8.1.2 Parameters:
	8.8.1.3 Returns:
	8.8.1.4  Exceptions:

	8.8.2 CatalogContentResponse
	8.8.2.1 Syntax:
	8.8.2.2 Parameters:


	8.9 Illustrative Example: Canonical XML Cataloging Service
	8.10 Canonical XML Content Cataloging Service
	8.10.1 Publishing of Canonical XML Content Cataloging Service


	9 Cooperating Registries Support
	9.1  Cooperating Registries Use Cases
	9.1.1 Inter-registry Object References
	9.1.2 Federated Queries
	9.1.3 Local Caching of Data from Another Registry
	9.1.4 Object Relocation

	9.2 Registry Federations
	9.2.1 Federation Metadata
	9.2.2 Local Vs. Federated Queries
	9.2.2.1 Local Queries
	9.2.2.2 Federated Queries
	9.2.2.3 Membership in Multiple Federations

	9.2.3 Federated Lifecycle Management Operations
	9.2.4 Federations and Local Caching of Remote Data
	9.2.5 Caching of Federation Metadata
	9.2.6 Time Synchronization Between Registry Peers
	9.2.7 Federations and Security
	9.2.8 Federation Lifecycle Management Protocols 
	9.2.8.1 Joining a Federation
	9.2.8.2 Creating a Federation
	9.2.8.3 Leaving a Federation
	9.2.8.4 Dissolving a Federation


	9.3 Object Replication
	9.3.1 Use Cases for Object Replication
	9.3.2 Queries And Replicas
	9.3.3 Lifecycle Operations And Replicas
	9.3.4 Object Replication and Federated Registries
	9.3.5 Creating a Local Replica
	9.3.6 Transactional Replication
	9.3.7 Keeping Replicas Current
	9.3.8 Lifecycle Management of Local Replicas
	9.3.9 Tracking Location of a Replica
	9.3.10 Remote Object References to a Replica
	9.3.11 Removing a Local Replica

	9.4 Object Relocation Protocol
	9.4.1 RelocateObjectsRequest
	9.4.1.1 Parameters:
	9.4.1.2 Returns:
	9.4.1.3  Exceptions:

	9.4.2 AcceptObjectsRequest
	9.4.2.1 Parameters:
	9.4.2.2 Returns:
	9.4.2.3  Exceptions:

	9.4.3 Object Relocation and Remote ObjectRefs
	9.4.4 Notification of Object Relocation To ownerAtDestination
	9.4.5 Notification of Object Commit To sourceRegistry
	9.4.6 Object Ownership and Owner Reassignment
	9.4.7 Object Relocation and Timeouts


	10 Registry Security
	10.1 Security Use Cases
	10.1.1 Identity Management
	10.1.2 Message Security
	10.1.3 Repository Item Security
	10.1.4 Authentication
	10.1.5 Authorization and Access Control
	10.1.6 Audit Trail

	10.2 Identity Management
	10.3 Message Security
	10.3.1 Transport Layer Security
	10.3.2 SOAP Message Security
	10.3.2.1 Request Message Signature
	10.3.2.2 Response Message Signature
	10.3.2.3 KeyInfo Requirements
	10.3.2.4 Message Signature Validation
	10.3.2.5 Message Signature Example
	10.3.2.6 Message With RepositoryItem: Signature Example
	10.3.2.7 SOAP Message Security and HTTP/S

	10.3.3 Message Confidentiality
	10.3.4 Key Distribution Requirements

	10.4 Authentication
	10.4.1 Registry as Authentication Authority
	10.4.2 External Authentication Authority
	10.4.3 Authenticated Session Support

	10.5 Authorization and Access Control
	10.6 Audit Trail

	11 Registry SAML Profile
	11.1 Terminology
	11.2 Use Cases for SAML Profile
	11.2.1 Registry as SSO Participant: 

	11.3 SAML Roles Played By Registry
	11.3.1 Service Provider Role
	11.3.1.1 Service Provider Requirements


	11.4 Registry SAML Interface
	11.5 Requirements for Registry SAML Profile  
	11.6 SSO Operation
	11.6.1 Scenario Actors
	11.6.2 SSO Operation – Unauthenticated HTTP Requestor
	11.6.2.1 Scenario Sequence

	11.6.3 SSO Operation – Authenticated HTTP Requestor
	11.6.4 SSO Operation – Unuthenticated SOAP Requestor
	11.6.4.1 Scenario Sequence

	11.6.5 SSO Operation – Authenticated SOAP Requestor
	11.6.5.1 Scenario Sequence

	11.6.6 <samlp:AuthnRequest> Generation Rules
	11.6.7 <samlp:Response> Processing Rules
	11.6.8 Mapping Subject to User

	11.7 External Users

	12 Native Language Support (NLS)
	12.1 Terminology
	12.2 NLS and Registry Protcol Messages
	12.3 NLS Support in RegistryObjects 
	12.3.1 Character Set of LocalizedString
	12.3.2 Language of LocalizedString

	12.4 NLS and Repository Items 
	12.4.1 Character Set of Repository Items
	12.4.2 Language of Repository Items


	13 Conformance
	13.1 Conformance Profiles
	13.2 Feature Matrix

	14 References
	14.1 Normative References
	14.2 Informative


