OASIS 19

. ebXML Registry Services and Protocols
. Version 3.0.1

» Committee Draft, Feb 22, 2007

5 Document identifier:
6 regrep-rs

7 Location:
Latest Version: http://docs.oasis-open.org/regrep-rs/latest/
This Version: http://docs.oasis-open.org/regrep-rs/v3.0.1/

10 Previous Version: http://docs.oasis-open.org/regrep-rs/v3.0/
11 Editors:
Name Affiliation
Kathryn Breininger The Boeing Company
Farrukh Najmi Wellfleet Software Corporation
Nikola Stojanovic GS1 US
12

13 Contributors:

Name Affiliation
Ivan Bedini France Telecom
Ted Haas GS1US
Paul Macias LMI
Carl Mattocks MetLife
Monica Martin Sun Microsystems
David Webber Individual
14
15 Abstract:
16 This document defines the services and protocols for an ebXML Registry
17 A separate document, ebXML Registry: Information Model [ebRIM], defines the types of
18 metadata and content that can be stored in an ebXML Registry.
19 Status:
20 This document is an OASIS ebXML Registry Technical Committee Approved Draft Specification.
21 Committee members should send comments on this specification to the regrep@lists.oasis-
22 open.org list. Others should subscribe to and send comments to the regrep-
23 comment@lists.oasis-open.org list. To subscribe, send an email message to regrep-comment-
24 request@lists.oasis-open.org with the word "subscribe" as the body of the message.
25 For information on whether any patents have been disclosed that may be essential to
26 implementing this specification, and any offers of patent licensing terms, please refer to the
27 Intellectual Property Rights section of the OASIS ebXML Registry TC web page
28 (http://www.oasis-open.org/committees/regrep/).
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 1 of 129

http://www.oasis-open.org/committees/regrep/
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
http://docs.oasis-open.org/regrep-rs/v3.0/
http://docs.oasis-open.org/regrep-rs/v3.0.1/
http://docs.oasis-open.org/regrep-rs/latest/

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Table of Contents

L Lo e 18 et 1 o] o PO UUPPPPUPRN 12
L AN T 11T o Tl YT UURR RSP 12
LIV K=1 1 Tl a o] (oo V20RO PPPT PP 12
1.3 Notational CONVENTIONS.uiiiiiiieee ettt ee ettt e e e e e sttt e e e e e es s nbebteeeeeeessnnabreaeeeeeeseasnnnsnneeeas 12

T.3.7 UML DIAQIamS. ...ceeeiiiiiiiiieee ettt et ee ettt e et e ettt ettt e e e e sttt et e e e e e e sababtteeeeeeeesaabbebaeeeeessaananes 12
1.3.2 Identifier PIaCehOlders.cooui ittt e e e e e st e eee e e e seeanaes 12

I IRC G A o]] =1 o1 - J P TP PPPPPRRTR 12
LR I O = To] (o B L SO PP PPPPPRIRt 13
T.3.5 EXQMPIE VAIUES......uuuiiiiiiiiiiiiiiitiitttttt e e e e e e e e e e e e e e aaaaeaaaeaaaaaaaaaaaaaaaaaanns 13
1.4 XML SChema CONVENTIONS.ottt et ettt e e eeeeeaaaeaaaaaeaaaeaaaeesasssnsssassaassaanaaaaaannns 13
1.4.1 Schemas Defined by €bXML REGISTIY e e e e e e e e e e e e e eeeeaee s 13
1.4.2 Schemas Used By ebXML REGISTY......uuiiiiiiiiiiiiiieeeiiiteee ettt e e 14
1.5 REGISIY ACIOIS. .o eeeeeeeeeeeaaaaaaeaaeaaeeaaaaaaeaeeseseasnennnnns 15
1.6 REGISIIY USE CaASES...uuuiiuiiiiiiiiiiiiiiitiiiitteiteeeersreeeseeessresseesasasrtestea..——.———————————.a..taataa.nanrannnennnnnnnssnnnnnns 15
1.7 ReQISIY ATChITECIUIE.eiiiiiieeee ettt ettt e e e ettt e e e e e bbeeees 15
8 I B = =T 13 (VA @ 11T o | (PP PPPTPPP 16
L T I 1 1= o | Y = PSPPSR 16
1.7.2 REQISIIY SEIVICE INTEITACES. ...cce e e e e e e e e e e e e e e e e e e aeeeeeeeeeeeaaeaaeaaaaaeaens 16
1.7.3 Service Interface: ProtoCol BiNAINGS. e e e e e e e e e e e e eaeaeaeeeas 16
1.7.4 Authentication and AUThOFIZAtioN.............uiiiiiiiiiiiii e e e e e 17
1.7.5 Metadata Registry and Content REPOSIEONY........uueereruiriiiiiiiiiiiiiieiiiieeeeeeereereeeeeeeeeeeeeaeeeeeaeaaeaaens 17

2 REGISIIY PrOtOCOIS. ..ottt e e ettt e e e e e ettt e e e e e e e e 18

2.7 REQUESES QNU RESPONSES. ... uuuiiiiiiiiiiniiiuniuiitanaeatenaaeennenesenessssnnssssssssssnsssssssssssssssssssssssssssssssssssssssesnn 18

2.7.1 REGISITYREGUESETYPE. ..ceiiiiiiiiieeeeeciititeeeee ettt ee e e e e sttt eeeeeessaaateeeeeeessnssaraaeesaasnnssseeeeeesannsnneeens 18
D T T B) 01 = D PO POPRPRPPPPPPPRY 18
D B B e = 10 1 1<) (=T £ OO PU R PRTPPUPRN 19
2.0 0.3 REIUINS ettt ettt e e ettt e e ettt et e e ettt e e e e e ettt e e e e e nanb et eeeeeaas 19
B T I A) Cel=Y o] o] =T OO U ST UUTPPUTR 19
2.71.2 REGISIIYREQUEST. ..ottt e ettt e e e e e ettt e e e e e e e e eeas 19
2.1.3 REQISITYRESPONSETYPE....eeiiiiiiiiiiiiiiieee et ettt et eeeee e e e e e et e e eee e e etaeataeeaaseeesssessssssnnssssssssssssssssssssennes 19
2.1 30T SYNEAX et e e e et e e e s et e e e e et e e e e et e e e e e nneeeeeeenas 20
2.1.3.2 ParamMELEIS:....cei ittt ettt e ettt e et e e e ettt et e e e ettt e e e e enan et e eeeeaas 20
2.7.4 REGISITYRESPONSE. ..ccieiiiiiiiieeeeeiiiteeeeeeeittteeeeesatreteeesaasatateeeseaasssaeeeseasnssaaeesssssssseeeeessnnssssees 20
2.1.5 REGISIIYEITOILIST.....eetiiiiii ettt e ettt e e e e s e ettt e e e e e e e abeeeeees 20
D TR T)Y 1 =) PSPPSR 21
D RS T o= 1 2= 1 1) (=Y =P PP PPPPPPPPPPPPPPPRY 21
B B 2 (o 151 1Y = 4 (o] S U UUUUPRRRPPOt 21
201007 SYNEAX ettt et e e e ettt e e s ettt e e e et e e e e e s e et e e s e irneeeeeeenas 21
2.1.6.2 ParamMEeIS:....coiiiiiiiteee ettt ettt e e et e e e et e e e e e ettt e e e e e nab et e eeeeaas 21

3 SOAP BINAING. . etttiiieeiiiiiiee e ettt e e ettt e e e e ettt eeeeeeaaatteeeeeeeaaabaeeeeeaaaasssaaeeeeeeasssrbaeeaseeaansaaaaeeeeennnrees 23
3.1 ebXML Registry Service Interfaces: Abstract Definition...........cccccceoiiiiiiiiiiiiiiiiiiiieeiiieeiee e 23
3.2 ebXML Registry Service Interfaces SOAP BiNAiNG........coceeeuuuiuiiiiiiiiiiiiiiiiireiierreierrrerressersrreeeeee.. 23
3.3 ebXML Registry Service Interfaces SOAP Service Template............oooiiiiiiiiiiiiiiiiiiiieeeee e 24

regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 2 of 129

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

3.4 Mapping of Exception t0 SOAP FaUIL ...ttt sbeaeeeseeeeseeeeenees 24

I I I e =113V [T o OO PUUURRUPURPPRS 26
4.1 HTTP Interface URL Patt@rn.........ooiiiiiiiiiiiiiee ettt e e e e ettt eeee e e e senaaraaeaaeeeeeeennnnns 26
4.2 RPC ENCOAING URL....uuiiiiiiiiiiiiiiiiiiieiieeee e e e e e e eeeeeeeess s etaaaasbsseaeeseeeeeaaaaaaaaasasassssssssssssssssssssssssssssnnns 26

4.2.71 Standard URL Parameters.uu ettt e aeee 26
4.2.2 QUEryManager BiNAING.......uuueiiieiiiiiiiiiiee ittt e e et ee e ee e e e et aassasasasatassesnnsanneenaeanes 27
4.2.2.1 Sample getRegistryObJeCt REQUEST.........cccciiiiiie et e e ee e e e e etrareee s 27
4.2.2.2 Sample getRegistryObject RESPONSE.......cooiiiiiiiiii ittt 27
4.2.2.3 Sample getReposSitoryltemM REGUESE.......cc..eiiiiiiieeciiee et e e e et re e e e e e eesaraaeeee s 28
4.2.2.4 Sample getRepoSItOryltem RESPONSE.cccuuti ittt ettt e et e st reeenaraees 28
4.2.3 LifeCycleManager HTTP INtEHACE........ccoiiiiiiiiiiie e 28
4.3 SUbMItter DEfINEA URL....ciiiiiiiiiiiiiiee ettt e e ettt e e e e e e e taateeeeeeeessnsssaaeeaaeeeesnnnsnns 28
4.3.1 Submitter defined URL SYNTAX........ccceiieeiiiiiiiiiiteeeeeteeeee e e e e e e e e e e e e e e e e e e ess s e e e ssneenneessensnsssnnnnnes 29
4.3.2 Assigning URL t0 @ RegiStryODJECE ...ccuueviiiiieeiiiiiiee ettt e et e e e e e 29
4.3.3 Assigning URL t0 @ RePOSITOry HEMoooiiiiiiiiee et seeeeennes 30
4.4 File Path Based URL..........uiiiiiiiiiiiiee ettt ettt e e ettt e e e e e ettt e e eeesssatteeeeeeessnntnaeeeeseennnnes 30
4.4.7 File FOIder MEIAPRNOceeiiiiiiiiiiie ettt eeseeeeennee 30
4.4.2 File Path of @ RegiStryObjJECt......cciiiiiiiiiiiiiiieeeee e 30
4.4.2.7 File Path EXAMPIE....c.eeeiiiiieiiee ettt ettt e e ettt e e e ettt e e e e e eaasaeeeeaas seaeeeesnsraneaeeeansraseeeeas 30
4.4.3 Matching URL TO ODJECES.uuiiiiiiiiiiiiiite ettt e ettt e e e e e et eee s 31
4.4.4 URL Matches a Single ODJECt.......uuuiiiiiiiiiiiiiiiiieeee e aeeaaes 31
4.4.5 URL Matches MUltiple ObJECL.......ooiiiiiiiiiiee e 32
S I =Yt o VA N1] o P PPUPPUPPPRE 32
4.4.7 Access Control In RegistryPackage HierarChy...........cccceeeeeiieeeiiiiiiiiiieee e 32
4.5 URL ReSOIULION AlGOTTNML....uiiiiiiiiiiiiiiiiiiiieieee ettt e e e e e et aassebseeeseeneennes 33
4.6 SECUrity CONSIAEIAION.cciiieiieeeiie b e tbt et aaaastaaaasaataasasasassasssssasssssssssssassassssssesnes 33
4.7 EXCEPION HANAING .. .eeiiiiieeeiei ettt e ettt et e e s e sttt et eeeeesaeneeee 33

5 Lifecycle Management ProtOCOIS.uuuviiiiiiiiiiiiiiiiee et e e e e e e aeeeeeeeeeeas 34

5.1 Submit ODBJECES ProtOCOL...... ... 34

Lo B IS YU o101 (@] o =Tt £ A= To [=T AR RUPPPUPPPRE 34
TR I B B} 01 = RO T TSRO PP O PRPRPOPPPPPPPPPRY 34

T I B o= 1=) (=Y PP PP PPPPPPPPPPPPPPRY 35

ot I RGBT (U1 1 PSPPI 35

DT 4 EXCEPIIONS .ttt ettt et e bbbttt e e bt e et e s e et e e e bt e e ettt e sabaaeenaabeeeas 35
5.1.2 UNIQUE ID GENEIALION.uuuiiiiiiriiiiiiiiiirierreererrrreesrrerererreeereterstettesrereetererereseerreeereerrreerserrreerrr. 35
5.1.3 ID Attribute And Object RefErenCes........cccuuiiiiiiiiiiiiee e 35

L I N E T [1 SRS UPPPRR 36
5.1.5 Sample SuUbmMIitObJECISREGUEST...... ...ttt aaaeaaaaaearereeaaes 36
5.2 The Update ODBJECtS ProtOCOL........coiiiiiiiiiiiiieiii ettt et e e e e e e 36
5.2.1 UpdateODbJeCtSREGUEST........uuuuiiiiiiiiiiiiiiiiieieeeeeee e e e e e e e e e e e e e ee e et e e e e e e e eaeeaeaeseanaasrareeaees 37
T B B) 01 = D PP PP OPPPOPPPPPUPPPRY 37
5,212 ParamMELEIS: ..ottt ettt ettt e e ettt et e ettt e e e e e ettt e e e e e e b et e e eeeeaas 37

T I B o L= (1 ¢ 1= PP PU PP PPPPPPPPPPPPPRY 38
L A) Cel=Y o] i o] = PSPPSR UPPUR 38
L A E T 11 B - USSR 38
5.3 The Approve ODbjJects ProtOCOL.........cooo e e e e e e e e e e e e eeesenesansesnnsnnes 38
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 3 of 129

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

LR Tt I B) 01 = D SO PO PPPRPPPPPPPPRRY 39

T T B o= 1=) (< PP PUPPPPPPPPPPPPPPPPRY 39

5.3 T 3 REIUINS ettt et ettt et e ettt e e e e et e e e e e sttt e e e e e et e eeeeaas 39

5. 314 EXCEPUIONS ..ttt ettt et e ettt sttt e et e ettt e st e e b et e e et e et e nanbneenareeeas 39
5.3.2 AUAIE TIAIL ceeee ettt ettt e e ettt e e e ettt e e e e e s bttt e e e e e e nnbebeeeeeeeaannneeeas 39
5.4 The Deprecate Objects ProtoCol..........ooo e 39
5.4.1 DeprecateObJeCtSREQUEST.........uuuiiiiiiiiiiiiieeeee et e e e e e e e e eeeeessseaesseeeeanes 40

Lo T B B) 01 = D OO POPPPUPPPPPPRY 40

R o B = 1= 1) (=Y =SSP PPPPPPPPPPPPPPRY 40

54 T3 REIUINS ..ttt et e ettt et e e ettt ee e e e e sttt e e e e e ettt e e e e e e bbb et e eeeeaas 40
51414 EXCEPUONS ...ttt ettt ettt e ettt sttt e e bt e ettt e e et b e e e e b et e e et et e e nabateenaabeeenas 41

o A N E T 11 G 1 PSP UPRR R 41
5.5 The Undeprecate Objects ProtoCol............ccoiiiiiiiiiiiiiiiiiecee et 41
5.5.1 UndeprecateObjeCtSREQUEST..........vviiiiiiiiiiiiieiie e e es e eeanraansseeaennes 41

Lo T B) 01 = OO POPRPPPPRY 41

5. 512 ParamMEEIS:....ceii ittt ettt e et et e et e e e e e sttt e e e e e ee e e e eeaas 42

R NG B o L= (U1 o 1O PO P PSSP PO R PRTPPPPRN 42

T B I b (el o 1o T U OO PP U PPTR O PP SRR OUPPPUPPPPON 42
T A U T 11 G 1 RSP UUR R 42
5.6 The Remove ODJECtS ProtOCOL......ccouiiiiiiiiiiiiiieeee ettt et e e 42
5.6.1 REMOVEODJECISREQUEST.......uuuiiiiiiiiiiiiiiiiiiiittiitt ittt tara e araesbaresssaseeaseesessrseesseessssessesrsenne 43

L ST I) 01 = P PPPOPNY 43
5.6.T.2 ParamMELEIS:....coii ittt ettt e ettt e e et e e e ettt et e e e ettt e e e e e bbbt e e eeeeaas 43

5B T.3 REIUINS ..ttt ettt et e ettt et e e ettt e e e e s s bttt e e e e e aabb bt e e e e e e bbb aeeeeeeeaas 44

LN I A) Cel=Y o] o] =T PSSP PUPPSRN 44

5.7 Registry Managed Version CONIOL............uuuuiiiiiiiiiiiiiieiiieeeeeeeee e e e eeeeee e e e e ee e e e eeaeaaeeaaeraeaesaaaanes 44
5.7.71 Version Controlled RESOUICES...........uuuuiiiiiiiiiiiiieie ettt e e e e ee e e e e e e e e e e e e e e e e e eeeee e e e e aeennsasseennennes 44
5.7.2 Versioning and Object Identification..............oooiiiiiiiiie e 44
5.7.3 LOGICAI ID ..ttt et e e e ettt e e e e ettt e e e e e e eees 44
5.7.4 Version [dentifiCatioN.........ouueiiiiieiii ettt e et e e e e e e 45
5.7.4.1 Version Identification for @ RegistryObjJECt............vviiiiiiiiieeeeeeee e e 45
5.7.4.2 Version Identification for @ REPOSITONYIEM.........cciiiiiiiiiiiieiiiee et e e e e 45
5.7.5 Versioning of ExtrinsicObject and RepoSitory Ife€MS............vviviiiiiiiiiiiiiiiiiiieeee e eeeeeeeeeeeeeeeeeaes 45
5.7.5.1 ExtrinsicObject and Shared RepOSIitOryltemM........cooiiiiiiiiiiieeeee et 46
5.7.6 Versioning and Composed ObjJeCES........cciiiiiiiiiiieeeeee ettt aerraaaeanes 46
5.7.7 Versioning and REEIENCES.c.uuviiiiieeeeccieeeee ettt e e e e e e et eeeeeeeeeeennsbaeeeas 46
5.7.8 Versioning and AUt Tralil.........ccooiriiiiiiiiiiie et 47
5.7.9 INter-versions ASSOCIAION.ccuuiiiiiee ettt ettt e e e ettt e e e e e st e e e e e e s e snbbbbeeeeeeeennnraeeeas 47
5.7.10 Client Initiated Version REMOVAL............. e eeeeeees 47
5.7.11 Registry Initiated Version ReEmMOVal.........cccooeeeeiiiiiiiieee e 47
5.7.12 Locking and Concurrent ModifiCatioNS...........ccccuriiiieeeriiiiiee ettt e e e e e e e eraeeeas 47
5.7 13 VEISION CrEALION.uiiiiiiiiiiiiteee ettt e e ettt e e e e ettt e e s e st te e e e essaabebeeeeeeesabbbeeeas 47
5.7.14 VersioniNg OVEITIAE........ccoeeeiiiiiiitee ettt et e e e e e e e eaeaaeeeeeaaaeeeeaesasesssessessssssnsessesessrsnrranes 48

6 Query Management ProtOCOIS.ooiu ittt et e ettt e e e e ettt e e e e e e e abaeeeas 49
6.1 Ad HOC QUENY ProtOCOL.. ..o 49
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 4 of 129

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

[T T R) 01 = D U OO POPRPRPPPPPPPPRRY 50

(ST I A o= T =0 411 (< USRS 50

B. 1. 1.3 REIUINS ..ottt et e ettt e e et e e e e sttt e e e e e sttt e e e e eeanb et e eeeeaas 51
B.7.1.4 EXCEPUONS .. ettt ettt e et e e ettt sttt e et e et e s e et e e bt e e et et e nantneenaebeeeas 51
6.1.2 AdhOCQUEIYRESPONSE.cce ittt e e et e e et e e e e eeaeeeeeaaaaeaeaeeeassssssssssssssenssssnnnssssnnrnnes 51

ST I B 41 = PO PPPP Y 51
B.71.2.2 ParamMELEIS:....ceii ittt ettt et e ettt e et et e ettt et e e e sttt e e e e e e aeeeeeeeaas 51
6.71.3 AQNOCQUEYttt e et e e eeeeeeeeaaeeeeeaeeeeeaeeeeeeaeeasssesassssessssassssssssssrsssssssssssssrrenees 52
B. 1. 3T SYNEAX et e s et e e e et e e e e e s e e e e s e neeeeeeaas 52
B.71.3.2 ParamMELEIS: ..ottt ettt ettt e e e ettt et e e e ettt et e e e et e e e e e e bbbt e eee e e e aabbbeeeeeeeeaaas 52
6.71.4 REPONSEOPLON.eiieiiiiit ittt ettt e ettt e et e et et asaataastssssssssssasssatsstessssnnsennnennes 52

LS T B) 0 = D U OO PO PPPRPPPPPPPPRY 52
(ST B A = 1=) (=Y =TT P PP PP PP PPPPPPPPPPPPPPPRY 52

6.2 HErative QUEIY SUPP O . eiiiiiiiiiiiiiiee e et ee et et eeeeee e e et aaaaaeaaaasaassasssssssssssssssssssssssssssssassssnsenne 53
6.2.7 QUEry IReration EXAMIPIE. ettt ee e ettt e et e e aeeeaeeanee 53
6.3 StOred QUEIY SUP PO i i ii i i i eiee et eee oottt aaataaatasseeassssessssssssssssssssssssssssssssssssnnsnnnnnnnns 54
6.3.7 SUbMIttiNG @ StOr€d QUEIYvviiiieiiiiieeee et e e e e e e e e e e e e e e e e e e s e e easessaaaasssaaraees 54
6.3.1.1 Declaring QUEIY ParameELersS........cooo i uuiiiiee ettt e ettt e e e e e ettt e e e e e ettt e e e e e aanbeeeeeeseenneeeeeaeanas 54
6.3.1.2 Canonical Context Parameters..........oiiuiiiiiiieiiie ettt ettt e et e ettt e et e e eateeesnbeeeens 55
6.3.2 INvOKING @ STOred QUETYccoiiiiiiiitie ettt e e ettt e e e e e e baee s 55
6.3.2.1 Specifying Query INVOCation ParameterS..........cvviiiiiiieiiiiieee ettt e ettt e e e e e e bare e e e e e esnebaeeeeeeeans 55
6.3.3 Response to Stored QUETY INVOCALION.uuiiuiiiiiiiiiiiiiiieeiiireereereerereeerereeerreeersrrereesreeerresrrr——.. 56
6.3.4 Access Control on a Stored QUENY.......cooiiiiiiiii e 56
6.3.5 Canonical Query: Get Client's User ODJECL.........ccooeeeiiiiiiiiiiiiiiiiiiiiiiav v areveeerraaerrereeanes 56
0.4 SQL QUETY SYNEAX ittt ettt ettt e e e e e et ettt e e e e e et ttatba s e e e eaeeestbbaaaeeeeeeeeeenaas 57
6.4.1 Relational Schema for SQL QUEIIES.oiiiueeiiieeee e e 57
6.4.2 SQL QUENY RESUIS.....uutiiiiiiiiiiiiiieeeeeeeeeee ettt aaeeaaaaaaaeeaeeaees 57
6.5 Filter QUEIY SYNTAX....ciiiiiiiiiieiieeie ettt 58
6.5.71 Filter QUEIY SEIUCIUIE.....ccc oo 58
6.5.2 QUEIY ElEmMENES. ..ottt bttt b bt e et enneennee 58
6.5.3 FIEI EIEMENTS....oeiiiiiiiiiiiii ettt aaaeassssassasasasssssssanssaneennes 59
6.5, 3. P Ty PO ettt ettt e e ettt ettt et e et e s e e e e e b et e e et et e e nabeaeenaabeeeas 60
(ST I Y 100] o] (=Y 11 T=T g Y] o =T PSSP UUPPRRR 60
6.5.3.3 BOOIEANFIIET ..ottt e ettt e e ettt e e e et e e e e e nnteeeeeeannteee 2eeenneeeaeeeeas 61
(SR TC I A o (o =Y {1 (=] TP PSRRI 61
(SR TE Rl [(=Te [T 1| (Y PSPPSR 61
6.5.3.0 DAt TIMEFIIET ... eeeieiieeieeeeeee ettt ettt eaaaaeesaaaeabaaaeeaaeaeeaaaaeararaearaaaaaaaaaaaes 62
6.5.3.7 SHNGFIIEL ...ttt ettt e e ettt e e e e e ettt e e e e e e nbbbtteeeeeeannnbaeeeeeeannns 62
6.5.3.8 COMPOUNAFIIET......eiiiiiieiee ettt ettt e ettt e ettt e s eabte e e sab et e e eabe et esabaeeenaabeeenns 62
6.5.4 Nested QUENY EIEMENES......ccccoeeeee s e e e e saneeansesnensnsrennranes 63
6.5.5 BranCh EIEMENTS......cooieeeeiiee et e e e e e e e e e ettt e eeeeaeeeeee bt e e eaaaaaes 63
6.6 QUEIY EXAMPIES....uuiiiiiiiiiiiiiiii ettt e et eeeeeaeaeeeaeaaesesssssssssnssnssssssssnsssssssrnnnnnnnns 64
6.6.1 Name and Description QUEIIES.uuuuiiiiiiiiiiiiiie et ee eeeee e e e e aeaaeaaarasaaaaees 64
6.6.2 ClasSifiCAtiON QUEIIES.ue ittt atteaaaesss s aeassssssssseesssasessseeesssaeesnseeeseeesseesennnes 64
6.6.2.1 Retrieving ClassifiCatioNSCREMES.coouiii ettt e e e e e ee e eeeeeesnreeeeas 65
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 5 of 129

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

6.6.2.2 Retrieving Children of Specified ClassificationNOde..........cccccoriiriiiiiiiniiiiiieeeeeeee e 65

6.6.2.3 Retrieving Objects Classified By a ClassificationNOde.............ccoooiiiiieiiiiiiiiie e 65
6.6.2.4 Retrieving Classifications that Classify an ObJECE...........cooiiiiiiiiieee e 65
6.6.3 ASSOCIAtION QUEKIES.eneiiiieie e e e e e et e e et e e e et e e e e e e esan e eeeanans 66
6.6.3.1 Retrieving All Associations With Specified Object AS SOUICE........c.cccovievieriiineenieniceeeeeeeeee 66
6.6.3.2 Retrieving All Associations With Specified Object As Target.........cccvviveiieeiciiiiiiee e 66
6.6.3.3 Retrieving Associated Objects Based On ASSOCIation TYPe......coeeiiiiiiiiiiieeiiiiiiiieeee e 66
6.6.3.4 Complex ASSOCIAtION QUETY ...cc..uiiiiiiiiiiiiee ettt ettt e ettt ettt ettt e ettt e s ettt e e sttt e eeabeaeesabeneesaabeeenas 67
6.6.4 PaCKAgE QUETIES.....uuiiiiiiiiiiiieeeeeee e ee et b e et eeeeeaaaaaaaeaaaaeaasassasssssssssssssssssnnsrsnrrnnes 67
6.6.5 EXtErNAILINK QUEIIES.uve i et e e e e e e e e e e e e e e ee e e e e e rarans 67
6.6.6 AUt Trail QUEIIES......eeeiiiie e et e e e e et e e e e e eeanans 68

7 Event NOtifiCation ProtOCOIS.iiii ittt e ettt e e e e et e e e e e s e sbtaeeeeeeennnbeaeaeseesnnnseeens 69
7.1 USE CASES. ettt ettt ettt ettt et ettt e e e e e et ettt bneennennee 69
7.1.1 CPP Has Changed.......oooeiiiiiiiiiiiieeeeee ettt e s e saseeansessesaasssanrnnes 69
7.1.2 New Service iS OffEred.......ooiiiiiiiiiiiiiiiiieeee et eeeeees 69
7.1.3 Monitor Download Of CONTENT..........eeiiiiiiieee et e e e e e e e e eee s 69
7.71.4 MONITOr PriCe CRanQeS...ccooiuiiieiiiiee ettt ettt e e e e ettt e e e e e e e eenberaee s 69
7.1.5 Keep Replicas Consistent With Source ObJeCt..........ccovviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeee e 69
7.2 REGISITY EVENES. . oottt et taa s bt aataaaaa s bbb taaaa b e aabtaaaetaaraaaaarraaaa 69
7.3 SUDSCHIDING 10 EVENES....ouiiiiiiiiiiiiiiiie ettt et e e e e eeeaeeeeeeaeesesessasannnnsnnsnnnsssssnnnnnnnnnns 70
7.3.T EVENE SEIECHON.ottt ettt e e e e s ettt e e e e e e sttt e eeeeeeeansbbbeeeeeeeennnnnraeeens 70
AR T \\Le1 1 ilor= 11T] o [AVt o] o FE P PSR 70
ARC G ISTU] oFYol 4 o] (o) ANV i gTe] 2= i o] o ISR RUUPRUPPRRt 71
7.3.4 SUDSCIIPHON QUOTAS. .. .uuiiieee et ree e e e e e e e e e e e e aaa b raeaeeeaeeeeessssannnaaeeeaaeens 71
7.3.5 SUDSCHIPHION EXPIFAtION.uuuiiiiiiiiiiiiiiiitiiititiieeeeeeeerrreeeereeeeseeeeerreeerseeeeeeeeereseresreesseeseeerserrseersrnne 71
7.3.6 SUDSCHIPLION REJECHON. .. .uuuiiiiiiiiiiiiiiiiititiiitiitiitiiti it aaeaaraaaaaaaaaasessassssssssssssssssssssssssessssssseesrsraaes 71
7.4 UnsubsCribing from EVENES.......uiiiiiiiiiiieeee et e e e e s ee e e e e e e s 71
7.5 NOUFICAtION Of EVENES.....uiiiiiiiiiiiiiee ettt ettt e e e ettt e e e e ettt e e e s s sttt e eeeesesnstaeeeeeseananes 71
7.6 REtIEVAI Of EVENES.....uuiiiiiiieii ittt e e ettt e e e e e e ettt e eeeeeeeeeesataasaeaaeeeeeaansssaaaeaaeeeasannsnns 72
7.7 PrUNING Of EVENTS.....uitiiiiiiiiiiiiiiiiiie ettt et e e e e teeeeeeeeeeeeeeeeeesaesseessssesssessssnssnssssnssssssssssssssssssssssssssssnrsnnnes 72
8 CoNtENt MANAGEMENT SEIVICES. .. .uiviiiiiiiiiiiiiiiiiiieeeerreeeereereerrereererrereserereerrerrrerarrarrtarrtararraraarraaaaaaaaaaeaaaes 73
8.1 CoNENt ValidatioN........uuiiiiiiiii ettt e e ettt et e e s e s ettt e eeee e e e e 73
8.1.1 Content Validation: USE CaSses.....cceuiiuuiiiiiieiiiiiieee e eeitttee e e ettt e e e e st teeeeessnberteeeseesnnnnneeeas 73
8.1.1.1 Validation of HL7 Conformance Profiles..........coouii ittt 73
8.1.1.2 Validation Of BUSINESS PrOCESSES.iiiiuiiiiiiiiiitie ettt ettt ettt e et et e et ee et e ene e e eaneeesabeeeens 73
8.1.1.3 Validation of UBL BUSINESS DOCUMENES......cccciuiiiiiieeieiiiiiieteeeeeieeeeeeeeseiteeteeeeeeentnreeaeesesnnnsneeeaeeannns 73

8.2 CoNtENt CAt@lOGING. .. uueuiuiiiiiiiiiiiiieiiieeeeee e e e e e e ee e ee e cee e a b e e e e eeeeeeaaaaaaaaaaasaasassssssssssnsessssssssssrrsnes 74
8.2.1 Content-based DiSCOVEIY: USE CaSES.......uuiiiiiiiiiiiiiiiiteeeee et ee e e e e ettt e e e e e s e eiberaee s 74
8.2.1.1 Find All CPPS Where ROIE IS “BUYEBI.........iiiiieieiiiiee e e ettt e e e ettt te e e e e eeittaeeeeeesnbaraeeeseessnnsneeeaeeannns 74
8.2.1.2 Find All XML Schema’s That Use Specified NameSPace.c.eveeviieiieeiiiiiiieeeeee e 74
8.2.1.3 Find All WSDL Descriptions with @ SOAP BiNdiNg........cccceeiriiiimiiiiniieeniieenieeeniee et e niveeeens 74

8.3 Abstract Content ManagemMENt SEIVICE.........uuuuuiueriiiiiiiiiiiiiiiiieiiintiinisrassaeeaaaeaaaaaaaasaeseeseseesseesseseens 74
8.3.1 Inline Invocation Model ... 75
8.3.2 Decoupled INVOCAtioON MOUEL..........uuuiiiiiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e ee e e e e e e e eeeneennennanssnnranes 76
8.4 Content Management ServiCe ProtOCOL............ e e e e eeeeee e 77
8.4.1 ContentManagementServiCEREQUESTTYPE.uuuuuriiicireieeeeeeeeeeeeeeeeeeeeeeeeeeaeeeaeeeeeeeeeeernees 77
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 6 of 129

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

S B e = 10 111 (=T £ PO PSP PR PUTRN 78

T T IR B S U= (1] ¢ 1= T T OO PPPPPPPPPPPPPPPPPRY 78

o I A b Col=Y o] i o] = O US TP UPPPUPR 78
8.4.2 ContentManagementServiCERESPONSETYPE.uuiiiiiiiiiiiiieeee ettt ettt e e 78
R T B) 0 = U OO PO PPPOPPPPPUPPPRY 78

R A e 1 2= 1 1<) (< OO PP P PP PP PPPPPPPPPPPPPRY 78

8.5 Publishing / Configuration of a Content Management ServiCe.........ooooveeeeeeeiieceneniiiiiiinrnreeirereeeaens 79
8.5.1 Multiple Content Management Services and Invocation Control Files...........ccccvveeeeeeeninnennn. 80
8.6 Invocation of a Content ManagemMENt SEIVICE.uuuiuuiiiiiirrereeeee e e e e e e e eeeeeeeeeeeaeaeeeeeeeeeeeeenens 81
8.6.1 Resolution Algorithm For Service and Invocation Control File..........cccccevvvviviiiiiviiniiiniieeireneennns 81
8.6.2 Audit Trail and Cataloged CONENt...........uiiiiiiiiieeee et 81
8.6.3 Referential INtEQIILY......uuuuuiiiiiiiiiiiiiiie ettt ettt e e e e eeeee e e se e e e s aaeaaasaaasaserassssnssassraraennes 81
8.6.4 ErrOr HanNAIiNg. ..ottt ettt ettt e s e e e e e neesanbenbeeabennee 81
8.7 Validate Content PrOtOCOL.......oouuiiiiiiiit ettt e ettt e e e s s st e e e e e e e eaanee 82
8.7.1 ValidateContentREQUEST.........cooeeieeieeeeee s 82
I T) 01 = P T T TSRO OO PO PRPPPOPPPPPPPPPRY 82
B.7.1.2 ParamMEEIS:....ceiiiiiteitee ettt ettt e e ettt e e ettt e e ettt e e e e e ettt e e e e e e b baeeeeeeeaas 83

ST G B o U= (U1 1S U PRSP 83

I I A) Cel=Y o1 i o] = OO P PSR UPUTPPRTR 83
8.7.2 ValidateCoNtENTRESPONSE.coiiiieieeeee ettt e aebeebeenbeanee 83
B.7.2.T SYNEAX ..ttt e e e et e e s ettt e e e et e e e e e s e et e e s e anneeeeeeenas 83
I e = 11 111 (= £ PSSP PP UUPUPRN 83

8.8 Catalog CONENE PrOtOCOL..... ...ttt aataaaabaaaaeasaasasssasssssssssssssssssssssssssssssnssnnssnnnnnne 84
8.8.1 CatalogCoONtENtREQUESE.......ccii ittt e s saaeeaneesseaaasesaaranes 84
IR TR I) 01 = S U U T TSRO PO PRPRPOPPPPPPPPPRY 84
B.8.1.2 ParamMeLErS:....coiiiiieeittet ettt ettt e e ettt e e e ettt e e e e ettt e e e e e e b baeeeeeeeaas 85

S T NG B o U= (U1 1 PSPPSR 85

o T I A b Cel=Y o1 i o] = O PU U UPPPUTR 85
8.8.2 CatalogCoNtENtRESPONSE. ...cciiiiiiiiiiiie ettt ettt e et e e s e e e e e e e abreeeees 85
8821 SYNEAX ..ttt e et e e ettt e e e et e e e e et e e e e s e ana et eeeeeas 85

R I e 1= 10 111 (= £ PSPPSR 86

8.9 lllustrative Example: Canonical XML Cataloging SErVICe.........cooeveeeeeeeieeecieecineeeee e 86
8.10 Canonical XML Content Cataloging SEIVICE........uuuuuiueiiiiiiiiiiiiiiiiiieireiirrrearereerrreserrrreerrrrrerar————————. 87
8.10.1 Publishing of Canonical XML Content Cataloging ServiCe.........oooovvvviiiiiiieeiiiniiiiiieeeeeeeee. 87

9 Cooperating RegiStries SUPPOIt......ccci e 88
9.1 Cooperating REgiStries USE CaSES....cccciiiiuiiiiiiiiiiiiiiiiiteee e ettt e e ettt e e e e e s ebreeeeeeeeesenaeeee 88
9.1.17 Inter-registry ObjJECt REIEIENCES... ...ttt aeaaaeaeaseaasasasassessssnssseseennes 88
O0.1.2 FEAEIAtEA QUEIIES. ... et e e e et e e e et e e e e e et e e et e e eeanans 88
9.1.3 Local Caching of Data from Another RegiStry......ccoooeiiiiiiiiiiiiiieee e 88
9.71.4 ObJECt REIOCALION.ciiiiiiiiiiiiei et essss e e s s ssssesessesnsssasrsnsrnnes 88
9.2 ReGIStIY FOAGIAtIONS. ...ttt e e e e ettt e e e s e sttt e eeeeeseaaree 89
9.2.1 Federation Metadata.........coou ittt e sttt e e e et e e e e e e e eeas 89
0.2.2 Local Vs. Federated QUEIIES.u.iieeiii et e e e e e e e e eeans 90
9.2.2.1 LOCAI QUEIIES.c.eeteeieieeeee ettt e e e e e e e e e e e et catb b abeaeeeeeaaaaeeeeeaeaesasssssssasassaasasaaaeesesasaanssssssranens 90
0.2.2.2 FEARIated QUEBIIES.ot e et e e e e e ettt e e e e e e e et e e e e e e e et etasaeeeeeaeeaanans 90
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 7 of 129

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

9.2.2.3 Membership in Multiple FEAerations...........ocueeiiiiiiiriiiieree et 91

9.2.3 Federated Lifecycle Management Operations..........cccceeeeirreiriiriieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenens 91
9.2.4 Federations and Local Caching of Remote Data...........ccceeeiiiiiiiiiiieeeeeieiiieeeee e 91
9.2.5 Caching of Federation Metadata..............uvvviiiiiiiiiiiiiiiieeeeeeeeeee e annaees 91
9.2.6 Time Synchronization Between Registry PEErS...........ooooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeveee e 91
9.2.7 Federations and SECUITY........coiii ittt ettt e e st e e e e e e eees 92
9.2.8 Federation Lifecycle Management ProtOCOIScuivviiiiiiiiiiiiiiiiiiicieeeeeeeeeeeeeeeeeeeeeee e 92
9.2.8.7 JOINING @ FEAGTALION.eiiiiiiiiiiii ettt ettt ettt e e e e s ettt e e sttt e e eabe et e sabbeeesaabeeenas 92
9.2.8.2 Creating @ FEAEIAtION.ccciiiiiiiee ettt eie e e ee et ee e e e sttt e e e e seseabeeeeeeessssaeseeeeessssseaeeeesnssssseeeesannns 92
9.2.8.3 LeaViNg @ FEAEBIATION.......ciiiiiiiiiiie ettt ettt ettt e sttt e s bt e st e e ettt e sanbeeenebeeeeas 92
9.2.8.4 DisSOIVING @ FEARIAtION.......cciiiiiiiiie et e ettt e e e e s etbe e e e e e e e sababaeeeseessnnsaeeeaesannns 92

9.3 ObJeCt REPICALION.ottt ettt s aataaattaaesbassasaaessssassssssssassesseeaees 93
9.3.1 Use Cases for Object RePICAtION...........uuiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee et e e eeeeeeeeeeeeeeeeeseeereeereeereeeees 93
9.3.2 QUENIES AN REPIICAS. ...euuueiiiiiiiiiiiiiiiiiiitiiiitiitttttitettaeaaaasaaasasersssssssssssssassssssssssssssssseesssssrreerrrare 94
9.3.3 Lifecycle Operations ANd REPHCAS.uiiiiiiiiiiiiiiiiie ettt e e ee e e e e e e e e eneaaaeeeee s 94
9.3.4 Object Replication and Federated RegQIStrES.ccooeeiieiiiiiiiiiiiiiiiieeeeeee e e e 94
9.3.5 Creating @ LOCAl REPICA.uuuuuiiiiiiiiieiiiee ettt 94
9.3.6 Transactional REPICAtION..........iiiiiiiiiiiiiiiiieiiee et e e e ee e e e e e eeeeeeeeseeeseeeseeereeeees 94
9.3.7 Keeping REPIICAS CUIMENL........uuuuiiiiiiiiiiiiiiiiiiitiiiietiiirreaerrrerasseesressssrereearerrerrrreerrererersrrrrrreerr.. 95
9.3.8 Lifecycle Management of Local REPIICAS.........coiiiiiiiiiiiiiiiiiiieeeee e 95
9.3.9 Tracking Location of @ REPlCA.........ccooiiiiiiii s 95
9.3.10 Remote Object References to @ RepPliCa........eiiiiiiiiiiiiiiiiiicceeeee e 95
9.3.11 Removing @ LOCAl REPIICA.....ciiiiiiiiiiiiiiiiiie e 95
9.4 Object ReloCation ProtOCOL........ccooiiiiiiiiiiiiiiiieeeeee ettt vas s 95
1S I I 2 oY= | (=@ o =Tt £ U= To [= T] SR PPUPPPUPPPIRE 98

S I I B = 1= 10 1 1< (= PSPPSR 98

1S IR T B o L= (1] 4 1= T P PP PUPPPPPPPPPPPPPPPPPRY 98

1S IR Ny IR B et~ o 1 o =PRI 98
9.4.2 ACCePtODJECISREQUEST.....cccoe i 98
O.4.2.T ParamMEEIS:cei ittt ettt e ettt e ettt et e ettt e e e e ettt e e e e e aeeeeeeeaas 99

0.4, 2.2 REUUIMIS: ...ttt ettt ettt et e et e e et e e et e e ae s et e e e s e e abe bbbt bt bttt bttt ettt ettt st et e e bt e et e se e et et et et et et e ee e et e e et aeeeeee 99

e I e B (el o1 o] =SSP PUUPPURN 99
9.4.3 Object Relocation and Remote ObjectRefs...........ooooi e, 99
9.4.4 Notification of Object Relocation To ownerAtDestination................coovvvviiiiiiiiiiiiiieiiiieeieenes 100
9.4.5 Notification of Object Commit To SOUrCEREQGIStIY.....covvviiiiiiiiiiiiiiiie e 100
9.4.6 Object Ownership and Owner ReasSigNMENt.........cccooviiiiiiiiiiiiiniiiiieeee et 100
9.4.7 Object Relocation and TimMEOULS.........ceeeeeeieeiiieeeeee e aeeeanes 100
TO REGISHY SOCUIEY .o 101
TO.T SECUNLY USE CASES...uuuuiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeseeeee ettt e reeeeeaeeeeeeeeeeeateeaeaasaaaasaaaasassssesssssssssannsnnnes 101
10.71.7 Identity ManagemIENt.........uuuuuuiiieiiiiiiiiriiiieieeeneeetnennaennaennnnsnnnn s aaasaaasaaesesssesasasssassaasaaaeaaaas 101
T0.1.2 MESSAQGE SECUIMLY ceetiiiiiiittteee ettt ettt e e e e ettt e e e e e ettt eeeeseeaabbbeeeeeeeesaaaas 101
10.1.3 REPOSIHONY HEM SECUNLY .. .uviiiiiiiiiiiiiiiiieee et r e e e e e e eeeeeeeeeaaaaaaaaaaaeas 101
T0.T.4 AULNENTICATION. ... eeaeas 101
10.1.5 Authorization and ACCESS CONIOL.......ciiiiiiiiiiiiiiiii e ee e 101
LT B o [= | PSPPSR 101
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 8 of 129

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

10.2 Identity ManagemIENt.........uiiiiiiiieeeeiee ettt e et e e e eeaeeeeaeaeaasaaaaaeaaasssessessssnsnnnnnnns 102

T0.3 MESSAGE SECUILY...uuuetiiiiiiiiiiiiiteee et e e et e e e eeeeeeeeseeserettttaaararearsesaseeseeeeeeaeeaaaaaaaaaaaaaeesaasssessssssssssnsnsnes 102
T10.3.7 TranSPOIt LAYl SECUIIEY......utietiiiiiiiiiiieee ettt e e ettt e e s e e e eeeeeeenas 102
10.3.2 SOAP MESSAQE SECUNMY...eevvviiiiiriririririreitetrrrerrrrerrserrrerrr e rarerererraaennnnnnnnnnnnsnnnnnsasaeasaess 102

10.3.2.1 Request MeSSAgE SIGNAtUIE.........oieiiiiiiiiie ettt tee ettt e et ee sttt e e s ibee e e snteeeeeaeeeeesnbeeeennnee 102
10.3.2.2 ReSpoNSse MESSAQE SIgNATUIE.......eiiiieiiiiiieeee ettt e e eeeireeeeeeesesibtbeeeeseesstsnbaeeeeeesnnssaeeaeeessnssssees 102
10.3.2.3 KeYINfO REQUIFEMENES.oiiiiiieiiiiiei ettt e e e ettt e e e e ettt eeeeeeeeataabeeeeeeessnasaeeeeeesnnsnnnees 103
10.3.2.4 Message Signature Validation.............coiiiiiiiiiiee et e et e e ettt ee e e e e eareeeeeeesnnnnees 103
10.3.2.5 Message Signature EXAMPIE......ccouiiiiiiii ettt e e e e et e e e e e e e e narbeaeeeseessnsrnnees 103
10.3.2.6 Message With Repositoryltem: Signature EXample..........coooveiiiiiiiiiiiineeceeeeceeee e 104
10.3.2.7 SOAP Message Security and HTTP/S... ..ottt e et e e e e e seevvaeeaesesnnnnes 105
10.3.3 Message Confidentiality............eeeiieeciiiiiie et ere e e e e et e e e e e e etraeeeeeeeenns 106
10.3.4 Key Distribution REQUIFEMENTS.......cciiiiiiiiieiieiee e re e e e e e e eeeeeeaeeeeaaeeens 106

T0.4 AULNENTICALION. ...ttt e e e ettt e e e e ettt e e e e e ettt eeeeaeeensreaaeeeeennansreeeens 106
10.4.1 Registry as Authentication AUNOFILY.........ccooiiiiiiiiiiiiii e 106
10.4.2 External Authentication AULNOKILY...........uuiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e e e e e e e e e e e e e 107
10.4.3 Authenticated SeSSION SUPPOIT.......uuuuiiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e aeaaeas 107

10.5 Authorization and ACCESS CONIIOL.........uuuieniiiiiiiiiiiiiiitieauttattarraaaerraerrasarrrerrseeesaerseeeseensnssnnssnnssnnes 107

L0 SN0 Lo 1 = | OSSP SURR 107

11 REGISTY SAML Profil@........eiiiiiiiieeee ettt e e e e s e eeeeeeeaas 108

B S B =Y 0 1T T [T | RN 108

11.2 Use Cases for SAML Profil€..........uoiii oottt e e e e e aee e e e e e easrseee s 108
11.2.1 Registry as SSO PartiCIPant:cccooeeiiiiiiiiiiiiiieieeee e e e e e e e e e e e ee e reereeeeeaaeeeeeas 109

11.3 SAML Roles Played By REQGISIIY....ccooiiiiiiiiiiiiiieee e 109
11.3.7 Service Provider ROIE.......oouuiiiiiiiiiie ettt e e e e e 109

11.3.1.1 Service Provider REQUIFEMENES.cviiiiiiiiiiiieiiieieieieeeieee i ieve e e e aaeeaeeeaeeaaaaaaennnnannnnnnnn s anss 109

I o Yo 1 VS Y AN | I T4 (=T = Lol TR 110

11.5 Requirements for Registry SAML Profilecooooiiiiiiii e 110

R ST O @ 01T 7= (o] o FO N 111
L ST IS ol g =TT 1 AVt o = TSRS 111
11.6.2 SSO Operation — Unauthenticated HTTP ReqQUESTON.........uuuiiiiaieeeeeeeeeeeeeeeeeeeei e 111

T71.6.2.7 SCENAMO SEOUENCE.....ceeiiiiiiiiee ettt e e e e ettt e e eeeeetbeteeeeaesasaeeeeeasassssssaaeessaasssseaeesssssnssaeesesesnssssnees 112
11.6.3 SSO Operation — Authenticated HTTP ReQUESTON..........uvvviiiiiiiiiiiiieeieeeeeeeeeee e, 113
11.6.4 SSO Operation — Unuthenticated SOAP ReQUESION.......ccoeeeiiieeiieeieeeeeeeeee e, 113

B I T IS Yot o =T 4 To IS Y =T [=T [l U 114
11.6.5 SSO Operation — Authenticated SOAP ReqQUESTON..........coeevviiiiiiiiiiiiiiiereeee e 114

T71.6.5.7 SCENAMO SEUUENCE.....cceiiiiiiiee e ettt e e e e ettt ee e e e e eetbeeeeeeeeareeeeeeesesssssbeaeeeeassssssaaeaeesssssssaeesesessssssees 115
11.6.6 <samlp:AuthnRequest> Generation RUIES............coooiiiiiiiiiiiiiiiee e 116
11.6.7 <samlp:Response> Processing RUIES...........cooviiiiiiiiiiiiieeee e 116
11.6.8 MapPING SUDJECE t0 USEI....uuuiiiiiiiiiiiiiiiiiiieee et e e e e e e e e e e reaaeaaaaaaaaaeeas 116

T, 7 EXTEINQAI USEIS. ettt et e e e e e e e e e ettt e et e e e eeaeeaaaaaaaaaaaaaaaaaasasessessannaannnnnns 117

12 Native Language SUPPOIt (NLS).....oiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt eeaae e arasarsaaasaaasaaeseeasenessneessnennnsnnnen 118

T2.7 TEIMINOIOGY ettt ettt ettt e e e e ettt e e e e e ettt et e e e e e eabbebeeeeeeesaaabeeeeeeas 118

12.2 NLS and Registry ProtCol MESSAQES........cceeiieiiieiiieeee et eeeeee 118

12.3 NLS Support in REGISLIYODJECESvviiiiiiiiiiieiee et e e e ee e e e e e e e seareaeee s 118

regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 9 of 129

393
394
395
396
397
398
399
400
401
402

403
404

12.3.1 Character Set of LOCAlIZEASTIING......uuuriiiii e ee e e e e e e e e e e e e e eeeeeeeens 120

12.3.2 Language of LOCAliIZEASIING.......cuviiiiiiiiiiiiiiiiiiiiitiiieeiive e erb et eeaeeeaanas 120

12.4 NLS and RePOSItOrY IHEMScoiiiiiiiiiiiieee ettt e e e e e s ee s 120
12.4.1 Character Set of REPOSIHOrY HEMS......ccoeiiieeeeeeeee e e e e e e e e e e e e e e 120
12.4.2 Language of REPOSIHOrY [HEMS.......uviiiiiiiieiiiiee e e e e e et e e e e e e 120

LIS R o]) (o] 4= 1o Lol TP PP RUPPPPPPPRN 121
13.1 CoNfOrmMaNnCE Profil@S.....ooeiiiiiiiieeeeeeeeeee ennnnnes 121
T3.2 FEAIUIE IMALIX.cuutee ettt e e e e e e e et e e e e e e e e e e ae e eeeeeeaaabtaaeeeaeeessarnnannns 121
B o o = (=T o Tl TN 125
T14.1 NOrMAtiVE REFEIENCES......vviiiiiiieieeeeeeee e e e e e e e e e e e e 125
0) (oY 4o = 1Y/ TSRS U U 127
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 10 of 129

405

lllustration Index

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Simplified View of ebXML Registry Architecture............ccooviiiiiiiiiniiieeeee e 16
Registry Protocol Request-Response PatterN...............vvviiiiiiiiiieiiiieiieeeeeeeeeeeeeeee e 18
Example Registry Package Hi€rarChy...........cccoooiieeiioiicieeeeeetteeee e 31
Example of @ DireCtOry LIStING.....cuiiiiiieiiiei et e e e e e e e e e e e e eeeeeeeaeaaeeeeeeesnnns 32
ISY0] o]0 0TI @] o] 1Yot t31 = (o) (o oo | F PSPPSR 34
Update ObJectS ProtOCOL......couueiiiiiiiiieee ettt e e e e e 37
APProve ObJECES ProtOCOL.........uuuiiiiiiiiiiieieeee e 38

Figure 8: Deprecate ObJjeCts ProtOCOL.........c.iiiiiiiiiieeeiiiiiee ettt e e e et e e e s e sneaaeeeeeens 40
Figure 9: Undeprecate ObjectS ProtOCOL.........uuiiiiiiiiiiiiieee eeans 41
Figure 10: RemMOVE ODbJECES PrOtOCOL.........uuuiiiiiiiiiiiiiiiiiiieee e e e e e ee e e e e e e e e e e e e e e e e e e ee e e s e se e e e s e esnnes 43
Figure 11: Ad HOC QUEIY ProtOCOL......ciiiiiiiiiiiieee et e e e e e e e e e e e e aeeeaaeaeeeaaaeaaeeeeessnnns 50
Figure 12: Filter Type HI€rarChy.......ccooi ittt e e e e 60
Figure 13: Content Validation SEIVICE.ccoiiiiiiiiiie ettt e ettt e e s eeeeas 73
Figure 14: Content Cataloging SEIVICE.coiuiiiiiee ettt ettt e e ettt e e e e et eeeesessetbaeeeesesnssseeeeeans 74
Figure 15: Content Management Service: Inline Invocation Model..............ccovvvviiiiiieeieiiiiiiiienn 76
Figure 16: Content Management Service: Decoupled Invocation Model..........ccooeeeeieeiiieeeieecciiicccceeeennn 77
Figure 17: Cataloging Service CoNfigUIAtioN...........ciiiiiiiiiiiiiieeiieeeeeeeeeeeeee e e e e e e e e e e e e 80
Figure 18: Validate Content ProtOCOL..............iiiiiiiiiiiiiiiiie ittt e e e 82
Figure 19: Catalog Content ProtOCOL.......ccciiiiiiiiiiiiieeeeet et e eeee e e 84

Figure 20:

Example of CPP cataloging using Canonical XML Cataloging Service.........cccccoecuvveeeeeennnnnenn. 86

Figure 21: Inter-registry ObjeCt REfEIENCES.ccooiiiiiieeeeee e e e e e e e e e e e e e e e e e e 88
Figure 22: Registry FEAEIAtIONS........cceeeeeiit ettt e e e e e e e e e e e e e e et arr e s reareeeeeeeeaaaeeaaaaseseessnnes 89
Figure 23: Federation Metadata EXamPIE........ccuiiiiiiiiiiiieeiee ettt ee ennnes 90
Figure 24: Object REPICAION.ccoiiiiiiiiiiee ettt e e e e eeeeeeas 93
Figure 25: ObJeCt REIOCAION. ... i ettt e e e e eeeeeeeas 96
Figure 26: Relocate ODbJECES ProtOCOL........ciiiiiiiiiiiiee ettt et e e e e e e e e e ennebaeeeeeeens 97
Figure 27: SAML SSO TYPICAl SCENANIO.......uuuuiuiiiiiiitiiitiiiiiitiiiiiaiiiannennnssssaassaaasaaasaaaaaaasaaaasaaaaaaaaaens 109
Figure 28: SSO Operation — Unauthenticated HTTP REQUESION...........ccevvviiiriiiiiiieiiiiiiiinienineseeeeaeeeenns 112
Figure 29: SSO Operation - Unauthenticated SOAP REQUESION.........uuvuuuiiiiiiiiieeeeeeeeeeeeeeeeeiiiiae e 114
Figure 30: SSO Operation - Authenticated SOAP REQUESION.........ciiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeee e, 115
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 11 of 129

406
407
408

409
410
411
412

413
414

415
416

417

418

419
420

421

422
423
424

425
426
427

428

429
430

431

432
433

434

435
436
437
438
439

440

441

442

443
444

1 Introduction
An ebXML Registry is an information system that securely manages any content type and the
standardized metadata that describes it.

The ebXML Registry provides a set of services that enable sharing of content and metadata between
organizational entities in a federated environment. An ebXML Registry may be deployed within an
application server, a web server or some other service container. The registry MAY be available to clients
as a public, semi-public or private web site.

This document defines the services provided by an ebXML Registry and the protocols used by clients of
the registry to interact with these services.

A separate document, ebXML Registry: Information Model [ebRIM], defines the types of metadata and
content that can be stored in an ebXML Registry.

1.1 Audience

The target audience for this specification is the community of software developers who are:
« Implementers of ebXML Registry Services
« Implementers of ebXML Registry Clients

1.2 Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in IETF
RFC 2119 [RFC2119].

The term “repository item” is used to refer to content (e.g., an XML document or a DTD) that resides in a
repository for storage and safekeeping. Each repository item is described by a RegistryObject instance.
The RegistryObject catalogs the Repositoryltem with metadata.

1.3 Notational Conventions

Throughout the document the following conventions are employed to define the data structures used. The
following text formatting conventions are used to aide readability:

1.3.1 UML Diagrams

Unified Modeling Language [UML] diagrams are used as a way to concisely describe concepts. They are
not intended to convey any specific Implementation or methodology requirements.

1.3.2 Identifier Placeholders

Listings may contain values that reference ebXML Registry objects by their id attribute. These id values
uniquely identify the objects within the ebXML Registry. For convenience and better readability, these key
values are replaced by meaningful textual variables to represent such id values.

For example, the placeholder in the listing below refers to the unique id defined for an example Service
object:

<rim:Service id="${EXAMPLE SERVICE ID}">

1.3.3 Constants

Constant values are printed in the Couri er New font always, regardless of whether they are defined
by this document or a referenced document.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 12 of 129

445

446
447
448

449

450
451
452

453

454

455
456

457

458
459
460
461
462

463

464

465
466
467
468
469

470
471
472
473

474
475

1.3.4 Bold Text

Bold text is used in listings to highlight those aspects that are most relevant to the issue being
discussed. In the listing below, an example value for the contentLocator slot is shown in italics if
that is what the reader should focus on in the listing:

<rim:Slot name="urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator">

</rim:Slot>

1.3.5 Example Values

These values are represented in jtalic font. In the listing below, an example value for the
contentLocator slot is shown in italics:

<rim:Slot name="urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator">
<rim:ValueList>
<rim:Value>http://example.com/myschema.xsd</rim:Value>
</rim:ValueList>
</rim:Slot>

1.4 XML Schema Conventions

This specification uses schema documents conforming to W3C XML Schema [Schema1] and normative
text to describe the syntax and semantics of XML-encoded objects and protocol messages. In cases of
disagreement between the ebXML Registry schema documents and schema listings in this specification,
the schema documents take precedence. Note that in some cases the normative text of this specification
imposes constraints beyond those indicated by the schema documents.

Conventional XML namespace prefixes are used throughout this specification to stand for their
respective namespaces as follows, whether or not a namespace declaration is present in the example.
The use of these namespace prefixes in instance documents is non-normative. However, for consistency
and understandability instance documents SHOULD use these namespace prefixes.

1.4.1 Schemas Defined by ebXML Registry

Prefix H XML Namespace H Comments

rim: urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0 This is the Registry Information Model
namespace [ebRIM]. The prefix is
generally elided in mentions of Registry
Information Model elements in text.

rs: urn:oasis:names:tc:ebxml-regrep:xsd:rs:3.0 This is the ebXML Registry namespace
that defines base types for registry
service requests and responses [ebRS].
The prefix is generally elided in mentions
of ebXML Registry protocol-related
elements in text.

query: urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0 This is the ebXML Registry query
namespace that is used in the query
protocols used between clients and the
QueryManager service [ebRS].

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 13 of 129

Prefix H XML Namespace H Comments

lcm: urn:oasis:names:tc:ebxml-regrep:xsd:lcm:3.0 This is the ebXML Registry Life Cycle
Management namespace that is used in
the life cycle management protocols used
between clients and the
LifeCycleManager service [ebRS].

cms @ urn:oasis:names:tc:ebxml-regrep:xsd:cms:3.0 This is the ebXML Registry Content
Management Services namespace that is
used in the content management
protocols used between registry and
pluggable content managent services

[ebRS].
476
477 1.4.2 Schemas Used By ebXML Registry
478
Prefix “ XML Namespace H Comments
saml: urn:oasis:names:tc:SAML:2.0:assertion This is the SAML V2.0 assertion

namespace [SAMLCore]. The prefix is
generally elided in mentions of SAML
assertion-related elements in text.

samlp: urn:oasis:names:tc:SAML:2.0:protocol This is the SAML V2.0 protocol
namespace [SAMLCore]. The prefix is
generally elided in mentions of XML
protocol-related elements in text.

ecp: urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp This is the SAML V2.0 Enhanced Client
Proxy profile namespace, specified in this
document and in a schema [SAMLECP-

xsd].

ds: http://www.w3.0rg/2000/09/xmldsig# This is the XML Signature namespace
[XMLSig].

xenc: http://www.w3.0rg/2001/04/xmlenc# This is the XML Encryption namespace
[XMLEnNC].

SOAP- http://schemas.xmlsoap.org/soap/envelope This is the SOAP V1.1 namespace

ENV: [SOAP1.1].

paos: urn:liberty:paos:2003-08 This is the Liberty Alliance PAOS (reverse

SOAP) namespace.

xsi: http://www.w3.0rg/2001/XMLSchema-instance This namespace is defined in the W3C
XML Schema specification [Schema1] for
schema-related markup that appears in
XML instances.

wsse: http://docs.oasis-open.org/wss/2004/01/oasis- This namespace is defined by the Web
200401-wss-wssecurity-secext-1.0.xsd Services Security: SOAP Message
Security 1.0 specification [WSS-SMS]. It
is used by registry to secure soap
message communication.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 14 of 129

479

480

481

482

483

484
485
486

487
488

489
490
491

492
493

494

495
496

497

498

Prefix H XML Namespace H Comments

wsu: http://docs.oasis-open.org/wss/2004/01/oasis- This namespace is defined by the Web

200401-wss-wssecurity-utility-1.0.xsd Services Security: SOAP Message
Security 1.0 specification [WSS-SMS]. It

is used by registry to secure soap
message communication.

1.5 Registry Actors

This section describes the various actors who interact with the registry.

Actor Description

Registry Operator An organization that operates an ebXMI Registry and
makes it's services available.

Registry Administrator A privileged user of the registry that is responsible for
performing administrative tasks necessary for the
ongoing operation of the registry. Such a user is
analogous to a “super user” that is authorized to perform

any action.

Registry Guest A user of the registry whose identity is not known to the
registry. Such a user has limited privileges within the
registry.

Registered User A user of the registry whose identity is known to the

registry as an authorized user of the registry.

Submitter A user that submits content and or metadata to the
registry. A Submitter MUST be a Registered User.

Registry Client A software program that interacts with the registry using
registry protocols.

1.6 Registry Use Cases

Once deployed, the ebXML Registry provides generic content and metadata management services and
as such supports an open-ended and broad set of use cases. The following are some common use
cases that are being addressed by ebXML Registry.

» Web Services Registry: publish, management, discovery and reuse of web service discriptions in
WSDL, ebXML CPPA and other forms.

» Controlled Vocabulary Registry: Enables publish, management, discovery and reuse of controlled
vocabularies including taxonomies, code lists, ebXML Core Components, XML Schema and UBL
schema.

« Business Process Registry: Enables publish, management, discovery and reuse of Business Process
specifications such as ebXML BPSS, BPEL and other forms.

« Electronic Medical Records Repository
» Geological Information System (GIS) Repository that stores GIS data from sensors

1.7 Registry Architecture

The following figure provides a simplified view of the architecture of the ebXML Registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 15 of 129

499

501

502
503
504

505
506
507

508

509
510
511

512

513

514
515
516

517
518

519
520

521

522

Web Browser| | Registry Client | | Registry Client

Client API
(e.g. JAXR API)
Protcol Bindings HTTP| |SOAP SOAP
Service Interfaces QueryManager LifeCycleManager
Anthentication
Authorization
Metadata Registry Content Repository

Figure 1: Simplified View of ebXML Registry Architecture

1.71 Registry Clients

A Registry Client is a software program that interacts with the registry using registry protocols. The
Registry Client MAY be a Graphical User Interface (GUI), software service or agent. The Registry Client
typically accesses the registry using SOAP 1.1 with Attachments [SwA] protocol.

A Registry Client may run on a client machine or may be a web tier service running on a server and may
accessed by a web browser. In either case the Registry Client interacts with the registry using registry
protocols.

1.7.1.1 Client API

A Registry client MAY access a registry interface directly. Alternatively, it MAY use a registry client API
such as the Java API for XML Registries [JAXR] to access the registry. Client APIs such as [JAXR]
provide programming convenience and are typically specific to a programming language.

1.7.2 Registry Service Interfaces

The ebXML Registry consists of the following service interfaces:

- A LifecycleManager interface that provides a collection of operations for end-to-end lifecycle
management of metadata and content within the registry. This includes publishing, update, approval
and deletion of metadata and content.

« A QueryManager interface that provides a collection of operations for the discovery and retrieval of
metadata and content within the registry.

[RS-Interface-WSDL] provides an abstract (protocol neutral) definition of these Registry Service
interfaces in WSDL format.

1.7.3 Service Interface: Protocol Bindings

This specification defines the following concrete protocol binding for the abstract service interfaces of the

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 16 of 129

523

524
525
526

527
528

529

530

531
532
533
534

535

536
537
538
539

ebXML Registry:

» SOAP Binding that allows a Registry Client to access the registry using SOAP 1.1 with
Attachments [SwA]. [RS-Bindings-WSDL] defines the binding of the abstract Registry Service
interfaces to the SOAP protocol in WSDL format.

« HTTP Binding that allows a Web Browser client to access the registry using HTTP 1.1
protocol.

Additional bindings may be defined in the future as needed by the community.

1.7.4 Authentication and Authorization

A Registry Client SHOULD be authenticated by the registry to determine the identity associated with
them. Typically, this is the identity of the user associated with the Registry Client. Once the registry
determines the identity it MUST perform authorization and access control checks before permitting the
Registry Client's request to be processed.

1.7.5 Metadata Registry and Content Repository

An ebXML Registry is both a registry of metadata and a repository of content. A typical ebXML Registry
implementation uses some form of persistent store such as a database to store its metadata and content.
Architecturally, registry is distinct from the repository. However, all access to the registry as well as
repository is through the operations defined by the Registry Service interfaces.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 17 of 129

540

541
542

543

544
545
546
547

549

550
551

552
553
554
555
556
557

558

559

560

561
562
563
564
565
566
567

2 Registry Protocols

This chapter introduces the registry protocols supported by the registry service interfaces. Specifically it
introduces the generic message exchange patterns that are common to all registry protocols.

2.1 Requests and Responses

Specific registry request and response messages derive from common types defined in XML Schema in
[RR-RS-XSD]. The Registry Client sends an element derived from RegistryRequestType to a registry,
and the registry generates an element adhering to or deriving from RegistryResponseType, as shown
next.

Reqgistry Client Reqistry Service Interface

I
! <rs EegisthFEequestType -

p—— T

<rs RegistrfesponseTyie |_\.|

Figure 2: Registry Protocol Request-Response Pattern

Throughout this section, text mentions of elements and types are indicated with a namespace prefix. The
namespace prefix conventions are defined in the “Introduction” chapter.

Each registry request is atomic and either succeeds or fails in entirety. In the event of success, the
registry sends a RegistryResponse with a status of “Success” back to the client. In the event of failure,
the registry sends a RegistryResponse with a status of “Failure” back to the client. In the event of an
immediate response for an asynchronous request, the registry sends a RegistryResponse with a status
of “Unavailable” back to the client. Failure occurs when one or more Error conditions are raised in the
processing of the submitted objects. Warning messages do not result in failure of the request.

2.1.1 RegistryRequestType

The RegistryRequestType type is used as a common base type for all registry request messages.

2.1.1.1 Syntax:

<complexType name='"RegistryRequestType">
<sequence>
<!-- every request may be extended using Slots. -->
<element maxOccurs="1" minOccurs="0" name="RequestSlotList"
type="rim:SlotListType" />
</sequence>
<attribute name="id" type="anyURI" use="required'"/>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 18 of 129

568
569
570
571
572

573

574
575
576

577
578
579
580

581
582
583
584
585

586

587

588

589

590

591
592

593
594

595
596

597
598

599
600

601
602
603

604

605
606
607
608

609

<!--Comment may be used by requestor to describe the request. Used
in VersionInfo.comment-->
<attribute name='"comment" type="string" use="optional"/>
</complexType>
<element name='"RegistryRequest" type="tns:RegistryRequestType'/>

2.1.1.2 Parameters:

= comment: This parameter allows the requestor to specify a string value that describes
the action being performed by the request. This parameter is used by the “Registry
Managed Version Control” feature of the registry.

= id: This parameter specifies a request identifier that is used by the corresponding
response to correlate the response with its request. It MAY also be used to correlate a
request with another related request. The value of the id parameter MUST abide by the
same constraints as the value of the id attribute for the <rim:ldentifiableType> type.

= RequestSlotList: This parameter specifies a collection of Slot instances. A
RegistryReugestType MAY include Slots as an extensibility mechanism that provides a
means of adding additional attributes to the request in form of Slots. The use of registry
implementation specific slots MUST be ignored silently by a registry that does not
support such Slots and MAY not be interoperable across registry implementations.

2.1.1.3 Returns:

All RegistryRequests return a response derived from the common RegistryResponseType base type.

21.1.4 Exceptions:

The following exceptions are common to all registry protocol requests:

= AuthorizationException: Indicates that the requestor attempted to perform an
operation for which he or she was not authorized.

= InvalidRequestException: Indicates that the requestor attempted to perform an
operation that was semantically invalid.

= SignatureValidationException: Indicates that a Signature specified for the request
failed to validate.

= TimeoutException: Indicates that the processing time for the request exceeded a
registry specific limit.

= UnsupportedCapabilityException: Indicates that this registry did not support the
capability required to service the request.

In addition to above exceptions there are additional exceptions defined by [WSS-SMS] that a registry
protocol request MUST return when certain errors occur during the processing of the <wsse:Security>
SOAP Header element.

2.1.2 RegistryRequest

RegistryRequest is an element whose base type is RegistryRequestType. It adds no additional elements
or attributes beyond those described in RegistryRequestType. The RegistryRequest element MAY be
used by a registry to support implementation specific registry requests.

2.1.3 RegistryResponseType

The RegistryResponseType type is used as a common base type for all registry responses.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 19 of 129

610

611
612
613
614
615
616
617
618
619
620
621
622
623

624

625
626
627
628
629
630

631
632

633

634
635
636

637
638
639

640
641

642
643
644
645
646

647
648
649

650

651
652
653

654

655
656

2.1.3.1 Syntax:

<complexType name='"RegistryResponseType">
<sequence>
<!-- every response may be extended using Slots. -->
<element maxOccurs="1" minOccurs="0" name="ResponseSlotList"
type="rim:SlotListType"/>
<element minOccurs="0" ref="tns:RegistryErrorList"/>

</sequence>
<attribute name="status'" type="rim:referenceURI" use="required"/>
<!-- id is the request if for the request for which this is a
response -->
<attribute name='"requestId" type="anyURI" use="optional"/>
</complexType>

<element name="RegistryResponse" type="tns:RegistryResponseType"/>

2.1.3.2 Parameters:

= status: The status attribute is used to indicate the status of the request. The value of the
status attribute MUST be a reference to a ClassificationNode within the canonical
ResponseStatusType ClassificationScheme as described in [ebRIM]. A Registry MUST
support the status types as defined by the canonical ResponseStatusType
ClassificationScheme. The canonical ResponseStatusType ClassificationScheme may
be extended by adding additional ClassificationNodes to it.

The following canonical values are defined for the ResponseStatusType
ClassificationScheme:

* Success - This status specifies that the request was successful.

* Failure - This status specifies that the request encountered a failure. One or more
errors MUST be included in the RegistryErrorList in this case or returned as a SOAP
Fault.

* Unavailable — This status specifies that the response is not yet available. This may
be the case if this RegistryResponseType represents an immediate response to an
asynchronous request where the actual response is not yet available.

= requestld: This parameter specifies the id of the request for which this is a response. It
matches value of the id attribute of the corresponding RegistryRequestType.

= ResponseSlotList: This parameter specifies a collection of Slot instances. A
RegistryResponseType MAY include Slots as an extensibility mechanism that provides a
means of adding dynamic attributes in form of Slots. The use of registry implementation
specific slots MUST be ignored silently by a Registry Client that does not support such
Slots and MAY not be interoperable across registry implementations.

= RegistryErrorList. This parameter specifies an optional collection of RegistryError
elements in the event that there are one or more errors that were encountered while the
registry processed the request for this response. This is described in more detail in 6.9.4.

2.1.4 RegistryResponse

RegistryResponse is an element whose base type is RegistryResponseType. It adds no additional
elements or attributes beyond those described in RegistryResponseType. RegistryResponse is used by
many registry protocols as their response.

2.1.5 RegistryErrorList

A RegistryErrorList specifies an optional collection of RegistryError elements in the event that there are
one or more errors that were encountered while the registry processed a request.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 20 of 129

657

658
659

661
662
663
664
665
666
667
668
669

670

671
672
673

674
675
676
677

678

679
680

681

682
683
684
685
686
687
688
689

691
692

694
695

696

697
698
699
700

701
702
703

704
705

2.1.5.1 Syntax:

<element name="RegistryErrorList">
<complexType>
<complexContent>
<restriction base="{http://www.w3.0rg/2001/XMLSchema}anyType">
<sequence>
<element ref="rs:RegistryError" maxOccurs="unbounded'"/>
</sequence>
<attribute name="highestSeverity" type="rim:referenceURI" />
</restriction>
</complexContent>
</complexType>
</element>

2.1.5.2 Parameters:

= highestSeverity: This parameter specifies the ErrorType for the highest severity
RegistryError in the RegistryErrorList. Values for highestSeverity are defined by
ErrorType in .

= RegistryError: A RegistryErrorList has one or more RegistryErrors. A RegistryError
specifies an error or warning message that is encountered while the registry processes a
request. RegistryError is defined in 2.1.6.

2.1.6 RegistryError

A RegistryError specifies an error or warning message that is encountered while the registry processes a
request.

2.1.6.1 Syntax:

<element name="RegistryError'">
<complexType>
<simpleContent>
<extension base='"string'">
<attribute name='"codeContext" type="string" use="required"/>
<attribute name="errorCode" type='"string" use="required"/>
<attribute default="urn:oasis:names:tc:ebxml-
regrep:ErrorSeverityType:Error" name="severity" type='"rim:referenceURI"
/>

<attribute name="location" type='"string" use="optional"/>
</extension>
</simpleContent>
</complexType>
</element>

2.1.6.2 Parameters:

= codeContext: This attribute specifies a string that indicates contextual text that provides
additional detail to the errorCode. For example, if the errorCode is
InvalidRequestException the codeContext MAY provide the reason why the request was
invalid.

= errorCode: This attribute specifies a string that indicates the error that was encountered.
Implementations MUST set this attribute to the Exception or Error as defined by this
specification (e.g. InvalidRequestException).

= severity: This attribute indicates the severity of error that was encountered. The value of
the severity attribute MUST be a reference to a ClassificationNode within the canonical

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 21 of 129

706
707
708
709

710
711

712
713
714

715
716
717
718

719
720
721

ErrorSeverityType ClassificationScheme as described in [ebRIM]. A Registry MUST
support the error severity types as defined by the canonical ErrorSeverityType
ClassificationScheme. The canonical ErrorSeverityType ClassificationScheme may be
extended by adding additional ClassificationNodes to it.

The following canonical values are defined for the ErrorSeverityType
ClassificationScheme:

» Error— An Error is a fatal error encountered by the registry while processing a
request. A registry MUST return a status of Failure in the RegistryResponse for a
request that encountered Errors during its processing.

» Warning — A Warning is a non-fatal error encountered by the registry while
processing a request. A registry MUST return a status of Success in the
RegistryResponse for a request that only encountered Warnings during its
processing and encountered no Errors.

= Jocation: This attribute specifies a string that indicated where in the code the error
occured. Implementations SHOULD show the stack trace and/or, code module and line
number information where the error was encountered in code.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 22 of 129

722

723
724
725

726
727
728

729

730

731
732

733
734
735
736
737
738

739

740

741
742
743
744
745
746

747

748
749
750
751
752
753
754
755

756

757
758
759

760

761
762
763
764
765
766
767
768

769

770

3 SOAP Binding

This chapter defines the SOAP protocol binding for the ebXML Registry service interfaces. The SOAP
binding enables access to the registry over the SOAP 1.1 with Attachments [SwA] protocol. The complete
SOAP Binding is described by the following WSDL description files:

» ebXML Registry Service Interfaces: Abstract Definition [RR-INT-WSDL]
» ebXML Registry Service Interfaces: SOAP Binding [RR-SOAPB-WSDL]
- ebXML Registry Service Interfaces: SOAP Service [RR-SOAPS-WSDL]

3.1 ebXML Registry Service Interfaces: Abstract Definition

In [RR-INT-WSDL], each registry Service Interface is mapped to an abstract WSDL portType as follows:
+ A portType is defined for each Service Interface:

<portType name='"QueryManagerPortType'>

</portType>
<portType name="LifeCycleManagerPortType'">

</portType>

» Within each portType an operation is defined for each protcol supported by the service interafce:

<portType name="QueryManagerPortType'>
<operation name="submitAdhocQuery">
</operation>

</portType>

» Within each operation the the request and response message for the corresponding protocol are
defined as input and output for the operation:
<portType name='"QueryManagerPortType'">
<operation name='"submitAdhocQuery">
<input message="tns:msgAdhocQueryRequest"/>
<output message="tns:msgAdhocQueryResponse"/>
</operation>
</portType>

- For each message used in an operation a message element is defined that references the element
corresponding to the registry protocol request or response message from the XML Schema for the
registry service interface [RR-LCM-XSD], [RR-QM-XSD]:

<message name="msgAdhocQueryRequest'>
<part element='"query:AdhocQueryRequest"
name="partAdhocQueryRequest" />
</message>
<message name="msgAdhocQueryRespone'>
<part element='"query:AdhocQueryResponse"
name="partAdhocQueryResponse" />
</message>

3.2 ebXML Registry Service Interfaces SOAP Binding
In [RR-SOAPB-WSDL], a SOAP Binding is defined for the registry service interfaces as follows:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 23 of 129

771
772

773
774

775
776

777
778

779

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

796

797

798
799

800
801

802
803
804
805
806

807

808

809
810

812
813
814
815
816
817
818

819

820

821
822
823

» For each portType corresponding to a registry service interface and defined in [RR-INT-WSDL] a
<binding> element is defined which has name <ServicelnterfaceName>Binding

» The <binding> element references the portType defined in [RR-INT-WSDL] via its type attribute
» The <soap:binding> extension element uses the “document” style

» An operation element is defined for each protocol defined for the service interface. The operation
name relates to the protocol request message.

« The <soap:operation> extension element has <input> and <output> elements that have <soap:body>
elements with use="literal".

<binding name="QueryManagerBinding"
type="interfaces:QueryManagerPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name='"submitAdhocQuery">
<soap:operation soapAction='"urn:oasis:names:tc:ebxml-
regrep:wsdl:registry:bindings:3.0:QueryManagerPortType#submitAdhocQuery"
/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

3.3 ebXML Registry Service Interfaces SOAP Service Template

In [RR-SOAPS-WSDL], a non-normative template is provided for a WSDL Service that uses the SOAP
Binding from the registry service interfaces as follows:

» Asingle service element defines the concrete ebXML Registry SOAP Service. The template uses the
name “ebXMLRegistrySOAPService”.

- The service element includes a port definitions, where each port corresponds with one of the service
interfaces defined for the registry. Each port includes an HTTP URL for accessing that port specified
by the location attribute of the <soap:address> element. The HTTP URL to the SOAP Service MUST
conform to the pattern <base URL>/soap where <base URL> MUST be the same as the value of the
home attribute of the instance of the Registry class defined by [ebRIM] that represents this registry.

» Each port definition also references a SOAP binding element described in the previous section.

<service name='"ebXMLRegistrySOAPService">
<port binding="bindings:QueryManagerBinding"
name="QueryManagerPort">
<soap:address location="http://your.server.com/soap'/>
</port>
<port binding="bindings:LifeCycleManagerBinding"
name="LifeCycleManagerPort">
<soap:address location="http://your.server.com/soap" />
</port>
</service>

3.4 Mapping of Exception to SOAP Fault

The registry protocols defined in this specification include the specification of Exceptions that a registry
MUST return when certain exceptional conditions are encountered during the processing of the protocol
request message. A registry MUST return Exceptions specified in registry protocol messages as SOAP

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 24 of 129

824
825

826
827

Faults as described in this section. In addition a registry MUST conform to [WSI-BP] when generating the
SOAP Fault. A registry MUST NOT sign a SOAP Fault message it returns.

The following table provides details on how a registry MUST map exceptions to SOAP Faults.

SOAP Fault Description Example
Element

faultcode The faultCode MUST be present and MUST | urn:oasis:names:tc:ebxml-
be the name of the Exception qualified by regrep:rs:exception: ObjectNot
the URN prefix: FoundException
urn:oasis:names:tc:ebxml-
regrep:rs:exception:

faultstring The faultstring MUST be present and Object with id
SHOULD provide some information urn:freebxml:registry:demoDB: Extrinsic
explaining the nature of the exception. Object:zeusDescription not found in

registry.

detail At least one detail element MUST be
present. The detail element SHOULD
include the stack trace and/or, code module
and line number information where the
Exception was encountered in code. If the
Exception has nested Exceptions within it
then the registry SHOULD include the
nested exceptions as nested detail elements
within the top level detail element.

faultactor At least one faultactor MUST be present. http://example.server.com.:8080/oma
The first faultactor MUST be the base URL | r/registry
of the registry.

Table 1: Mapping a Registry Exception to SOAP Fault
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved.

Page 25 of 129

828

829
830

831
832

833
834
835
836

837
838

839
840

841

842

843
844
845
846

847

848
849
850
851

852
853

854

855

4 HTTP Binding

This chapter defines the HTTP protocol binding for the ebXML Registry abstract service interfaces. The
HTTP binding enables access to the registry over the HTTP 1.1 protocol.

The HTTP interface provides multiple options for accessing RegistryObjects and Repositoryltems via the
HTTP protocol. These options are:

« RPC Encoding URL: Allows client access to objects via a URL that is based on encoding a
Remote Procedure Call (RPC) to a registry interface as an HTTP protocol request.

e Submitter Defined URL: Allows client access to objects via Submitter defined URLSs.

» File Path Based URL: Allows clients access to objects via a URL based upon a file path derived
from membership of object in a RegistryPackage membership hierarchy.

Each of the above methods has its advantages and disadvantages and each method may be better
suited for different use cases as illustrated by table below:

HTTP Acceess Method Advantages Disadvantages
RPC Encoding URL e The URL is constant and e The URL is long and not
deterministic human-friendly to
e Submitter need not remember
explicitly assign URL
Submitter Defined URL » Very human-friendly URL » Submitter must explicitly
e Submitter may assign any assign URL
URL * Requires additional
e The URL is constant and resources in the registry
deterministic
File Path Based URL e Submitter need not e The URL is NOT
explicitly assign URL constant and deterministic
* Intuitive URL that is based * Requires placing objects
upon a familiar file / folder as members in
metaphor RegistryPackages

Table 2: Comparison of HTTP Access Methods

4.1 HTTP Interface URL Pattern

The HTTP URLs used by the HTTP Binding MUST conform to the pattern <base URL>/http/<url suffix>
where <base URL> MUST be the same as the value of the home attribute of the instance of the Registry
class defined by [ebRIM] that represents this registry. The <url suffix> depends upon the HTTP Access
Method and various request specific parameters that will be described later in this chapter.

4.2 RPC Encoding URL

The RPC Encoding URL method of the HTTP interface maps the operations defined by the abstract
registry interfaces to the HTTP protocol using an RPC style. It defines how URL parameters are used to
specify the interface, method and invocation parameters needed to invoke an operation on a registry
interface such as the QueryManager interface.

The RPC Encoding URL method also defines how an HTTP response is used to carry the response
generated by the operation specified in the request.

421 Standard URL Parameters
The following table specifies the URL parameters supported by RPC Encoding URLs. A Registry MAY

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 26 of 129

856
857
858

859

860
861
862
863

864

865

866
867

868

869
870

871
872
873

874

875

876
877

878

implement additional URL parameters in addition to these parameters. Note that the URL Parameter
names MUST be processed by the registry in a case-insensitive manner while the parameter values
MUST be processed in a case-sensitive manner.

URL Parameter Required Description Example
interface YES Defines the service interface QueryManager
that is the target of the request.
method YES Defines the method getRegistryObject

(operation)within the interface
that is the target of the request.

param-<key> NO Defines named parameters to |param-id=
be passed into a method call. |urn:freebxml:registry:demoD
Note that some methods B:ExtrinsicObject:zeusDescri
require specific parameters. ption

Table 3: Standard URL Parameters

4.2.2 QueryManager Binding

A registry MUST support a RPC Encoded URL HTTP binding to QueryManager service interface. To
specify the QueryManager interface as its target, the interface parameter of the URL MUST be
“QueryManager.” In addition the following URL parameters are defined by the QueryManager HTTP
Interface.

Method Parameter Return Value HTTP Request Type
getRegistryObject id The RegistryObject that |GET
matches the specified id.
getRepositoryltem id The Repositoryltem that |GET
matches the specified id.
Note that a

Repositoryltem may be
arbitrary content (e.g. a
GIF image).

Table 4: RPC Encoded URL: Query Manager Methods

Note that in the examples that follow, name space declarations are omitted to conserve space. Also note
that some lines may be wrapped due to lack of space.

4.2.2.1 Sample getRegistryObject Request

The following example shows a getRegistryObject request.

GET /http?interface=QueryManager&method=getRegistryObject¶m-
id= urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription
HTTP/1.1

4.2.2.2 Sample getRegistryObject Response

The following example shows an ExtrinsicObject, which is a concrete sub-class of RegistryObject being
returned as a response to the getRegistryObject method invocation.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 27 of 129

879
880
881
882
883
884
885
886
887
888
889

890

891

892
893

894
895
896

897

898

899
900

901

902
903
904
905
906
907
908
909

910

911

912
913
914

915

916
917
918
919
920
921
922

923
924

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 555

<?xml version="1.0"?>

<ExtrinsicObject
id =

"urn:freebxml :registry:demoDB:ExtrinsicObject:zeusDescription"
objectType="${OBJECT TYPE}">

</ExtrinsicObject>

4.2.2.3 Sample getRepositoryltem Request

The following example shows a getRepositoryltem request.

GET /http?interface=QueryManager&method=getRepositoryIltem¶m-
id= urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription
HTTP/1.1

4.2.2.4 Sample getRepositoryltem Response

The following example assumes that the repository item was a Collaboration Protocol Profile as defined
by [ebCPP]. It could return any type of content (e.g. a GIF image).

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 555

<?xml version="1.0"7?>
<CollaborationProtocolProfile>

</CollaborationProtocolProfile>

4.2.3 LifeCycleManager HTTP Interface

The RPC Encoded URL mechanism of the HTTP Binding does not support the LifeCycleManager
interface. The reason is that the LifeCycleManager operations require HTTP POST which is already
supported by the SOAP binding.

4.3 Submitter Defined URL

A Submitter MAY specify zero or more Submitter defined URLSs for a RegistryObject or Repositoryltem.
These URLs MAY then be used by clients to access the object using the GET request of the HTTP
protocol. Submitter defined URLs serve as an alternative to the RPC Encoding URL defined by the HTTP
binding for the QueryManager interface. The benefit of Submitter defined URLSs is that objects are made
accessible via a URL that is meaningful and memorable to the user. The cost of Submitter defined URLs
is that the Submitter needs to specify the Submitter defined URL and that the Submitter defined URL
takes additional storage resources within the registry.

Consider the examples below to see how Submitter defined URLs compare with the URL defined by the
HTTP binding for the QueryManager interface.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 28 of 129

925 Following is a sample URL defined by the HTTP binding for the QueryManager interface to access a
926 RegistryObject that is an ExtrinsicObject describing a GIF image:

927

928

929 http://localhost:8080/ebxmlrr/registry/http/?interface=QueryManager&meth
930 od=getRegistryObject¶m-

931 id=urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription

932

933

934 The same RegistryObject (an ExtrinsicObject) may be accessed via the following Submitter defined URL:
935

936

937 http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus.xml

938

939

940 Following is a sample URL defined by the HTTP binding for the QueryManager interface to access a
941 repository item that is a GIF image:

942

943

944 http://localhost:8080/ebxmlrr/registry/http/?interface=QueryManageré&meth

945 od=getRepositoryltem¶m—

946 id=urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription

947

948

949 The same repository item may be accessed via the following Submitter defined URL:
950

951

952 http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus. jpg
953

954

955 4.3.1 Submitter defined URL Syntax

956 A Submitter MUST specify a Submitter defined URL as a URL suffix that is relative to the base URL of
957 the registry. The URL suffix for a Submitter defined URL MUST be unique across all Submitter defined
958 URLs defined for all objects within a registry.

959 The use of relative URLs is illustrated as follows:

960 + Base URL for Registry: http://localhost:8080/ebxml/registry

961 + Implied Prefix URL for HTTP interface: http://localhost:8080/ebxml/registry/http
962 + Submitter Defined URL suffix: /pictures/nikola/zeus

963 » Complete URL: http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus

%4 4.3.2 Assigning URL to a RegistryObject

965 A Submitter MAY assign one or more Submitter defined URLSs to a RegistryObject.

966 The Submitter defined URL(s) MAY be assigned by the Submitter using a canonical slot on the
967 RegistryObject. The Slot is identified by the name:

968

969
970 urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:locator
971

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 29 of 129

http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus
http://localhost:8080/ebxml/registry/http
http://localhost:8080/ebxml/registry

972
973
974
975

976

977

978
979

980

981
982
983

984
985
986
987

988

989
990
991

992

993
994
995
996
997

998
999
1000
1001

1002

1003
1004
1005
1006
1007
1008

1009

1010
1011

1012

Each value in the collection of values for this Slot specifies a Submitter defined URL suffix for that
RegistryObject. The registry MUST return the RegistryObject when the HTTP client sends an HTTP GET
request whose URL matches any of the URLs specified within the locator Slot (if any) for that
RegistryObject.

4.3.3 Assigning URL to a Repository Item

A Submitter MAY assign one or more Submitter defined URLs to a Repository Item.

The Submitter defined URL(s) may be assigned by the Submitter using a canonical slot on the
ExtrinsicObject for the repository item. The Slot is identified by the name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator

Each value in the collection of values for this Slot specifies a Submitter defined URL suffix for the
Repositoryltem associated with the ExtrinsicObject. The registry MUST return the Repositoryltem when
the HTTP client sends an HTTP GET request whose URL matches any of the URLs specified within the
contentLocator slot (if any) for the ExtrinsicObject for that Repositoryltem.

4.4 File Path Based URL

The File Path Based URL mechanism enables HTTP clients to access RegistryObjects and
Repositoryltems using a URL that is derived from the RegistryPackage membership hierarchy for the
RegistryObject or Repositoryltem.

4.4.1 File Folder Metaphor

The RegistryPackage class as defined by [ebRIM] enables objects to be structurally organized by a
RegistryPackage membership hierarchy. As such, a RegistryPackage serves a role similar to that of a
Folder within the File and Folder metaphor that is common within filesystems in most operating systems.
Similarly, the members of a RegistryPackage serve a role similar to the files within a folder in the File and
Folder metaphor.

In this file-folder metaphor, a Submitter creates a RegistryPackage to create the functional equivalent of
a folder and creates a RegistryObject to create the functional equivalent of a file. The Submitter adds a
RegistryObjects as a member of a RegistryPackage to create the functional equivalent of adding a file to
a folder.

4.4.2 File Path of a RegistryObject

Each RegistryObject has an implicit file path. The file path of a RegistryObject is a path structure similar
to the Unix file path structure. The file path is composed of file path segments. Analogous to the Unix file
path, the last segment within the file path represents the RegistryObject, while preceding segments
represent the RegistryPackage(s) within the membership hierarchy of the RegistryObject. Each segment
consists of the name of the RegistryPackage or the RegistryObject. Because the name attribute is of
type InternationalString the path segment matches the name of an object within a specific locale.

4.4.2.1 File Path Example

Consider the example where a registry has a RegistryPackage hierarchy as illustrated below using the
name of the objects in locale “en_US”:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 30 of 129

1013

1014
1015
1016

1017

1018
1019

1020

1021
1022
1023

1024
1025
1026
1027
1028
1029
1030

1031

1032
1033

1034
1035
1036
1037
1038
1039

1040
1041
1042
1043
1044

Ea userData
=1 Sally

Figure 3: Example Registry Package Hierarchy

Now let us assume that the RegistryPackage named “2004” has an ExtrinsicObject named “baby.gif” for a
repository item that is a photograph in the GIF format. In this example the file paths for various objects in
locale “en_US” are shown in table below:

Object Name File Path
userData /userData
Sally /userData/Sally
pictures /userData/Sally/pictures
2004 /userData/Sally/pictures/2004
baby.gif /userData/Sally/pictures/2004/baby.gif

Table 5: File Path Examples

Note that above example assumes that the RegistryPackage named userData is a root level package
(not contained within another RegistryPackage).

4.4.3 Matching URL To Objects

A registry client MAY access RegistryObjects and Repositoryltems over the HTTP GET request using
URL patterns that are based upon the File Path for the target objects. This section describes how a
registry resolves File Path URLs specified by an HTTP client.

The registry MUST process each path segment from the beginning of the path to the end and for each
path segment match the segment to the value attribute of a LocalizedString in the name attribute of a
RegistryObject. For all but the last path segment, the matched RegistryObject MUST be a
RegistryPackage. The last path segment MAY match any RegistryObject including a RegistryPackage. If
any path segment fails to be matched then the URL is not resolvable by the File Path based URL
method. When matching any segment other than the first segment the registry MUST also ensure that
the matched RegistryObject is a member of the RegistryPackage that matches the previous segment.

4.4.4 URL Matches a Single Object

When a File Path based URL matches a single object the there are two possible responses.

* Ifthe URL pattern does not end in a '/' character or the last segment does not match a
RegistryPackage then the Registry MUST send as response an XML document that is the
XML representation of the RegistryObject that matches the last segment. If the last
segment matches an ExtrinsicObject then if the URL specifies the HTTP GET parameter
with name 'getRepositoryltem' and value of 'true' then the registry MUST return as
response the repository item associated with the ExtrinsicObject.

» Ifthe URL pattern ends in a /' character and the last segment matches a RegistryPackage
then the Registry MUST send as response an HTML document that is the directory listing

(section 4.4.6) of all RegistryObjects that are members of the RegistryPackage that
matches the last segment.

Feb 22, 2007
Page 31 of 129

regrep-rs
Copyright © OASIS Open 2007. All Rights Reserved.

1045

1046
1047

1048
1049

1050

1051
1052
1053

1054

1055

1056
1057

1058
1059
1060
1061
1062

1063
1064

1065

1066

1067

1068
1069

4.4.5 URL Matches Multiple Object

A registry MUST show a partial Directory Listing of a Registry Package when a File Path
based URL matches multiple objects.
A File Path based URL may match multiple objects if:

* Multiple objects with the same name exist in the same RegistryPackage

» The segment contains wildcard characters such as '%' or '?' to match the names of multiple
objects within the same RegistryPackage. Note that wildcard characters must be URL encoded
as defined by the HTTP protocol. For example the '%' character is encoded as '%25'".

4.4.6 Directory Listing

A registry MUST return a directory listing as a response under certain circumstances as describes
earlier. The directory listing MUST show a list of objects within a specific RegistryPackage.

A registry SHOULD structure a directory listing such that each item in the listing provides information
about a RegistryObject within the RegistryPackage. A registry MAY format its directory listing page in a
registry specific manner. However, it is suggested that a registry SHOULD format it as an HTML page
that minimally includes the objectType, name and description attributes for each RegistryObject in the
directory listing.

Figure 4 shows a non-normative example of a directory listing that matches all root level objects that
have a name that begins with ‘Sun’ (path /Sun%25).

:'gEiIe Edit Miew Go EBookmarks Tools Window Help

. & . - & .
Ei?l:-k Fnﬁrd R;%ad s%%’p 7 hitpsflocalhost B0G0/amariregistry/hitp/SuUn% 25 -

© 4kHome | WpBookmarks (4 ebXML 4 News fhome [4elsmim Demo pfHealth cfJava cfJaxR fsun fJ2EE =

Index of /Sun %

ObjectType Hame Description

Goto Parent Directory

Externalldentifier Sun Microsystems rmll

Organization Sun Microsystems Tnc. Makes Jawa. Prowvider of free Jawva software
RegistryPackage Suns Jawva Package Suns package of Jawa related products and sewvice
RegistryPackage Suns hardware package — Suns package for hardware related products and sewvice

Freeb XML Regisry Server varsion 3.0
lij%P T A EE R —i=| ==

|E1n

Figure 4: Example of a Directory Listing

4.4.7 Access Control In RegistryPackage Hierarchy
The ability to control who can add files and sub-folders to a folder is important in a file system. The same
is true for the File Path Based URL mechanism.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 32 of 129

1070
1071
1072
1073

1074

1075
1076

1077
1078

1079
1080
1081
1082
1083
1084
1085

1086

1087
1088
1089

1090

1091
1092

1093
1094
1095
1096
1097

A Submitter MAY assign a custom Access Control Policy to a Registry Package to create the functional
equivalent of assigning access control to a folder in the file-folder metaphor. The custom Access Control
Policy SHOULD use the “reference” action to control who can add RegistryObjects as members of the
folder as described in [ebRIM].

4.5 URL Resolution Algorithm

Since the HTTP Binding supports multiple mechanisms to resolve an HTTP URL a registry SHOULD
implement an algorithm to determine the correct HTTP Binding mechanism to resolve a URL.

This section gives a non-normative URL resolution algorithm that a registry SHOULD use to determine
which of the various HTTP Binding mechanisms to use to resolve an HTTP URL.

Upon receiving an HTTP GET request a registry SHOULD first check if the URL is an RPC Encoded
URL. This MAY be done by checking if the interface URL parameter is specified in the URL. If specified
the registry SHOULD resolve the URL using the RPC Encoded URL method as defined by section 4.2. If
the interface URL parameter is not specified then the registry SHOULD use the Submitter specified URL
method to check if the URL is resolvable. If the URL is still unresolvable then the registry SHOULD check
if the URL is resolvable using the File Path based URL method. If the URL is still unresolvable then the
registry should return an HTTP 404 (NotFound) error as defined by the HTTP protocol.

4.6 Security Consideration

A registry MUST enforce all Access Control Policies including restriction on the READ action when
processing a request to the HTTP binding of a service interface. This implies that a Registry MUST not
resolve a URL to a RegistryObject or Repositoryltem if the client is not authorized to read that object.

4.7 Exception Handling

If a service interface method generates an Exception it MUST be reported in a RegistryErrorList,
and sent back to the client within the HTTP response for the HTTP request.

When errors occur, the HTTP status code and message SHOULD correspond to the error(s) being
reported in the RegistryErrorList. For example, if the RegistryErrorList reports that an object
wasn't found, therefore cannot be returned, an appropriate error code SHOULD be 404, with a message
of "ObjectNotFoundException". A detailed list of HTTP status codes can be found in [RFC2616]. The
mapping between registry exceptions and HTTP status codes is currently unspecified.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 33 of 129

ws 5 Lifecycle Management Protocols

1099
1100
1101

1102

1103

1104
1105

1107

1108

1109
1110

1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

This section defines the protocols supported by Lifecycle Management service interface of the Registry.
The Lifecycle Management protocols provide the functionality required by RegistryClients to manage the

lifecycle of RegistryObjects and Repositoryltems within the registry.

The XML schema for the Lifecycle Management protocols is described in [RR-LCM-XSD].

5.1 Submit Objects Protocol

This SubmitObjects allows a RegistryClient to submit one or more RegistryObjects and/or repository

items.

client
FegistryClient

[<lermeSubmitObjectsReqguest =

lcm
LifeCyoleManager

e

<re REegistryFEesponse > ll]

Figure 5: Submit Objects Protocol

5.1.1 SubmitObjectsRequest

1

The SubmitObjectsRequest is used by a client to submit RegistryObjects and/or repository items to the

registry.

5.1.1.1 Syntax:

<element name="SubmitObjectsRequest">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:RegistryObjectList"/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

regrep-rs
Copyright © OASIS Open 2007. All Rights Reserved.

Feb 22, 2007
Page 34 of 129

1123

1124
1125
1126
1127
1128

1129

1130

1131

1132
1133

1134
1135

1136
1137

1138
1139

1140

1141
1142

1143
1144

1145
1146

1147
1148
1149

1150
1151
1152
1153
1154

1155
1156

1157

1158
1159
1160
1161
1162
1163
1164
1165
1166

5.1.1.2 Parameters:

= RegistryObjectList: This parameter specifies a collection of RegistryObject instances
that are being submitted to the registry. The RegistryObjects in the list may be brand new
objects being submitted to the registry or they may be current objects already existing in
the registry. In case of existing objects the registry MUST treat them in the same manner
as UpdateObjectsRequest and simply update the existing objects.

5.1.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4for details.

5.1.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

= UnsignedRepositoryltemException: Indicates that the requestor attempted to submit a
Repositoryltem that was not signed.

= QuotaExceededException: Indicates that the requestor attempted to submit more
content than the quota allowed for them by the registry.

5.1.2 Unique ID Generation

A Submitter MUST supply the id attribute for submitted objects. If the id is not specified then the registry
MUST return an InvalidRequestException.

If the id and lid match the id and lid of an existing RegistryObject within the home registry, then the
registry MUST treat it as an Update action upon the existing RegistryObject.

If the id matches the id of an existing RegistryObject within the home registry but the lid does not match
that existing object's lid, then the registry MUST return an InvalidRequestException.

If the lid matches the lid of an existing RegistryObject within the home registry but the id does not match
that existing object's id, then the registry MUST create the newly submitted object as a new version of
the existing object.

If the Submitter supplies the id and it is a valid URN then the registry MUST honor the Submitter-
supplied id value and use it as the value of the id attribute of the object in the registry. If the id is not a
valid URN then the registry MUST treat it as a temporary id and replace it, and all references to it within
the request, with a registry generated universally unique id. A registry generated universally unique id
value MUST conform to the format of a URN that specifies a DCE 128 bit UUID as specified in [UUID]:

(e.g. urn:uuid:a2345678-1234-1234-123456789012)

5.1.3 ID Attribute And Object References

The id attribute of an object MAY be used by other objects to reference that object. Within a
SubmitObjectsRequest, the id attribute MAY be used to refer to an object within the same
SubmitObjectsRequest as well as to refer to an object within the registry. An object in the
SubmitObjectsRequest that needs to be referred to within the request document MAY be assigned an id
by the submitter so that it can be referenced within the request. The submitter MAY give the object a
valid URN, in which case the id is permanently assigned to the object within the registry. Alternatively,
the submitter MAY assign an arbitrary id that is not a valid URN as long as the id is a unique anyURI
value within the request document. In this case the id serves as a linkage mechanism within the request
document but MUST be replaced with a registry generated id upon submission.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 35 of 129

1167
1168
1169
1170

1171

1172
1173

1174

1175
1176
1177

1178

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194

1195

1196
1197

When an object in a SubmitObjectsRequest needs to reference an object that is already in the registry,
the request MAY contain an ObjectRef whose id attribute is the id of the object in the registry. This id is
by definition a valid URN. An ObjectRef MAY be viewed as a proxy within the request for an object that is
in the registry.

5.14

Audit Trail

The registry MUST create a single AuditableEvent object with eventType Created for all the
RegistryObjects created by a SubmitObjectsRequest.

5.1.5

Sample SubmitObjectsRequest

The following example shows a simple SubmitObjectsRequest that submits a single Organization object
to the registry. It does not show the complete SOAP Message with the message header and additional
payloads in the message for the repository items.

5.2

<lcm:SubmitObjectsRequest>
<rim:RegistryObjectList>
<rim:0rganization 1id="${LOGICAL ID}"
id="${ID}" -
primaryContact="S${CONTACT USER ID}">
<rim:Name>
<rim:LocalizedString value="Sun Microsystems Inc." xml:lang="en-
us"/>
</rim:Name>
<rim:Address city="Burlington" country="USA" postalCode="01867"
stateOrProvince="MA" street="Network Dr." streetNumber="1"/>
<rim:TelephoneNumber areaCode="781" countryCode="1" number="123-
456" phoneType="office"/>
</rim:0Organization>
</rim:RegistryObjectList>
</SubmitObjectsRequest>

The Update Objects Protocol

The UpdateObjectsRequest protocol allows a Registry Client to update one or more existing
RegistryObjects and/or repository items in the registry.

regrep-rs

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 36 of 129

1199

1200

1201
1202

1203

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

1215

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

client lcm
FegistryClient LifeCwcleManager

5.2.1

| <lcm:UpdateQhjectsReguest = |

I 1

<rs EegisthFEesponse s I_\I

Figure 6: Update Objects Protocol

UpdateObjectsRequest

The UpdateObjectsRequest is used by a client to update RegistryObjects and/or repository items that
already exist within the registry.

5.2.1.1 Syntax:
<element name="UpdateObjectsRequest'">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:RegistryObjectList"/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>
5.2.1.2 Parameters:
= RegistryObjectList: This parameter specifies a collection of RegistryObject instances
that are being updated within the registry. All immediate RegistryObject children of the
RegistryObjectList MUST be current RegistryObjects already in the registry.
RegistryObjects MUST include all required attributes, even those the user does not
intend to change. A missing attribute MUST be interpreted as a request to set that
attribute to NULL or in case it has a default value, the default value will be assumed. If
this collection contains an immediate child RegistryObject that does not already exists in
the registry, then the registry MUST return an InvalidRequestException. If the user
wishes to submit a mix of new and updated objects then he or she SHOULD use a
SubmitObjectsRequest.
If an ExtrinsicObject is being updated and no Repositoryltem is provided in the
UpdateObjectsRequest then the registry MUST maintain any previously existing
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 37 of 129

1228
1229
1230
1231

1232

1233

1234

1235

1236
1237

1238
1239

1240
1241

1242

1243

1244

1245
1246

1247

1248
1249

1251

1252

Repositoryltem associated with the original ExtrinsicObject with the updated
ExtrinsicObject. If the client wishes to remove the Repositoryltem from an existing
ExtrinsicObject they MUST use a RemoveObjectsRequest with
deletionScope=DeleteRepositoryltemOnly.

5.2.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.2.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

= UnsignedRepositoryltemException: Indicates that the requestor attempted to submit a
Repositoryltem that was not signed.

= QuotaExceededException: Indicates that the requestor attempted to submit more
content than the quota allowed for them by the registry.

5.2.2 AuditTrail

The registry MUST create a single AuditableEvent object with eventType Updated for all RegistryObjects
updated via an UpdateObjectsRequest.

5.3 The Approve Objects Protocol

The Approve Objects protocol allows a client to approve one or more previously submitted
RegistryObject objects using the LifeCycleManager service interface.

client lcm
FegistryClient LifeCyoleManager

[<lcm:ApprovedbjectsEeguast » |

e 1

<reEegistryEesponse > ll]

Figure 7: Approve Objects Protocol

5.3.1 ApproveObjectsRequest

The ApproveObjectsRequest is used by a client to approve one or more existing RegistryObject

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 38 of 129

1253

1254

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

1268

1269
1270
1271

1272
1273
1274
1275

1276

1277

1278
1279
1280

1281
1282

1283

1284

1285
1286

1287

1288
1289
1290
1291

1292

instances in the registry.

5.3.1.1 Syntax:

<element name="ApproveObjectsRequest">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
<element ref="rim:0bjectRefList" minOccurs="0" maxOccurs="1"

/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

5.3.1.2 Parameters:

= AdhocQuery: This parameter specifies a query. A registry MUST approve all objects
that match the specified query in addition to any other objects identified by other
parameters.

= ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST approve all objects that are
referenced by this parameter in addition to any other objects identified by other
parameters.

5.3.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.3.14 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= ObjectNotFoundException: Indicates that the requestor requested an object within the
request that was not found.

5.3.2 Audit Trail

The registry MUST create a single AuditableEvent object with eventType Approved for all RegistryObject
instance approved via an ApproveObjectsRequest.

5.4 The Deprecate Objects Protocol

The Deprecate Object protocol allows a client to deprecate one or more previously submitted
RegistryObject instances using the LifeCycleManager service interface. Once a RegistryObject is
deprecated, no new references (e.g. new Associations, Classifications and ExternalLinks) to that object
can be submitted. However, existing references to a deprecated object continue to function normally.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 39 of 129

1293

1294
1295

1296

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

1310

1311
1312
1313

1314
1315
1316
1317

1318

1319

client lcm
FegistryClient LifeCwcleManager

| <lcm:Deprecate0bjectsREequest |

O 1

<rs EegisthFEesponse s I_\I

Figure 8: Deprecate Objects Protocol

5.4.1 DeprecateObjectsRequest

The DeprecateObjectsRequest is used by a client to deprecate one or more existing RegistryObject
instances in the registry.

5.4.1.1 Syntax:

<element name='"DeprecateObjectsRequest">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
<element ref="rim:0bjectRefList" minOccurs="0" maxOccurs="1"

/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

5.4.1.2 Parameters:

= AdhocQuery: This parameter specifies a query. A registry MUST deprecate all objects
that match the specified query in addition to any other objects identified by other
parameters.

= ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST deprecate all objects that are
referenced by this parameter in addition to any other objects identified by other
parameters.

5.4.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 40 of 129

1320

1321
1322

1323
1324

1325

1326
1327

1328

1329
1330
1331
1332

1334

1335
1336
1337

1338

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348

5.41.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

5.4.2 Audit Trail

The registry MUST create a single AuditableEvent object with eventType Deprecated for all
RegistryObject deprecated via a DeprecateObjectsRequest.

5.5 The Undeprecate Objects Protocol

The Undeprecate Objects protocol of the LifeCycleManager service interface allows a client to undo the
deprecation of one or more previously deprecated RegistryObject instances. When a RegistryObject is
undeprecated, it goes back to the Submitted status and new references (e.g. new Associations,
Classifications and ExternalLinks) to that object can now again be submitted.

client lcm
FegistryClient LifeCwcleManager

| <lcm:UndeprecateCbjectsRequest = |

O 1

<rs EegisthFEesponse s l_\l

Figure 9: Undeprecate Objects Protocol

5.5.1 UndeprecateObjectsRequest

The UndeprecateObjectsRequest is used by a client to undeprecate one or more existing RegistryObject
instances in the registry. The registry MUST silently ignore any attempts to undeprecate a RegistryObject
that is not deprecated.

5.5.1.1 Syntax:

<element name='"UndeprecateObjectsRequest">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
<element ref="rim:0bjectRefList" minOccurs="0" maxOccurs="1"

/>
</sequence>
</extension>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 41 of 129

1349
1350
1351
1352

1353

1354
1355
1356

1357
1358
1359
1360
1361

1362

1363

1364
1365

1366

1367

1368

1369
1370

1371

1372
1373

</complexContent>
</complexType>
</element>
</element>

5.5.1.2 Parameters:

= AdhocQuery: This parameter specifies a query. A registry MUST undeprecate all
objects that match the specified query in addition to any other objects identified by other
parameters.

= ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST undeprecate all objects that
are referenced by this parameter in addition to any other objects identified by other
parameters.
5.5.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.5.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

5.5.2 Audit Trail

The Registry Service MUST create a single AuditableEvent object with eventType Undeprecated for all
RegistryObjects undeprecated via an UndeprecateObjectsRequest.

5.6 The Remove Objects Protocol

The Remove Obijects protocol allows a client to remove one or more RegistryObject instances and/or
repository items using the LifeCycleManager service interface.

client lcm
FegistryClient LifeCwcleManager

[<lcrm:RemowveOhjectsReguest > |

s 1

<rsEegistryFEesponse - Il]

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 42 of 129

1375

1376

1377
1378

1379

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

1396

1397
1398
1399
1400
1401
1402
1403

1404
1405

1406
1407
1408
1409
1410

1411
1412
1413
1414
1415

1416
1417

1418
1419
1420
1421

Figure 10: Remove Objects Protocol

For details on the schema for the business documents shown in this process refer to .

5.6.1

RemoveObjectsRequest

The RemoveObjectsRequest is used by a client to remove one or more existing RegistryObject and/or
repository items from the registry.

5.6.1.1

5.6.1.2

regrep-rs

Syntax:
<element name="RemoveObjectsRequest'>
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
<element ref="rim:0bjectRefList" minOccurs="0" maxOccurs="1"
/>

</sequence>
<attribute name='"deletionScope"
default="urn:oasis:names:tc:ebxml-regrep:DeletionScopeType:DeleteAll"
type="rim:referenceURI" use="optional'"/>
</extension>
</complexContent>
</complexType>
</element>

Parameters:

= deletionScope: This parameter indicates the scope of impact of the
RemoveObjectsRequest. The value of the deletionScope attribute MUST be a reference
to a ClassificationNode within the canonical DeletionScopeType ClassificationScheme as
described in appendix A of [ebRIM]. A Registry MUST support the deletionScope types
as defined by the canonical DeletionScopeType ClassificationScheme. The canonical
DeletionScopeType ClassificationScheme may easily be extended by adding additional
ClassificationNodes to it.

The following canonical ClassificationNodes are defined for the DeletionScopeType
ClassificationScheme:

DeleteRepositoryltemOnly: This deletionScope specifies that the registry
MUST delete the Repositoryltem for the specified ExtrinsicObjects but MUST
NOT delete the specified ExtrinsicObjects. This is useful in keeping references to
the ExtrinsicObjects valid. A registry MUST set the status of the ExtrinsicObject
instance to Withdrawn in this case.

DeleteAll: This deletionScope specifies that the request MUST delete both the
RegistryObject and the Repositoryltem (if any) for the specified objects. A
RegistryObject can be removed using a RemoveObjectsRequest with
deletionScope DeleteAll only if all references (e.g. Associations, Classifications,
ExternalLinks) to that RegistryObject have been removed.

= AdhocQuery: This parameter specifies a query. A registry MUST remove all objects that
match the specified query in addition to any other objects identified by other parameters.

= ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST remove all objects that are
referenced by this parameter in addition to any other objects identified by other
parameters.

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 43 of 129

1422

1423

1424

1425
1426

1427
1428

1429
1430
1431
1432

1433

1434
1435
1436

1437

1438
1439

1440
1441
1442

1443
1444

1445
1446
1447
1448
1449
1450

1451
1452

1453

1454
1455

1456

1457
1458
1459

1460

1461
1462

5.6.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.6.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object
within the request that was not resolved during the processing of the request.

= ReferencesExistException: Indicates that the requestor attempted to remove a
RegistryObject while references to it still exist. Note that it is valid to remove a
RegistryObject and all RegistryObjects that refer to it within the same request. In such
cases the ReferencesExistException MUST not be thrown.

5.7 Registry Managed Version Control

This section describes the version control features of the ebXML Registry. This feature is based upon
[DeltaV]. The ebXML Registry provides a simplified fagade that provides a small subset of [DeltaV]
functionality.

5.7.1 Version Controlled Resources

All repository items in an ebXML Registry are implicitly version-controlled resources as defined by
section 2.2.1 of [DeltaV]. No explicit action is required to make them a version-controlled resource.

In addition RegistryObject instances are also implicitly version-controlled resources. However, a registry
may limit version-controlled resources to a sub-set of RegistryObject classes based upon registry
specific policies.

Minimally, a registry implementing the version control feature SHOULD make the following types as
version-controlled resources:

= ClassificationNode

= (ClassificationScheme
= Organization

= ExtrinsicObject

= RegistryPackage

= Service

The above list is chosen to exclude all composed types and include most of remaining RegistryObject
types for which there are known use cases requiring versioning.

5.7.2 Versioning and Object Identification

Each version of a RegistryObject is a unique object and as such has its own unique value for its id
attribute as defined by [ebRIM].

5.7.3 Logical ID

All versions of a RegistryObject are logically the same object and are referred to as the logical
RegistryObject. A logical RegistryObject is a tree structure where nodes are specific versions of the
RegistryObject.

A specific version of a logical RegistryObject is referred to as a RegistryObject instance.

A RegistryObject instance MUST have a Logical ID (LID) to identify its membership in a particular logical
RegistryObject. Note that this is in contrast with the id attribute that MUST be unique for each version

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 44 of 129

1463
1464

1465
1466
1467
1468
1469

1470

1471
1472
1473

1474

1475
1476
1477
1478

1479

1480
1481

1482
1483
1484

1485
1486

1487
1488
1489

1490

1491
1492

1493
1494

1495
1496
1497
1498
1499

1500

of the same logical RegistryObject. A client may refer to the logical RegistryObject in a version
independent manner using its LID.

A RegistryObject is assigned a LID using the 1id attribute of the RegistryObject class. If the submitter
assigns the lid attribute, she must guarantee that it is a globally unique URN. A registry MUST honor a
valid submitter-supplied LID. If the submitter does not specify a LID then the registry MUST assign a LID
and the value of the LID attribute MUST be identical to the value of the id attribute of the first (originally
created) version of the logical RegistryObject.

5.7.4 Version Identification

An ebXML Registry supports independent versioning of both RegistryObject metadata as well as
repository item content. It is therefore necessary to keep distinct version information for a RegistryObject
instance and its repository item if it happens to be an ExtrinsicObject instance.

5.7.4.1

A RegistryObject MUST have a versionInfo attribute whose type is the Versioninfo class defined by
ebRIM. The versioninfo attributes identifies the version information for that RegistryObject instance. A
registry MUST not allow two versions of the same RegistryObject to have the same
versioninfo.versionName attribute value.

Version Identification for a RegistryObject

5.7.4.2

When a RegistryObiject is an ExtrinsicObject with an associated repository item, the version identification
for the repository item is distinct from the version identification for the ExtrinsicObject.

Version Identification for a Repositoryltem

An ExtrinsicObject that has an associated repository item MUST have a contentVersionInfo attribute
whose type is the VersionlInfo class defined by ebRIM. The contentVersioninfo attributes identifies the
version information for that repository item instance.

An ExtrinsicObject that does not have an associated repository item MUST NOT have a
contentVersionInfo attribute defined.

A registry MUST allow two versions of the same ExtrinsicObject to have the same
contentVersionInfo.versionName attribute value because multiple ExtrinsicObject versions MAY share the
same Repositoryltem version.

5.7.5

An ExtrinsicObject and its associated repository item may be updated independently and therefore
versioned independently.

Versioning of ExtrinsicObject and Repository Items

A registry MUST maintain separate version trees for an ExtrinsicObject and its associated repository
item as described earlier.

Table 6 shows all the combinations for versioning an ExtrinsicObject and its repository item. After
eliminating invalid or impossible combinations as well as those combinations where no action is needed,
the only combinations that require versioning are showed in gray background rows. Of these there are
only two unique cases (referred to as case A and B). Note that it is not possible to version a repository
item without versioning its ExtrinsicObject.

ExtrinsicObject Repositoryltem ExtrinsicObject Repositoryltem Comment
Exists Exists Updated Updated
No No Do nothing
No Yes Not possible
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved.

Page 45 of 129

1501

1502

1503
1504
1505

1506

1507
1508
1509
1510
1511

1512

1513

1514
1515
1516
1517
1518

1519
1520
1521
1522
1523

Yes No
No No Do nothing
No Yes Not possible
Yes No Version
ExtrinsicObject
(case A)
Yes Yes Not possible
Yes Yes
No No Do nothing
No Yes Not possible
Yes No Version
ExtrinsicObject
(case A)
Yes Yes Version
ExtrinsicObject
and
Repositoryltem
(case B)

Table 6: Versioning of ExtrinsicObject and Repository Item

5.7.5.1 ExtrinsicObject and Shared Repositoryltem

Because an ExtrinsicObject and its repository item are versioned independently (case B) it is possible for
multiple versions of the ExtrinsicObject to share the same version of the repository item. In such cases
the contentVersioninfo attributes MUST be the same across multiple version of the ExtrinsicObject.

5.7.6 Versioning and Composed Objects

When a registry creates a new version of a RegistryObject it MUST create copies of all composed'
objects as new objects that are composed within the new version. This is because each version is a
unique object and composed objects by definition are not shareable across multiple objects. Specifically,
each new copy of a composed object MUST have a new id since it is a different object than the original
composed object in the previous version.

A registry MUST not version composed objects.

5.7.7 Versioning and References

An object reference from a RegistryObject references a specific version of the referenced RegistryObject.
When a registry creates a new version of a referenced RegistryObject it MUST NOT move refrences
from other objects from the previous version to the new version of the referenced object. Clients that wish
to always reference the latest versions of an object MAY use the Event Notification feature to update
references when new versions are created and thus always reference the latest version.

A special case is when a SubmitObjectsRequest or an UpdateObjectRequest contains an object that is
being versioned by the registry and the request contains other objects that reference the object being
versioned. In such case, the registry MUST update all references within the submitted objects to the
object being versioned such that those objects now reference the new version of the object being created
by the request.

T Composed object types are identified in figure 1 in [ebRIM] figure 1 as classes with composition or
“solid diamond” relationship with RegistryObiject type.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 46 of 129

1524

1525
1526
1527

1528
1529

1530
1531

1532
1533

1534

1535
1536
1537
1538

1539
1540
1541

1542
1543
1544
1545

1546
1547

1548

1549
1550
1551
1552

1553

1554
1555

1556

1557
1558
1559

1560
1561
1562
1563

1564

1565
1566

5.7.8 Versioning and Audit Trail

The canonical EventType ClassificationScheme used by the Audit Trail feature defines an Updated event
type and then defines a Versioned event type as a child of the Updated event type ClassificationNode.
The semantic are that a Versioned event type is specialization of the Updated event type.

A registry MUST use the Updated event type in the AuditableEvent when it updates a RegistryObject
without creating a new version.

A registry MUST use the Versioned event type in the AuditableEvent when it creates a new version of a
logical RegistryObject.

A registry MUST NOT use the Created event type in the AuditableEvent when it creates a new version of
a logical RegistryObject.

5.7.9 Inter-versions Association

Within any single branch within the version tree for an object any given version implicitly supersedes the
version immediately prior to it. Sometimes it may be necessary to explicitly indicate which version
supersedes another version for the same object. This is especially true when two versions are siblings
branch roots of the version tree for the same object.

A client MAY specify an Association between any two versions of an object within the objects version tree
using the canonical associationType “Supersedes” to indicate that the sourceObject supersedes the
target targetObject within the Association.

A client MUST NOT specify an Association between two version of an object using the canonical
associationType “Supersedes” if the sourceObject is an earlier version within the same branch in the
version tree than the targetObject as this violates the implicit “Supersedes” association between the two
version.

Note that this section is functionally equivalent to the predecessor-set successor-set elements of the
Version Properties as defined by [DeltaV].

5.7.10 Client Initiated Version Removal

An ebXML Registry MAY allow clients to remove specified versions of a RegistryObject. A client MAY
delete older version of an object using the RemoveObjectsRequest by specifying the version by its
unique id. Removing an ExtrinsicObject instance MUST remove its repository item if no other version
references that repository item.

5.7.11 Registry Initiated Version Removal

The registry MAY prune older versions based upon registry specific administrative policies in order to
manage storage resources.

5.7.12 Locking and Concurrent Modifications

This specification does not define a workspace feature with explicit checkin and checkout capabilities as
defined by [DeltaV]. An ebXML Registry MAY support such features in an implementation specific
manner.

This specification does not prescribe a locking or branching model. An implementation may choose to
support an optimistic (non-locking) model. Alternatively or in addition, an implementation may support a
locking model that supports explicit checkout and checkin capability. A future technical note or
specification may address some of these capabilities.

5.7.13 Version Creation

The registry manages creation of new version of a RegistryObject or a repository item automatically. A
registry that supports versioning MUST implicitly create a new version for a repository item if the

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 47 of 129

1567
1568

1569
1570
1571

1572

1573
1574
1575
1576

1577
1578

1580

1581
1582
1583
1584

1585
1586

1588

1589
1590
1591
1592
1593

repository item is updated via a SubmitObjectsRequest or UpdateObjectsRequest. In such cases it
MUST also create a new version of its ExtrinsicObject.

If the client only wishes to update and version the ExtrisnicObject it may do so using an
UpdateObjectsRequest without providing a repository item. In such cases the registry MUST assign the
repository item version associated with the previous version of the ExtrinsicObject.

5.7.14 Versioning Override

A client MAY specify a dontVersion hint on a per RegistryObject basis when doing a submit or update of
a RegistryObject. A registry SHOULD not create a new version for that RegistryObject when the
dontVersion hint has value of “true”. The dontVersion hint MAY be specified as a canonical Slot with the
following name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:dontVersion

The value of the dontVersion Slot, if specified, MUST be either “true” or “false”.

A client MAY specify a dontVersionContent hint on a per ExtrinsicObject basis when doing a submit or
update of an ExtrinsicObject with a repository item. A registry SHOULD not create a new version for that
repository item when the dontVersionContent hint has value of “true”. The dontVersionContent hint MAY
be specified as a canonical Slot with the following name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:dontVersionContent

The value of the dontVersionContent Slot, if specified, MUST be either “true” or “false”.

A client MAY also specify the dontVersion and dontVersionContent Slots on the RegistryRequest using
the <rs:RequstSlotList> element. A registry MUST treat these Slots when specified on the request as
equivalent to being specified on every RegistryObject within the request. The value of these Slots as
specified on the request take precedence over value of these Slots as specified on RegistryObjects
within the request.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 48 of 129

s 6 Query Management Protocols

1595 This section defines the protocols supported by QueryManager service interface of the Registry. The
1596 Query Management protocols provide the functionality required by RegistryClients to query the registry
1597 and discover RegistryObjects and Repositoryltems.

1598 The XML schema for the Query Management protocols is described in [RR-QUERY-XSD].

1599 6.1 Ad Hoc Query Protocol

1600 The Ad hoc Query protocol of the QueryManager service interface allows a client to query the registry
1601 and retrieve RegistryObjects and/or Repositoryltems that match the specified query.

1602 A client submits an ad hoc query to the QueryManager by sending an AdhocQueryRequest. The
1603 AdhocQueryRequest contains a sub-element that specifies a query in one of the query syntaxes
1604 supported by the registry.

1605 The QueryManager sends an AdhocQueryResponse back to the client as response. The
1606 AdhocQueryResponse returns a collection of objects that match the query. The collection is potentially
1607 heterogeneous depending upon the query expression and request options.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 49 of 129

client query
FegistryClient Querdlanager
| <guery AdhocQuerfequest > |

O 1

<guensadhocluerysesponse » I_\I

Figure 11: Ad Hoc Query Protocol

1608 6.1.1 AdhocQueryRequest

1609 The AdhocQueryRequest is used to submit a query to the registry.

1610 6.1.1.1 Syntax:

1611 <element name='"AdhocQueryRequest'">

1612 <complexType>

1613 <complexContent>

1614 <extension base='"rs:RegistryRequestType">

1615 <sequence>

1616 <element maxOccurs="1" minOccurs="1"

1617 ref="tns:ResponseOption"/>

1618 <element ref="rim:AdhocQuery" />

1619 </sequence>

1620 <attribute default="false" name="federated"

1621 type="boolean" use="optional"/>

1622 <attribute name="federation" type="anyURI'" use="optional"/>
1623 <attribute default="0" name="startIndex" type="integer'/>
1624 <attribute default="-1" name="maxResults" type="integer'"/>
1625 </extension>

1626 </complexContent>

1627 </complexType>

1628 </element>

1629 6.1.1.2 Parameters:

1630 = AdhocQuery: This parameter specifies the actual query. It is decsribed in detail in

1631 section 6.1.3.

1632 = federated: This optional parameter specifies that the registry must process this query as

1633 a federated query. By default its value is false. This value MUST be false when a registry

1634 routes a federated query to another registry in order to avoid an infinite loop in federated

1635 query processing.

1636 = federation: This optional parameter specifies the id of the target Federation for a

1637 federated query in case the registry is a member of multiple federations. In the absence

1638 of this parameter a registry must route the federated query to all federations of which it is
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 50 of 129

1639
1640

1641
1642
1643
1644
1645

1646
1647
1648

1649
1650
1651
1652

1653

1654

1655

1656
1657

1658
1659

1660

1661

1662

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676

1677

1678
1679

1680
1681
1682

1683
1684

a member. This value MUST be unspecified when a registry routes a federated query to
another registry in order to avoid an infinite loop in federated query processing.

= maxResults: This optional parameter specifies a limit on the maximum number of
results the client wishes the query to return. If unspecified, the registry SHOULD return
either all the results, or in case the result set size exceeds a registry specific limit, the
registry SHOULD return a sub-set of results that are within the bounds of the registry
specific limit. See section 6.2.1 for an illustrative example.

= ResponseOption: This required parameter allows the client to control the format and
content of the AdhocQueryResponse generated by the registry in response to this
request. See section 6.1.4 for details.

= startindex: This optional integer value is used to indicate which result must be returned
as the first result when iterating over a large result set. The default value is 0, which
returns the result set starting with index 0 (first result). See section 6.2.1 for an illustrative
example.

6.1.1.3 Returns:

This request returns an AdhocQueryResponse. See section 6.1.2 for details.

6.1.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= InvalidQueryException: signifies that the query syntax or semantics was invalid. Client
must fix the query syntax or semantic error and re-submit the query.

6.1.2 AdhocQueryResponse

The AdhocQueryResponse is sent by the registry as a response to an AdhocQueryRequest.

6.1.2.1 Syntax:

<element name="AdhocQueryResponse'">
<complexType>
<complexContent>
<extension base='"rs:RegistryResponseType'">
<sequence>
<element ref="rim:RegistryObjectList" />
</sequence>
<attribute default="0" name="startIndex" type="integer'/>
<attribute name="totalResultCount" type="integer"
use="optional"/>
</extension>
</complexContent>
</complexType>
</element>

6.1.2.2 Parameters:

= RegistryObjectList: This is the element that contains the RegistryObject instances that
matched the specified query.

= startindex: This optional integer value is used to indicate the index for the first result in
the result set returned by the query, within the complete result set matching the query. By
default, this value is 0. See section 6.2.1 for an illustrative example.

= totalResultCount: This optional parameter specifies the size of the complete result set
matching the query within the registry. When this value is unspecified, the client should

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 51 of 129

1685
1686

1687

1688
1689

1690

1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702

1703

1704

1705
1706
1707

1708

1709
1710

1711

1712

1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728

1729

1730
1731
1732

1733

assume it is the size of the result set contained within the result. See section 6.2.1 for an
illustrative example.

6.1.3 AdhocQuery

A client specifies a <rim:AdhocQuery> element within an AdhocQueryRequest to specify the actual
guery being submitted.

6.1.3.1 Syntax:

<complexType abstract="true" name="AdhocQueryType'>
<complexContent>
<extension base="tns:RegistryObjectType'">
<sequence>
<element ref="tns:QueryExpression"
minOccurs="0" maxOccurs="1" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name='"AdhocQuery" type="tns:AdhocQueryType"
substitutionGroup="tns:RegistryObject" />

6.1.3.2 Parameters:

= queryExpression: This element contains the actual query expression. The schema for
queryExpression is extensible and can support any query syntax supported by the
registry.

6.1.4 ReponseOption

A client specifies a ResponseOption structure within an AdhocQueryRequest to indicate the format of the
results within the corresponding AdhocQueryResponse.

6.1.4.1 Syntax:

<complexType name='"ResponseOptionType'>
<attribute default="RegistryObject" name="returnType">
<simpleType>
<restriction base="NCName">
<enumeration value="ObjectRef"/>
<enumeration value="RegistryObject'"/>
<enumeration value="LeafClass'"/>
<enumeration value="LeafClassWithRepositoryItem"/>
</restriction>
</simpleType>
</attribute>
<attribute default="false" name="returnComposedObjects"
type="boolean"/>
</complexType>
<element name='"ResponseOption" type="tns:ResponseOptionType'/>

6.1.4.2 Parameters:

= returnComposedObjects: This optional parameter specifies whether the
RegistryObjects returned should include composed objects as defined by Figure 1 in
[ebRIM]. The default is to return all composed objects.

= returnType: This optional enumeration parameter specifies the type of RegistryObject to

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 52 of 129

1734

1735
1736
1737

1738
1739

1740
1741
1742

1743
1744
1745
1746

1747
1748

1749
1750
1751

1752

1753

1754
1755
1756
1757
1758
1759

1760
1761
1762
1763
1764

1765
1766

1767

1768
1769
1770
1771

1772

return within the response. Values for returnType are as follows:

» ObjectRef - This option specifies that the AdhocQueryResponse MUST
contain a collection of <rim:ObjectRef> elements. The purpose of this option
is to return references to registry objects rather than the actual objects.

» RegistryObject - This option specifies that the AdhocQueryResponse MUST
contain a collection of <rim:RegistryObject> elements.

« LeafClass - This option specifies that the AdhocQueryResponse MUST
contain a collection of elements that correspond to leaf classes as defined in
[RR-RIM-XSD].

» LeafClassWithRepositoryltem - This option is same as LeafClass option
with the additional requirement that the response include the
Repositoryltems, if any, for every <rim:ExtrinsicObject> element in the
response.

If “returnType” specified does not match a result returned by the query, then the registry
must use the closest matching semantically valid returnType that matches the result.

Toillustrate, consider a case where OrganizationQuery is asked to return
LeafClassWithRepositoryltem. As this is not possible, QueryManager will assume
LeafClass option instead.

6.2 Iterative Query Support

The AdhocQueryRequest and AdhocQueryResponse support the ability to iterate over a large result set
matching a logical query by allowing multiple AdhocQueryRequest requests to be submitted such that
each query requests a different subset of results within the result set. This feature enables the registry to
handle queries that match a very large result set, in a scalable manner. The iterative query feature is
accessed via the startindex and maxResults parameters of the AdhocQueryRequest and the startindex
and totalResultCount parameters of the AdhocQueryResponse as described earlier.

The iterative queries feature is not a true Cursor capability as found in databases. The registry is not
required to maintain transactional consistency or state between iterations of a query. Thus it is possible
for new objects to be added or existing objects to be removed from the complete result set in between
iterations. As a consequence it is possible to have a result set element be skipped or duplicated between
iterations.

Note that while it is not required, an implementations MAY implement a transactionally consistent
iterative query feature.

6.2.1 Query lteration Example

Consider the case where there are 1007 Organizations in a registry. The user wishes to submit a query
that matches all 1007 Organizations. The user wishes to do the query iteratively such that Organizations
are retrieved in chunks of 100. The following table illustrates the parameters of the AdhocQueryRequest
and those of the AdhocQueryResponses for each iterative query in this example.

| AdhocQueryRequest Parameters | AdhocQueryResponse Parameters |

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 53 of 129

1773

1774

1775
1776
1777
1778
1779

1780
1781

1782
1783

1784

1785

1786
1787

1788

1789
1790
1791
1792

1793
1794
1795

1796

1797
1798

1799
1800
1801
1802
1803
1804
1805
1806
1807

startindex maxResults startindex totalResultCount # of Results

0 100 0 1007 100
100 100 100 1007 100
200 100 200 1007 100
300 100 300 1007 100
400 100 400 1007 100
500 100 500 1007 100
600 100 600 1007 100
700 100 700 1007 100
800 100 800 1007 100
900 100 900 1007 100
1000 100 1000 1007 7

6.3 Stored Query Support

The AdhocQuery protocol allow clients to submit queries that may be as general or as specific as the use
case demands. As the queries get more specific they also get more complex. In these situations it is
desirable to hide the complexity of the query from the client using parameterized queries stored in the
registry. When using parameterized stored queries the client is only required to specify the identity of the
qguery and the parameters for the query rather than the query expression itself.

Parameterized stored queries are useful to Registry Administrators because they provide a system wide
mechanism for the users of the registry to share a set of commonly used queries.

Parameterized stored queries are useful to vertical standards because the standard can define domain
specific parameterized queries and require that they be stored within the registry.

An ebXML Registry MUST support parameterized stored queries as defined by this section.

6.3.1 Submitting a Stored Query

A stored query is submitted using the standard SubmitObjectsRequest protocol where the object
submitted is an AdhocQueryType instance.

6.3.1.1 Declaring Query Parameters

When submitting a stored query, the submitter MAY declare zero or more parameters for that query. A
parameter MUST be declared using a parameter name that begins with the ‘¢’ character followed
immediately by a letter and then followed by any combination of letters and numbers. The following BNF
defines how a parameter name MUST be declared.

QueryParameter := 'S' [a-zA-Z] ([a-zA-Z] | [0-9])*

A query parameter MAY be used as a placeholder for any part of the stored query.
The following example illustrates how a parameterized stored query may be submitted:

<SubmitObjectsRequest>
<rim:RegistryObjectList>
<rim:AdhocQuery id="${QUERY ID}">
<rim:QueryExpression quer?Language:"S{SQL_QUERY_LANG_ID}">
SELECT * from S$tableName ro, Name nm, Description d

WHERE
objectType = ''SobjectType''
AND (nm.parent = ro.id AND UPPER (nm.value) LIKE UPPER
(_''Sname''))
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 54 of 129

1808
1809
1810
1811
1812
1813
1814
1815
1816
1817

1818
1819

1820
1821

1822

1823
1824
1825
1826

1827
1828
1829

1830

1831

1832

1833
1834

1835
1836

1837
1838

1839

1840
1841
1842
1843
1844

1845
1846

1847
1848

1849

AND (d.parent = ro.id AND UPPER (d.value) LIKE UPPER
(''Sdescription''))
AND (ro.id IN (SELECT classifiedObject FROM Classification
WHERE classificationNode IN (SELECT id
FROM ClassificationNode WHERE path LIKE
''SclassificationPathl%'')))
</rim:QueryExpression>
</rim:AdhocQuery>
</rim:RegistryObjectList>
</SubmitObjectsRequest>

Listing 1: Example of Stored Query Submission

The above query takes parameters $objectType, $name, $description and $classificationPath1 and find
all objects for that match specified objectType, name, description and classification.

6.3.1.2 Canonical Context Parameters

A query MAY contain one or more context parameters as defined in this section. Context parameters are
special query parameters whose value does not need to be supplied by the client. Instead the value for a
context parameter is supplied by the registry based upon the context within which the client request is
being processed.

When processing a query, a registry MUST replace all context parameters present in the query with the
context sensitive value for the parameter. A registry MUST ignore any context parameter values supplied
by the client.

Context Parameter Replacement Value
$currentUser Must be replaced with the id attribute of the user
associated with the query.
$currentTime Must be replaced with the currentTime. The time
format is same as the format defined for the
timestamp attribute of AuditableEvent class.

6.3.2 Invoking a Stored Query

A stored query is invoked using the AdhocQueryRequest with the following constraints:

» The <rim:AdhocQuery> element MUST not contain a <rim:queryExpression> element.

« The <rim:AdhocQuery> element's id attribute value MUST match the id attribute value of the stored
query.

« The <rim:AdhocQuery> element MAY have a Slot for each non-context parameter defined for the
stored query being invoked. These Slots provide the value for the query parameters.

6.3.2.1 Specifying Query Invocation Parameters

A stored query MAY be defined with zero or more parameters. A client may specify zero or more of the
parameters defined for the stored query when submitting the AdhocQueryRequest for the stored query. It
is important to note that the client MAY specify fewer parameters than those declared for the stored
query. A registry MUST prune any predicates of the stored query that contain parameters that were not
supplied by the client during invocation of the stored query.

In essence, the client may narrow or widen the specificity of the search by supplying more or less
parameters.

A client specifies a query invocation parameter by using a Slot whose name matches the parameter
name and whose value MUST be a single value that matches the specified value for the parameter.

A registry MUST ignore any parameters specified by the client for a stored query that do not match the

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 55 of 129

1850
1851

1852
1853

1854

1855
1856

1857

1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

1889

1890
1891

1892

1893
1894
1895
1896
1897
1898
1899

1900

1901
1902

parameters defined by the stored query.
The following listing shows an example of how the stored query shown earlier is invoked. It shows:

- The stored query being identified by the value of the canonical slot with name
"urn:oasis:names:tc:ebxml-regrep:rs:AdhocQueryRequest:queryld"

+ The value for the $name parameter being supplied

« The value of other parameters defined by the query not being supplied. This indicates that the client
does not wish to use those parameters as search criterea.

<AdhocQueryRequest xmlns='"urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
xmlns:lcm="urn:oasis:names:tc:ebxml-regrep:xsd:1lcm:3.0"
xmlns:query="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
xmlns:rs="urn:oasis:names:tc:ebxml-regrep:xsd:rs:3.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0
http://0asis-open.org/committees/regrep/documents/3.0/schema/query.xsd">
<rs:RequestSlotList>
<rim:Slot name=''urn:oasis:names:tc:ebxml-
regrep:rs:AdhocQueryRequest:queryId'">
<rim:ValueList>
<rim:Value>urn:freebxml:registry:query:BusinessQuery</rim:Value>
</rim:ValueList>
</rim:Slot>
<rim:Slot name="S$name">
<rim:ValueList>
<rim:Value>%ebXML% </rim:Value>
</rim:ValueList>
</rim:Slot>
</rs:RequestSlotList>
<query:ResponseOption returnComposedObjects="true"
returnType="LeafClassWithRepositoryItem" />
<rim:AdhocQuery id="temporaryId">
<rim:QueryExpression queryLanguage="urn:oasis:names:tc:ebxml-
regrep:QueryLanguage:SQL-92">
<!-- No need for an actual query since it is fetched from registry
using the queryId -->
</rim:QueryExpression>
</rim:AdhocQuery>
</AdhocQueryRequest>

Listing 2: Example of Stored Query Invocation

6.3.3 Response to Stored Query Invocation

A registry MUST send a standard AdhocQueryResponse when a client invokes a stored query using an
AdhocQueryRequest.

6.3.4 Access Control on a Stored Query

A stored query is a RegistryObject. Like all RegistryObjects, access to the stored query is governed by
the Access Control Policy defined the stored query. By default a stored query is assigned the default
Access Control Policy that allows any client to read and invoke that query and only the owner of the
query and the Registry Administrator role to update or delete the query. The owner of the query may
define a custom Access Control Policy for the query that restricts the visibility of the query, and ability to
invoke it, to specific users, roles or groups. Thus the owner of the query or the Registry Administrator
may control who gets to invoke which stored queries.

6.3.5 Canonical Query: Get Client’s User Object
A registry MUST support a canonical stored query with

id="urn:oasis:names:tc:ebxml-regrep:query:GetCallersUser".

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 56 of 129

1903
1904
1905

1906
1907
1908

1909
1910
1911
1912
1913
1914
1915
1916

1917

1918

1919
1920
1921
1922

1923
1924

1925
1926

1927

1928
1929

1930

1931
1932

1933
1934
1935

1936
1937

1938

1939
1940

1941

1942

1943
1944
1945
1946

This query MUST return the User object associated with the client invoking the stored query. The client
MUST not provide any parameters for this query. The stored query SHOULD use the canonical context
parameter $currentUser.

The following is a non-normative example of a stored SQL query that MAY be used by a registry for this
canonical stored query:

<rim:AdhocQuery id="urn:oasis:names:tc:ebxml-
regrep:query:GetCallersUser">
<rim:QueryExpression
queryLanguage="urn:oasis:names:tc:ebxml-regrep:QueryLanguage:SQL-
92">
SELECT u.* FROM User u WHERE u.id = S$currentUser;
</rim:QueryExpression>
</rim:AdhocQuery>

Note that a registry MAY use an equivalent stored filter query instead of a stored SQL query.

6.4 SQL Query Syntax

An ebXML Registry MAY support SQL as a supported query syntax within the <rim:queryExpression>
element of AdhocQueryRequest. This section normatively defines the SQL syntax that an ebXML
Registry MAY support. Note that the support for SQL syntax within a registry does not imply a
requirement that the registry must use a relational database in its implementation.

The registry SQL syntax is a proper subset of the “SELECT” statement of Intermediate level SQL as
defined by ISO/IEC 9075:1992, Database Language SQL [SQL].

The terms below enclosed in angle brackets are defined in [SQL] or in [SQL/PSM]. The SQL query
syntax conforms to the <query specification> with the following additional restrictions:

1. A <derived column> MAY NOT have an <as clause>.

2. A <table expression> does not contain the optional <group by clause> and <having clause>
clauses.

A <table reference> can only consist of <table name> and <correlation name>.

4. A <table reference> does not have the optional AS between <table name> and <correlation
name>.

5. Restricted use of sub-queries is allowed by the syntax as follows. The <in predicate> allows for the
right hand side of the <in predicate> to be limited to a restricted <query specification> as defined
above.

As defined by [SQL], a registry MUST process table names and attribute names in a case insensitive
manner.

6.4.1 Relational Schema for SQL Queries

The normative Relational Schema definition that is the target of registry SQL queries can be found at the
following location on the web:

http://www.oasis-open.org/committees/regrep/documents/3.0/sql/database.sql

6.4.2 SQL Query Results

The result of an SQL query resolves to a collection of objects within the registry. It never resolves to
partial attributes. The objects related to the result set may be returned as an ObjectRef, RegistryObject
or leaf class depending upon the returnType attribute of the responseOption parameter specified by the
client on the AdHocQueryRequest. The entire result set is returned as an <rim:RegistryObjectList>.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 57 of 129

http://www.oasis-open.org/committees/regrep/documents/2.1/sql/database.sql

1947

1948
1949
1950

1951
1952

1953
1954
1955
1956

1957
1958

1959

1960
1961

1962
1963
1964

1965

1966
1967
1968
1969
1970
1971

1972

1973

1974

1975
1976
1977

1978
1979
1980

1981
1982

1983
1984
1985

1986

1987
1988

1989

1990
1991
1992
1993
1994
1995
1996

6.5 Filter Query Syntax

This section normatively defines an XML syntax for querying an ebXML Registry called Filter Query
syntax. An ebXML Registry MUST support the Filter Query syntax as a supported query syntax within
the <rim:queryExpression> element of AdhocQueryRequest.

The Filter Query syntax is defined in [RR-QUERY-XSD] and is derived from a mapping from [ebRIM] to
XML Schema following certain mapping patterns.

The Filter Query operational model views the network of RegistryObjects in the registry as a virtual XML
document and a query traverses a specified part of the tree and prunes or filters objects from the virtual

document using filter expressions and ultimately returns a collection of objects that are left after filtering

out all objects that do not match the filters specified in the query.

Unlike SQL query syntax, the filter query syntax does not support joins across classes. This constrains
the expressive capabilities of the query and may also be somehat less efficient in processing.

6.5.1 Filter Query Structure

The <rim:queryExpression> element of AdhocQueryRequest MUST contain a Query element derived
from the <query:RegistryObjectQueryType> type.

A Query element MAY contain a <query:PrimaryFilter> element and MAY contain additional Filter,
Branch and Query elements within it as shown in the asbtract example below. The normative schema is
defined by [RR-QUERY-XSD].

<${QueryElement}>
<PrimaryFilter ... />
<${OtherFilterElement} ... />
<${BranchElement} .../>
<${QueryElement} ... />

</${QueryElement}>

The role of Query, Filter and Branch elements will be defined next.

6.5.2 Query Elements

A Query element is the top level element in the Filter Query syntax to query the registry. The [RR-
QUERY-XSD] XML Schema defines a Query element for the RegistryObject class and all its descendant
classes as defined by [ebRIM] using the following pattern:

» For each class in model descendant from RegistryObject class define a complexType with name
<class>QueryType. For example there is an OrganizationQueryType complexType defined for the
Organization class in [ebRIM].

« The QueryType of a descendant of RegistryObject class MUST extend the QueryType for its super
class. For example the OrganizationQueryType extends the RegistryObjectQueryType.

» For RegistryObject class and each of its descendants define an element with name <class>Query
and with type <class>QueryType. For example the OrganizationQuery element is defined with type
OrganizationQueryType.

The class associated with a Query element is referred to as the Query domain class.

The following example shows the Query syntax where the Query domain class is the Organization class
defined by [ebRIM]:

<complexType name="OrganizationQueryType'">
<complexContent>
<extension base="tns:RegistryObjectQueryType">
...Relevant Filters, Queries and Branches are defined here...
</extension>
</complexContent>
</complexType>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 58 of 129

1997
1998

1999
2000

2001

2002
2003
2004
2005

2006
2007

2008
2009
2010
2011

2012
2013
2014
2015
2016

2017
2018

2019
2020

2021
2022
2023
2024

2025
2026

2027
2028

2029

2030
2031

2032

2033
2034
2035
2036
2037

2038
2039

2040
2041

2042
2043
2044
2045
2046
2047

2048

2049

<element name='"OrganizationQuery'" type='"tns:OrganizationQueryType'" />

A Query element MAY have Filter, Branch or nested Query Elements. These are described in
subsequent sections.

6.5.3 Filter Elements

A Query element MAY contain one or more Filter sub-elements. A Filter element is used to filter or select
a subset of instances of a specific [ebRIM] class. The class that a Filter filters is referred to as the Filter
domain class. A Filter element specifies a restricted predicate clause over the attributes of the Filter
domain class.

[RR-QUERY-XSD] XML Schema defines zero or more Filter elements within a Query element definition
using the following pattern:

« PrimaryfFilter: A Filter element is defined within the RegistryObjectQueryType with name
PrimaryfFilter. This Filter is used to filter the instances of the Query domain class based upon the
value of its primitive attributes. The cardinality of the Filter element is zero or one. The PrimaryFilter
element is inherited by all descendant QueryTypes of RegistryObjectQueryType.

» Additional Filters: Additional Filters in a Query element used to filter the instances of the Query
domain class based upon whether the candidate domain class instance has a referenced object that
satisfies the additional filter.

Additional filter elements are defined for those attributes of the Query domain class that satisfy all of
the following criterea:

« The attribute's domain is not a primitive type (e.g. string, float, dateTime, int etc.).
« The attribute's domain class is not RegistryObject or its descendant.

« The attribute's domain class does not have any reference attributes (use Branch or sub-Query if
attribute's domain class has reference attributes).

The attribute for which the Filter is defined is referred to as the Filter domain attribute. The domain
class of the Filter domain attribute is the Filter domain class for such Filters. This type of Filter is
used to filter the instances of the Query domain class based upon the attribute values within the
Filter domain class.

« The name of the Filter element is <Filter Domain Attribute Name>Filter.
« The type of the Filter element is the FilterType complex type that is decsribed in 6.5.3.1.

« The cardinality of the Filter element matches the cardinality of the Filter domain attribute in the
Query domain class.

The following example shows the how [RR-QUERY-XSD] XML Schema uses the above pattern to define
Filters for the OrganizationQueryType for the Organization class defined by [ebRIM].

<complexType name="OrganizationQueryType">
<complexContent>
<extension base="tns:RegistryObjectQueryType">
<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="AddressFilter" type="tns:FilterType"/>
<element maxOccurs="unbounded" minOccurs="0"
name="TelephoneNumberFilter" type="tns:FilterType"/>
<element maxOccurs="unbounded" minOccurs="0"
name="EmailAddresseFilter" type="tns:FilterType"/>
...Branches and sub-Queries go here...
</sequence>
</extension>
</complexContent>
</complexType>

The following UML class diagram describing the Filter class structure as defined in [RR-QUERY-XSD]

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 59 of 129

2050
2051

2052
2053

2054

2055

2056

2057

2058

2059

2060
2061
2062

2063

2064

2065

2066

2067
2068
2069
2070

XML Schema. Note that the classes whose name ends in “Type” map to complexTypes and other Filter
classes map to elements in the [RR-QUERY-XSD] XML Schema.

FilterType

+hegate:bhaolean

Heftidause

rightClause

SimpleFilterType

CompoundFilter

+targetAttribute: string
+ Comparatar:string

+rightFilter:FilterTyae
+leftFilter:FiterType
+logicalQperatar: string

S—_

EooleanFilter

DateTimeFilter

StringFilter

IntegerFilter

FloatFilter

+walue:boalean

+walle: datetime

+walue:string

+wvalueinteger

+walle:float

6.5.3.1

Figure 12: Filter Type Hierarchy

FilterType

The FilterType is an abstract complexType that is the root type in the inheritence hierarchy for all Filter

types.

6.5.3.1.1

Parameters:

= negate: This parameter specifies that the boolean value that the Filter evaluates to
MUST be negated to complete the evaluation of the filter. It is functionally equivalent to
the NOT operator in SQL syntax.

6.5.3.2

SimpleFilterType

The SimpleFilter is the abstract base type for several concrete Filter types defined for primitive type such
as boolean, float, integer and string.

6.5.3.2.1

Parameters:

= domainAttribute: This parameter specifies the attribute name of a primitive attribute
within the Filter domain class. A registry MUST return an InvalidQueryException if this
parameter's value does not match the name of primitive attribute within the Filter domain
class. A registry MUST perform the attribute name match in a case insensitive manner.

regrep-rs

Copyright © OASIS Open 2007. All Rights Reserved.

Feb 22, 2007
Page 60 of 129

2071
2072
2073

2074
2075
2076
2077
2078
2079
2080

2081
2082

2083

2084

2085

2086
2087
2088

2089
2090

2091
2092

2093

2094

2095

2096
2097
2098

2099
2100

2101
2102

2103

2104

2105

2106

2107
2108

2109

= comparator: This parameter specifies the comparison operator for comparing the value
of the attribute with the value supplied by the filter. The following comparators are
defined:

e LE: abbreviation for LessThanOrEqual

e LT: abbreviation for LessThan

e GE: abbreviation for GreaterThanOrEqual

» GT: abbreviation for GreaterThan

* EQ: abbreviation for Equal

* NE: abbreviation for NotEqual

» Like: Same as LIKE operator in SQL-92. MUST only be used in StringFilter.

* NotLike: Same as NOT LIKE operator in SQL-92. MUST only be used in
StringFilter.

6.5.3.3 BooleanFilter

The BooleanFilter MUST only be used for matching primitive attributes whose domain is of type boolean.

6.5.3.3.1 Parameters:
= value: This parameter specifies the value that MUST be compared with the attribute
value being tested by the Filter. It MUST be a boolean value.

The following example shows the use of a BooleanFilter to match the isinternal attribute of the
ClassificationScheme class defined by [ebRIM]:

<BooleanFilter
domainAtribute="isInternal" comparator="EQ" value="true"/>

6.5.3.4 FloatFilter

The FloatFilter MUST only be used for matching primitive attributes whose domain is of type float.

6.5.3.4.1 Parameters:
= value: This parameter specifies the value that MUST be compared with the attribute
value being tested by the Filter. It MUST be a float value.

The following example shows the use of a FloatFilter to match fictitious amount float attribute since
[ebRIM] currently has no float attributes defined:

<FloatFilter
domainAtribute="amount" comparator="GT" value="9.99"/>

6.5.3.5 IntegerFilter

The IntegerFilter MUST only be used for matching primitive attributes whose domain is of type integer.

6.5.3.5.1 Parameters:

= value: This parameter specifies the value that MUST be compared with the attribute
value being tested by the Filter. It MUST be an integer value.

The following example shows the use of a BooleanFilter to match a fictitious count integer attribute since

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 61 of 129

2110 [ebRIM] currently has no integer attributes defined:

2111 <IntegerFilter
2112 domainAtribute="amount" comparator="LT" value="100"/>
2113

2114 6.5.3.6 DateTimeFilter

2115 The DateTimeFilter MUST only be used for matching primitive attributes whose domain is of type
2116 datetime.

2117 6.5.3.6.1 Parameters:

2118 = value: This parameter specifies the value that MUST be compared with the attribute
2119 value being tested by the Filter. It MUST be a datetime value.

2120 The following example shows the use of a DateTimeFilter to match a the timestamp attribute of the
2121 Auditable class defined by [ebRIM] where the timestamp value is greater than (later than) the specified
2122 datetime value:

2123 <DateTimeFilter

2124 domainAtribute="timestamp"

2125 comparator="GT" value="1997-07-16T19:20+01:00"/>
2126

2127 6.5.3.7 StringFilter

2128 The StringFilter MUST only be used for matching primitive attributes whose domain is of type string.

2129 6.5.3.7.1 Parameters:
2130 = value: This parameter specifies the value that MUST be compared with the attribute
2131 value being tested by the Filter. It MUST be a string value.

2132 The following example shows the use of a StringFilter to match a the firstName attribute of the Person
2133 class defined by [ebRIM] where the firstName value matches the pattern specified by the value:

2134 <StringFilter

2135 domainAtribute="firstName"

2136 comparator="Like" value="Farid%"/>
2137

2138 6.5.3.8 CompoundFilter

2139 The CompoundFilter MAY be used to specify a boolean conjunction (AND) or disjunction (OR) between
2140 two Filters. It allows a query to express a combination of predicate clauses within a Filter Query.

2141 6.5.3.8.1 Parameters:

2142 = LeftFilter: This parameter specifies the first of two Filters for the CompoundFilter.

2143 = RightFilter: This parameter specifies the second of two Filters for the CompoundFilter.
2144 = JogicalOperator: This parameter specifies the logical operator. The value of this

2145 parameter MUST be “AND” or “OR”

2146 The following example shows the use of a BooleanFilter to match the isinternal attribute of the
2147 ClassificationScheme class defined by [ebRIM]:

2148 <CompoundFilter logicalOperator="AND">
2149 <LeftFilter domainAttribute="targetObject" comparator="EQ"
2150 value="${REGISTRY OBJECT ID}" type="StringFilter"/>
2151 <RightFilter domainAttribute="associationType" comparator="EQ"
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 62 of 129

2193
2194
2195
2196
2197
2198

2199
2200

2201
2202

2203

Value=”${HAS_MEMBER_ASSOC_TYPE_NODE_ID}” type="StringFilter"/>
</CompoundFilter>

6.5.4 Nested Query Elements

A Query element MAY contain one or more nested Query sub-elements. The purpose of the nested
Query element is to allow traversal of the branches within the network of relationships defined by the
information model and prune or filter those branches that do not meet the predicates specified in the
corresponding Branch element.

The [RR-QUERY-XSD] XML Schema defines zero or more nested Query elements within a Query
element definition using the following pattern:

» A nested Query element is defined for each attribute of the Query domain class that satisfy all of the
following criterea:

« The attribute's domain class is a descendant type of the RegistryObjectType.

« The attribute's domain class contains reference attributes that link the domain class to some third
class via the reference.

The attribute for which the nested Query is defined is referred to as the Nested Query domain
attribute. The domain class of the nested Query domain attribute is the Query domain class for the
nested Query element.

« The name of the nested Query element is <Nested Query Domain Attribute Name>Query.

» The type of the nested Query element matches the QueryType for the domain class for the Query
domain attribute.

» The cardinality of the nested Query element matches the cardinality of the nested Query domain
attribute in the Query domain class.

The following example shows the how [RR-QUERY-XSD] XML Schema uses the above pattern to define
nested Query elements for the OrganizationQueryType for the Organization class defined by [ebRIM].

<complexType name='"OrganizationQueryType">
<complexContent>
<extension base="tns:RegistryObjectQueryType">
<sequence>
...Filters and Branches go here ...
<element maxOccurs="1" minOccurs="0"
name="ParentQuery" type="tns:0OrganizationQueryType'"/>
<element maxOccurs="unbounded" minOccurs="0"
name="ChildOrganizationQuery" type="tns:0rganizationQueryType'/>
<element maxOccurs="1" minOccurs="0"
name="PrimaryContactQuery" type="tns:PersonQueryType'/>
</sequence>
</extension>
</complexContent>
</complexType>

6.5.5 Branch Elements

A Query element MAY contain one or more Branch sub-elements. A Branch element is similar to the
nested Query element as it too can have sub-elements that are Filter, Branch and subQuery elements.
However, it is different from Query elements because its type is not a descendant type of
RegistryObjectQueryType. The purpose of the branch element is to allow traversal of the branches within
the network of relationships defined by the information model and prune or filter those branches that do
not meet the predicates specified in the corresponding Branch element.

The [RR-QUERY-XSD] XML Schema defines zero or more Branch elements within a Query element
definition using the following pattern:

« A Branch element is defined for each attribute of the Query domain class that satisfies all of the
following criterea:

« The attribute's domain is not a primitive type (e.g. String, float, dateTime, int etc.).

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 63 of 129

2204
2205

2206
2207

2208

2209
2210

2211
2212

2213

2214
2215
2216
2217
2218

2219

2220
2221

2222
2223
2224
2225
2226
2227
2228

2229

2230

2231
2232
2233

2234

2235
2236

2237

2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253

2254

2255

2256

« The attribute's domain class contains reference attributes that link the domain class to some third
class via the reference.

The attribute for which the Branch is defined is referred to as the Branch domain attribute. The
domain class of the Branch domain attribute is the Branch domain class for the Branch element.

« The name of the Branch element is <Branch Domain Attribute Name>Branch.

« The cardinality of the Branch element matches the cardinality of the Branch domain attribute in the
Query domain class.

The following example shows how the [RR-QUERY-XSD] XML Schema uses the above pattern to define
Branches for the RegistryObjectQueryType for the RegistryObject class defined by [ebRIM].

<complexType name="RegistryObjectQueryType'>
<complexContent>
<extension base="tns:FilterQueryType">
<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="SlotBranch" type="tns:SlotBranchType"/>
<element maxOccurs="1" minOccurs="0" name='NameBranch"
type="tns:InternationalStringBranchType" />
<element maxOccurs="1" minOccurs="0" name="DescriptionBranch"
type="tns:InternationalStringBranchType" />
. Relevant Filters, queries go here...
</sequence>
</extension>
</complexContent>
</complexType>

6.6 Query Examples

This section provides examples in both SQL and Filter Query syntax for some common query use cases.
Each example gives the SQL syntax for the query followed by blank line followed by the equivalent Filter
Query syntax for it.

6.6.1 Name and Description Queries

The following queries matches all RegistryObject instances whose name contains the word ‘Acme’ and
whose description contains the word “bicycle”.

SELECT ro.* from RegistryObject ro, Name nm, Description d WHERE
nm.value LIKE '%Acme%' AND

d.value LIKE '%bicycle%' AND

(ro.id = nm.parent AND ro.id = d.parent);

<RegistryObjectQuery>
<NameBranch>
<LocalizedStringFilter comparator="Like" domainAttribute="value"
value="%Acme%" xsi:type="StringFilterType"/>
</NameBranch>
<DescriptionBranch>
<LocalizedStringFilter comparator="Like" domainAttribute="value"
value="%bicycle%" xsi:type="StringFilterType"/>
</DescriptionBranch>
</RegistryObjectQuery>

6.6.2 Classification Queries

This section describes various classification related queries.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 64 of 129

2257

2258
2259

2260

2261
2262
2263

2264

2265

2266
2267

2268

2269
2270
2271
2272
2273
2274

2275

2276

2277
2278
2279
2280

2281

2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308

2309

2310

2311

6.6.2.1 Retrieving ClassificationSchemes

The following query retrieves the collection of all ClassificationSchemes. Note that the above query may
also specify additional Filters, Querys and Branches as search criterea if desired.

SELECT scheme.* FROM ClassificationScheme scheme;

<ClassificationSchemeQuery/>

6.6.2.2 Retrieving Children of Specified ClassificationNode

The following query retrieves the children of a ClassificationNode given the “id” attribute of the parent
ClassificationNode:

SELECT cn.* FROM ClassificationNode cn WHERE parent = ${PARENT_ ID};

<ClassificationNodeQuery>
<PrimaryFilter comparator="Like" domainAttribute="parent"
value="S${PARENT ID}" xsi:type="StringFilterType"/>
</ClassificationNodeQuery>

6.6.2.3 Retrieving Objects Classified By a ClassificationNode

The following query retrieves the collection of ExtrinsicObjects that are classified by the Automotive
Industry and the Japan Geography. Note that the query does not match ExtrinsicObjects classified by
descendant ClassificationNodes of the Automotive Industry and the Japan Geography. That would
require a slightly more complex query.

SELECT eo.* FROM ExtrinsicObject eo WHERE
id IN (SELECT classifiedObject FROM Classification

WHERE
classificationNode IN (SELECT id FROM ClassificationNode
WHERE path = ‘/S{GEOGRAPHY_SCHEME_ID}/Asia/Japan’))

AND
id IN (SELECT classifiedObject FROM Classification

WHERE
classificationNode IN (SELECT id FROM ClassificationNode
WHERE path = ‘/${ INDUSTRY_SCHEME_ID }/Automotive’))

<ExtrinsicObjectQuery>
<ClassificationQuery>
<ClassificationNodeQuery>
<PrimaryFilter comparator="EQ" domainAttribute="path"
value="/${GEOGRAPHY SCHEME ID}/Asia/Japan"
xsi:type="StringFilterType'"/>
</ClassificationNodeQuery>
</ClassificationQuery>
<ClassificationQuery>
<ClassificationNodeQuery>
<PrimaryFilter comparator="EQ" domainAttribute="path"
value="/${INDUSTRY_ SCHEME ID}/Automotive"
xsi:type="StringFilterType"/>
</ClassificationNodeQuery>
</ClassificationQuery>
</ExtrinsicObjectQuery>

6.6.2.4 Retrieving Classifications that Classify an Object

The following query retrieves the collection of Classifications that classify a object with id matching ${ID}:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 65 of 129

2312

2313 SELECT c.* FROM Classification c

2314 WHERE c.classifiedObject = ${ID};

2315

2316 <ClassificationQuery>

2317 <PrimaryFilter comparator="EQ" domainAttribute="classifiedObject"
2318 value="${ID}" xsi:type="StringFilterType'"/>

2319 </ClassificationQuery>

2320

2321 6.6.3 Association Queries

2322 This section describes various Association related queries.

2323 6.6.3.1 Retrieving All Associations With Specified Object As Source

2324 The following query retrieves the collection of Associations that have the object with id matching
2325 ${SOURCE_ID} as their source:

2326

2327 SELECT a.* FROM Association a WHERE sourceObject = ${SOURCE_ID}
2328

2329 <AssociationQuery>

2330 <PrimaryFilter comparator="EQ" domainAttribute="sourceObject"
2331 value="${SOURCE_ID}" xsi:type="StringFilterType"/>

2332 </AssociationQuery>

2333

2334 6.6.3.2 Retrieving All Associations With Specified Object As Target

2335 The following query retrieves the collection of Associations that have the object with id matching
2336 ${TARGET _ID} as their target:

2337

2338 SELECT a.* FROM Association a WHERE targetObject = ${TARGET_ID}
2339

2340 <AssociationQuery>

2341 <PrimaryFilter comparator="EQ" domainAttribute="targetObject"
2342 value="${TARGET_ ID}" xsi:type="StringFilterType"/>

2343 </AssociationQuery>

2344

2345 6.6.3.3 Retrieving Associated Objects Based On Association Type
2346

2347 Select Associations whose associationType attribute value matches the value specified by the
2348 ${ASSOC_TYPE_ID}. The ${ASSOC_TYPE_ID} value MUST reference a ClassificationNode that is a
2349 descendant of the canonical AssociationType ClassificationScheme.

2350

2351 SELECT a.* FROM Association a WHERE

2352 associationType = ${ASSOC_TYPE_ID}

2353

2354 <AssociationQuery>

2355 <PrimaryFilter comparator="EQ" domainAttribute="associationType"
2356 value="${ASSOC_TYPE_ID}" xsi:type="StringFilterType"/>

2357 </AssociationQuery>

2358

2359

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 66 of 129

2360

2361
2362

2363

2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380

2381

2382

2383
2384

2385

2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402

2403

2404
2405

2406

2407
2408

2409

2410
2411
2412
2413
2414
2415
2416
2417

6.6.3.4 Complex Association Query

The various forms of Association queries may be combined into complex predicates. The following query
selects Associations that match specified specific sourceObject, targetObject and associationType:

SELECT a.* FROM Association a WHERE
sourceObject = ${SOURCE ID} AND
targetObject = ${TARGET ID} AND
associationType = S{ASSOC TYPE ID};

<AssociationQuery>
<PrimaryFilter logicalOperator="AND" xsi:type='"CompoundFilterType'>
<LeftFilter comparator="EQ" domainAttribute="sourceObject"
xsi:type="StringFilterType" value="${SOURCE ID}"/>
<RightFilter logicalOperator="AND" xsi:type="CompoundFilterType">
<LeftFilter comparator="EQ" domainAttribute="targetObject"
xsi:type="StringFilterType" value="${TARGET ID}"/>
<RightFilter comparator="EQ" domainAttribute="associationType"
xsi:type="StringFilterType" value="${ASSOC TYPE ID}"/>
</RightFilter> - a
</PrimaryFilter>
</AssociationQuery>

6.6.4 Package Queries

The following query retrieves all Packages that have as member the RegistryObject specified by
${REGISTRY_OBJECT_ID}:

SELECT p.* FROM Package p, Association a WHERE
a.sourceObject = p.id AND
a.targetObject = S{REGISTRY OBJECT ID} AND
a.associationType = ${HAS MEMBER ASSOC TYPE NODE ID};

<RegistryPackageQuery>
<SourceAssociationQuery>
<PrimaryFilter logicalOperator="AND'" xsi:type='"CompoundFilterType'>
<LeftFilter comparator="EQ" domainAttribute="targetObject"
value="${REGISTRY OBJECT ID}"
xsi:type="StringFilterType"/>
<RightFilter comparator="EQ'" domainAttribute="associationType"
value="${HAS MEMBER ASSOC TYPE NODE ID}"
xsi:type="StringFilterType"/>
</PrimaryFilter>
</SourceAssociationQuery>
</RegistryPackageQuery>

Note that the ${HAS_MEMBER_ASSOC_TYPE_NODE_ID} is a placeholder for the value of the id
attribute of the canonical HasMember AssociationType ClassificationNode.

6.6.5 ExternalLink Queries

The following query retrieves all ExternalLinks that serve as ExternalLink for the RegistryObject specified
by ${REGISTRY_OBJECT_ID}:

SELECT el.* From ExternallLink el, Association a WHERE
a.sourceObject = el.id AND
a.targetObject = ${REGISTRY OBJECT ID} AND
a.associationType = ${EXTERNALLY LINKS ASSOC_TYPE NODE ID};

<ExternalLinkQuery>
<SourceAssociationQuery>
<PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType'">

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 67 of 129

2418
2419
2420
2421
2422
2423
2424
2425
2426

2427

2428
2429

2430
2431

2432

2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449

2450

2451

2452
2453

2454

2455
2456
2457
2458
2459
2460
2461
2462
2463
2464

2465

<LeftFilter comparator="EQ" domainAttribute="targetObject"
value="${REGISTRY OBJECT ID}"
xsi:type="StringFilterType"/>
<RightFilter comparator="EQ" domainAttribute="associationType"
value="${EXTERNALLY LINKS ASSOC TYPE NODE ID}"
xsi:type="StringFilterType"/>
</PrimaryFilter>
</SourceAssociationQuery>
</ExternalLinkQuery>

Note that the ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID} is a placeholder for the value of the id

attribute of the canonical ExternallyLinks AssociationType ClassificationNode.

The following query retrieves all ExtrinsicObjects that are linked to an ExternalLink specified by

${EXTERNAL_LINK_ID}:

SELECT eo.* From ExtrinsicObject eo, Association a WHERE
a.sourceObject = S{EXTERNAL LINK ID} AND
a.targetObject = eo.id AND a
a.associationType = S${EXTERNALLY LINKS ASSOC TYPE NODE ID};

<ExtrinsicObjectQuery>
<TargetAssociationQuery>

<PrimaryFilter logicalOperator="AND'" xsi:type="CompoundFilterType'>

<LeftFilter comparator="EQ" domainAttribute="sourceObject"
value="S${EXTERNAL LINK ID}"
xsi:type="StringFilterType'"/>

<RightFilter comparator="EQ" domainAttribute="associationType"
value="${EXTERNALLY LINKS ASSOC TYPE NODE ID}"
xsi:type="StringFilterType"/> - B

</PrimaryFilter>
</TargetAssociationQuery>
</ExtrinsicObjectQuery>

6.6.6 Audit Trail Queries

The following query retrieves all the AuditableEvents for the RegistryObject specified by
${REGISTRY_OBJECT_ID}:

SELECT ae.* FROM AuditableEvent ae, AffectedObject ao WHERE
ao.eventId = ae.id AND
ao.id = ${REGISTRY OBJECT ID}

<AuditableEventQuery>
<AffectedObjectQuery>
<PrimaryFilter comparator="EQ'" domainAttribute="id"
value="${REGISTRY OBJECT ID}" xsi:type="StringFilterType"/>
</AffectedObjectQuery>
</AuditableEventQuery>

regrep-rs
Copyright © OASIS Open 2007. All Rights Reserved.

Feb 22, 2007
Page 68 of 129

2466

2467

2468
2469
2470
2471

2472
2473
2474
2475

2476

2477

2478

2479
2480

2481

2482
2483
2484

2485

2486
2487
2488

2489

2490
2491

2492

2493
2494
2495
2496

2497

2498
2499
2500
2501
2502

7 Event Notification Protocols

This chapter defines the Event Notification feature of the OASIS ebXML Registry.

Event Notification feature allows OASIS ebXML Registries to notify its users and / or other registries
about events of interest. It allows users to stay informed about registry events without being forced to
periodically poll the registry. It also allows a registry to propagate internal changes to other registries
whose content might be affected by those changes.

ebXML registries support content-based Notification where interested parties express their interest in
form of a query. This is different from subject—based (sometimes referred to as topic-based) notification,
where information is categorized by subjects and interested parties express their interests in those
predefined subjects.

7.1 Use Cases

The following use cases illustrate different ways in which ebXML registries notify users or other registries.

7.1.1 CPP Has Changed

A user wishes to know when the CPP [ebCPP] of a partner is updated or superseded by another CPP.
When that happens he may wish to create a CPA [ebCPP] based upon the new CPP.

7.1.2 New Service is Offered

A user wishes to know when a new plumbing service is offered in her town and be notified every 10 days.
When that happens, she might try to learn more about that service and compare it with her current
plumbing service provider’s offering.

7.1.3 Monitor Download of Content

User wishes to know whenever his CPP [ebCPP] is downloaded in order to evaluate on an ongoing basis
the success of his recent advertising campaign. He might also want to analyze who the interested parties
are.

7.1.4 Monitor Price Changes

User wishes to know when the price of a product that she is interested in buying drops below a certain
amount. If she buys it she would also like to be notified when the product has been shipped to her.

7.1.5 Keep Replicas Consistent With Source Object

In order to improve performance and availability of accessing some registry objects, a local registry MAY
make replicas of certain objects that are hosted by another registry. The registry would like to be notified
when the source object for a replica is updated so that it can synchronize the replica with the latest state
of the source object.

7.2 Registry Events

Activities within a registry result in meaningful events. Typically, registry events are generated when a

registry processes client requests. In addition, certain registry events may be caused by administrative
actions performed by a registry operator. [ebRIM] defines the AuditableEvent class, instances of which
represent registry events. When such an event occurs, an AuditableEvent instance is generated by the

registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 69 of 129

2503

2504
2505
2506
2507

2508
2509
2510

2511

2512

2513
2514
2515

2516

2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541

2542

2543
2544
2545

2546

2547
2548

2549
2550

2551

2552
2553

2554
2555

7.3 Subscribing to Events

A user MAY create a subscription with a registry if he or she wishes to receive notification for a specific
type of event. A user creates a subscription by submitting a Subscription instance to a registry using the
SubmitObjectsRequest. If a Subscription is submitted to a registry that does not support event
notification then the registry MUST return an UnsupportedCapabilityException.

The listing below shows a sample Subscription using a pre-defined SQL query as its selector that will
result in an email notification to the user whenever a Service is created that is classified as a “Plumbing’
service and located in “A Little Town.”

s

The SQL query within the selector in plain English says the following:

Find all Services that are Created AND classified by ClassificationNode
where ClassificationNode's Path ends with string "Plumbing", AND classified by ClassificationNode
where ClassificationNode's Code contains string "A Little Town.”

<rim:Subscription id="${SUBSCRIPTION ID}" selector="${QUERY ID}">
<l--
The selector is a reference to a query object that has the
following query defined
SELECT * FROM Service s, AuditableEvent e, AffectectedObject ao,
Classification c1, Classification c2
ClassificationNode cnl, ClassificationNode cn2 WHERE
e.eventType = 'Created' AND ao.id = s.id AND ao.parent=e.id AND
cl.classifiedObject = s.id AND cl.classificationNode = cnl.id AND
cnl.path LIKE '%Plumbing' AND
c2.classifiedObject = s.id AND c2.classificationNode = cn2.id AND
cn2.path LIKE '%A Little Town%'
-=>
<!-- Next endPoint is an email address -->
<rim:NotifyAction notificationOption="urn:oasis:names:tc:ebxml-
regrep:NotificationOptionType:0Objects"
endPoint="mailto:farrukh.najmi@sun.com"/>
<!-- Next endPoint is a service via reference to its ServiceBinding
object -->
<rim:NotifyAction notificationOption="urn:oasis:names:tc:ebxml-
regrep:NotificationOptionType:0ObjectRefs"
endPoint="urn: freebxml:registry:demoDB:serviceBinding:EpidemicAlertListe
nerServiceBinding" />
</rim:Subscription>

7.3.1 Event Selection

In order to only be notified of specific events of interest, the user MUST specify a reference to a stored
AdHocQuery object via the selector attribute within the Subscription instance. The query determines
whether an event qualifies for that Subscription or not. For details on query syntax see chapter 6.

7.3.2 Notification Action

When creating a Subscription, a user MAY also specify Actions within the subscription that specify what
the registry must do when an event matching the Subscription (subscription event) transpires.

A user MAY omit specifying an Action within a Subscription if he does not wish to be notified by the
registry. A user MAY periodically poll the registry and pull the pending Notifications.

[ebRIM] defines two standard ways that a NotifyAction may be used:

« Email NotifyAction that allows delivery of event notifications via email to a human user or to an
email end point for a software component or agent.

» Service NotifyAction that allows delivery of event notifications via a programmatic interface by
invoking a specified listener web service.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 70 of 129

2556
2557
2558
2559
2560

2561

2562
2563
2564
2565
2566
2567

2568

2569
2570
2571

2572

2573
2574
2575
2576
2577

2578
2579

2580

2581
2582
2583
2584

2585

2586
2587
2588

2589

2590

2591
2592
2593
2594
2595
2596

2597
2598

If the registry supports event notification, at some time after the successful processing of each request, it
MUST check all registered and active Subscriptions and see if any Subscriptions match the event. If a
match is found then the registry performs the Notification Actions required for the Subscription. A registry
MAY periodically perform such checks and corresponding notification actions in a batch mode based
upon registry specific policies.

7.3.3 Subscription Authorization

A registry operator or content owner MAY use custom Access Control Policies to decide which users are
authorized to create a subscription and to what events. A Registry MUST return an
AuthorizationException in the event that an unauthorized user submits a Subscription to a registry. Itis
up to registry implementations whether to honour the existing subscription if an access control policy
governing subscriptions becomes more restrictive after subscription have already been created based on
the older policy.

7.3.4 Subscription Quotas

A registry MAY use registry specific policies to decide an upper limit on the number of Subscriptions a
user is allowed to create. A Registry MUST return a QuotaExceededException in the event that an
authorized user submits more Subscriptions than allowed by their registry specific quota.

7.3.5 Subscription Expiration

Each subscription defines a startTime and and endTime attribute which determines the period within
which a Subscription is active. Outside the bounds of the active period, a Subsription MAY exist in an
expired state within the registry. A registry MAY remove an expired Subscription at any time. In such
cases the identity of a RegistryOperator user MUST be used for the request in order to have sufficient
authorization to remove a user’s Subscription.

A Registry MUST NOT consider expired Subscriptions when delivering notifications for an event to its
Subscriptions. An expired Subscription MAY be renewed by submitting a new Subscription.

7.3.6 Subscription Rejection

A Registry MAY reject a Subscription if it is too costly to support. For instance a Subscription that wishes
to be notified of any change in any object may be too costly for most registries. A Registry MUST return a
SubscriptionTooCostlyException in the event that an Authorized User submits a Subscription that is too
costly for the registry to process.

7.4 Unsubscribing from Events

A user MAY terminate a Subscription with a registry if he or she no longer wishes to be notified of events
related to that Subscription. A user terminates a Subscription by deleting the corresponding Subscription
object using the RemoveObjectsRequest to the registry.

Removal of a Subscription object follows the same rules as removal of any other object.

7.5 Notification of Events

A registry performs the Actions for a Subscription in order to actually deliver the events information to the
subscriber. However, regardless of the specific delivery Action, the registry MUST communicate the
Subscription events. The Subscription events are delivered within a Notification instance as described by
[ebRIM]. In case of Service NotifyAction, the Notification is delivered to a handler service conformant to
the RegistryClient interface. In case of an Email NotifyAction the notification is delivered an email
address.

The listing below shows a sample Notification matching the subscription example in section 7.3:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 71 of 129

2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611

2612

2613
2614
2615
2616

2617

2618
2619
2620
2621
2622
2623

2624

2625
2626
2627
2628
2629

<rim:Notification subscription="${SUBSCRIPTION ID}">
<rim:RegistryObjectList> -
<rim:Service id="£f3373a7b-4958-4e55-8820-d03al191fb76a">
<rim:Name>
<rim:LocalizedString value="A Little Town Plumbing"/>
</rim:Name>
<rim:Classification id="a3373a7b-4958-4e55-8820-d03al191fb76a"
classifiedObject="£3373a7b-4958-4e55-8820-d03a191fb76a"/>
<rim:Classification id="b3373a7b-4958-4e55-8820-d03a191fb76a"
classifiedObject="£f3373a7b-4958-4e55-8820-d03a191fb76a" />
</rim:Service>
</rim:RegistryObjectList>
</rim:Notification>

A Notification MAY contain actual RegistryObjects or ObjectRefs to RegistryObjects within the
<rim:RegistryObjectList>. A client MAY specify the whether they wish to receive RegistryObjects or
ObjectRefs to RegistryObjects using the notificationOption attribute of the Action within the Subscription.
The registry MAY override this notificationOption based upon registry specific operational policies.

7.6 Retrieval of Events

The registry provides asynchronous PUSH style delivery of Notifications via notify Actions as described
earlier. However, a client MAY also use a PULL style to retrieve any pending events for their
Subscriptions. Pulling of events is done using the AdHocQuery protocol and querying the Notification
class. A registry SHOULD buffer undelivered notifications for some period to allow clients to PULL those
notifications. The period that a registry SHOULD buffer undelivered notifications MAY be defined using
registry specific policies.

7.7 Pruning of Events

A registry MAY periodically prune AuditableEvents in order to manage its resources. It is up to the
registry when such pruning occurs. It is up to the registry to determine when undelivered events are
purged. A registry SHOULD perform such pruning by removing the older information in its Audit Trail
content. However, it MUST not remove the original Create Event at the beginning of the audit trail since
the Create Event establishes the owner of the RegistryObject.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 72 of 129

2630

2631
2632
2633
2634

2635
2636
2637
2638

2639

2640
2641

2642
2643

2644
2645
2646
2647

2648

2649

2650

2651

2652
2653
2654
2655

2656
2657
2658
2659

2660

8 Content Management Services

This chapter describes the Content Management services of the ebXML Registry. Examples of Content
Management Services include, but are not limited to, content validation and content cataloging. Content
Management Services result in improved quality and integrity of registry content and metadata as well as
improved ability for clients to discover that content and metadata.

The Content Management Services facility of the registry is based upon a pluggable architecture that
allows clients to publish and discover new Content Management Services as Service objects that
conform to a normative web service interface specified in this chapter. Clients MAY configure a Content
Management Service that is specialized for managing a specific type of content.

8.1 Content Validation

The Content Validation feature provides the ability to enforce domain specific validation rules upon
submitted content and metadata in a content specific manner.

|nvocation Control File

Original
Content Content
m—- Validation =P Success | Failure

Service

Figure 13: Content Validation Service

Content +
Metadata

A registry uses one or more Content Validation Services to automatically validate the RegistryObjects
and repository items when they are submitted to the registry. A registry MUST reject a submission
request in its entirety if it contains invalid data. In such cases a ValidationException MUST be returned to
the client.

Content Validation feature improves the quality of data in the registry.

8.1.1 Content Validation: Use Cases

The following use cases illustrate the Content Validation feature:

8.1.1.1 Validation of HL7 Conformance Profiles

The Healthcare Standards organization HL7 uses content validation to enforce consistency rules and
semantic checks whenever an HL7 member submits an HL7 Conformance Profile. HL7 is also planning
to use the feature to improve the quality of other types of HL7 artifacts.

8.1.1.2 Validation of Business Processes

Content validation may be used to enforce consistency rules and semantic checks whenever a Business
Process is submitted to the registry. This feature may be used by organizations such as UN/CEFACT,
OAGiI, and RosettaNet.

8.1.1.3 Validation of UBL Business Documents

Content validation may be used by the UBL technical committee to enforce consistency rules and

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 73 of 129

2661

2662

2663
2664

2665
2666

2667
2668
2669
2670
2671

2672

2673

2674

2675

2676
2677

2678

2679
2680

2681

2682
2683
2684

2685

2686
2687
2688
2689
2690

semantic checks whenever a UBL business document is submitted to the registry.

8.2 Content Cataloging

The Content Cataloging feature provides the ability to selectively convert submitted RegistryObject and
repository items into metadata defined by [ebRIM], in a content specific manner.

| nvocation Control File

Origina Cataloged
Content Content Content

Content + : Catal oging . Content +
Metadata . Metadata
Service
Figure 14: Content Cataloging Service

A registry uses one or more Content Cataloging Services to automatically catalog RegistryObjects and
repository items. Cataloging creates and/or updates RegistryObject metadata such as ExtrinsicObject or
Classification instances. The cataloged metadata enables clients to discover the repository item based
upon content from the repository item, using standard query capabilities of the registry. This is referred to
as Content-based Discovery.

The main benefit of the Content Cataloging feature is to enable Content-based Discovery.

8.2.1 Content-based Discovery: Use Cases

There are many scenarios where content-based discovery is necessary.

8.2.1.1 Find All CPPs Where Role is “Buyer”

A company that sells a product using the RosettaNet PIP3A4 Purchase Order process wants to find
CPPs for other companies where the Role element of the CPP is that of “Buyer”.

8.2.1.2 Find All XML Schema’s That Use Specified Namespace

A client may wish to discover all XML Schema documents in the registry that use an XML namespace
containing the word “oasis”.

8.2.1.3 Find All WSDL Descriptions with a SOAP Binding

An ebXML registry client is attempting to discover all repository items that are WSDL descriptions that
have a SOAP binding defined. Note that SOAP binding related information is content within the WSDL
document and not metadata.

8.3 Abstract Content Management Service

This section describes in abstract terms how the registry supports pluggable, user-defined Content
Management Services. A Content Management Service is invoked in response to content being
submitted to the registry via the standard Submit/UpdateObjectsRequest method. The Service invocation
is on a per request basis where one request may result in many invocations, one for each RegistryObject
for which a Content Management Service is configured within the registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 74 of 129

2691
2692

2693
2694
2695

2696
2697
2698

2699

2700

2701
2702
2703
2704

2705
2706
2707

2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725

2726

The registry may perform such invocation in one of two ways.

8.3.1

Inline Invocation Model: Content Management Service may be invoked inline with the
processing of the Submit/UpdateObjectsRequest and prior to committing the content. This is
referred to as Inline Invocation Model.

Decoupled Invocation Model: Content Management Service may be invoked decoupled from
the processing of the Submit/UpdateObjectsRequest and some time after committing the
content. This is referred to as Decoupled Invocation Model.

Inline Invocation Model

In an inline invocation model a registry MUST invoke a Content Management Service inline with
Submit/UpdateObjectsRequest processing and prior to committing the Submit/UpdateObjectsRequest.
All metadata and content from the original Submit/UpdateObjectsRequest request or from the Content
Management Service invocation MUST be committed as an atomic transaction.

Figure 15 shows an abstract Content Management Service and how it is used by an ebXML Registry
using an inline invocation model. The steps are as follows:

regrep-rs

Copyright © OASIS Open 2007. All Rights Reserved.

A client submits a Content Management Service S1 to an ebXML Registry. The client
typically belongs to an organization responsible for defining a specific type of content.
For example the client may belong to RosettaNet.org and submit a Content Validation
Service for validating RosettaNet PIPs. The client uses the standard
Submit/UpdateObjectsRequest interface to submit the Service. This is a one-time step to
configure this Content Management Service in the registry.

Once the Content Management Service has been submitted, a potentially different client
may submit content to the registry that is of the same object type for which the Content
Management Service has been submitted. The client uses the standard
Submit/UpdateObjectsRequest interface to submit the content.

The registry determines there is a Content Management Service S1 configured for the
object type for the content submitted. It invokes S1 using a
ContentManagementServiceRequest and passes it the content.

The Content Management Service S1 processes the content and sends back a
ContentManagementServiceResponse.

The registry then commits the content to the registry if there are no errors encountered.

The registry returns a RegistryResponse to the client for the
Submit/UpdateObjectsRequest in step 2.

Feb 22, 2007

Page 75 of 129

2727
2728

2729

2730
2731
2732
2733

2734
2735
2736

2737
2738

2739

2740

2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751

1. SubmitObjectRequest | Service

Contmt+ Il B B B B B = ==
Metadata I

. SubmitObjectRequest
jectReq < |

SCIEQACICI MG RegisryResponse~— EOXML Registry

3. Content Gortao s 4. Content 5. commit
Management Metadata Management

Service Invocation Service

Control
Request File Response

Persistent
Store

Figure 15: Content Management Service: Inline Invocation Model

8.3.2 Decoupled Invocation Model

In a decoupled invocation model a registry MUST invoke a Content Management Service independent of
or decoupled from the Submit/UpdateObjectsRequest processing. Any errors encountered during
Content Management Service invocation MUST NOT have any impact on the original
Submit/UpdateObjectsRequest processing.

All metadata and content from the original Submit/UpdateObjectsRequest request MUST be committed
as an atomic transaction that is decoupled from the metadata and content that may be generated by the
Content Management Service invocation.

Figure 16 shows an abstract Content Management Service and how it is used by an ebXML Registry
using a decoupled invocation model. The steps are as follows:

1. Same as in inline invocation model (Content Management Service is submitted).
Same as in inline invocation model (client submits content using
Submit/UpdateObjectsRequest).

3. The registry processes the Submit/UpdateObjectsRequest and commits it to persistent
store.

4. The registry returns a RegistryResponse to the client for the
Submit/UpdateObjectsRequest in step 2.

5. The registry determines there is a Content Management Service S1 configured for the
object type for the content submitted. It invokes S1 using a
ContentManagementServiceRequest and passes it the content.

6. The Content Management Service S1 processes the content and sends back a
ContentManagementServiceResponse.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 76 of 129

2752
2753
2754
2755
2756
2757

2758
2759

2760

2761
2762
2763

2764

2765
2766

2767

2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779

2780

7. 1If the ContentManagementServiceResponse includes any generated or modified content it
is committed to the persistent store as separate transaction. If there are any errors
encountered during decoupled invocation of a Content Management Service then these
errors are logged by the registry in a registry specific manner and MUST NOT be
reported back to the client.

1. SubmitObjectRequest Service

Contmt+ Il B = B B B B =
Metadata I
. SubmitObjectRequest
mitObjectRequ <!
3. commit
7. cqmmit

Service Invocation Service

Control
Request File Response

Persistent
Store

>.Content - i 6. Content
Management Metadata Management

Figure 16: Content Management Service: Decoupled Invocation Model

8.4 Content Management Service Protocol

This section describe the abstract Content Management Service protocol that is the base- protocol for
other concrete protocols such as Validate Content protocol and Catalog Content protocol. The concrete
protocols will be defined later in this document.

8.4.1 ContentManagementServiceRequestType

The ContentManagementServiceRequestType MUST be the abstract base type for all requests sent from
a registry to a Content Management Service.

8.4.1.1 Syntax:

<complexType name='"ContentManagementServiceRequestType'">
<complexContent>
<extension base='"rs:RegistryRequestType'">
<sequence>
<element name="OriginalContent"
type="rim:RegistryObjectListType" />
<element name="InvocationControlFile"
type="rim:ExtrinsicObjectType" maxOccurs="unbounded" minOccurs="0"/>
</sequence>
</extension>
</complexContent>
</complexType>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 77 of 129

2781

2782
2783

2784
2785
2786
2787
2788

2789
2790
2791
2792
2793
2794

2795

2796

2797

2798

2799

2800
2801

2802
2803

2804
2805

2806

2807

2808
2809
2810
2811
2812

2813

2814

2815
2816
2817
2818
2819
2820
2821
2822

2823

2824

2825

8.4.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

= InvocationControlFile: This parameter specifies the ExtrinsicObject for a repository item
that the caller wishes to specify as the Invocation Control File. This specification does not
specify the format of this file. There MUST be a corresponding repository item as an
attachment to this request. The corresponding repository item SHOULD follow the same
rules as attachments in Submit/UpdateObjectsRequest.

= QOriginalContent: This parameter specifies the RegistryObjects that will be processed by
the content management service. In case of ExtrinsicObject instances within the
OriginalContent there MAY be repository items present as attachments to the
ContentManagementServiceRequest. This specification does not specify the format of
such repository items. The repository items SHOULD follow the same rules as
attachments in Submit/UpdateObjectsRequest.

8.4.1.3 Returns:

This request returns a ContentManagementServiceResponse. See section 8.4.2 for details.

8.4.1.4 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

= MissingRepositoryltemException: signifies that the caller did not provide a repository
item as an attachment to this request when the Service requires it.

= InvocationControlFileException: signifies that the InvocationControlFile(s) provided by
the caller do not match the InvocationControlFile(s) expected by the Service.

= UnsupportedContentException: signifies that this Service does not support the content
provided by the caller.

8.4.2 ContentManagementServiceResponseType

The ContentManagementServiceResponseType is sent by a Content Management Service as a
response to a ContentManagementServiceRequestType. The
ContentManagementServiceResponseType is the abstract base type for all responses sent to a registry
from a Content Management Service. It extends the RegistryResponseType and does not define any
new parameters.

8.4.2.1 Syntax:

<complexType name='"ContentManagementServiceResponseType">
<complexContent>
<extension base='"rs:RegistryResponseType'>
<sequence>
</sequence>
</extension>
</complexContent>
</complexType>

8.4.2.2 Parameters:

No new parameters are defined other than those inherited from RegistryResponseType.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 78 of 129

2826

2827

2828
2829

2830

2831
2832
2833
2834
2835
2836
2837
2838
2839

2840
2841
2842

2843
2844
2845
2846

2847
2848

2849
2850

2851
2852

2853
2854

2855
2856
2857
2858
2859
2860
2861

2862

8.5

Publishing / Configuration of a Content Management Service

Any Submitter MAY submit an arbitrary Content Management Service to an ebXML Registry. The
Content Management Service MUST be published using the standard LifeCycleManager interface.

The Submitter MUST use the standard Submit/UpdateObjectsRequest to publish:

(0]

regrep-rs

A Service instance for the Content Management Service. In Figure 17 this is exemplified by the
defaultXMLCatalogingService in the upper-left corner. The Service instance MUST have an
Association with a ClassificationNode in the canonical ObjectType ClassificationScheme as
defined by [ebRIM]. The Service MUST be the sourceObject while a ClassificationNode MUST
be the targetObject. This association binds the Service to that specific ObjectType. The
associationType for this Association instance MUST be “ContentManagementServiceFor.” The
Service MUST be classified by the canonical ContentManagementService ClassificationScheme
as defined by [ebRIM]. For example it may be classified as a “ContentValidationService” or a
“ContentCatalogingService.”

The Service instance MAY be classified by a ClassificationNode under the canonical
InvocationModel ClassificationScheme as defined by [ebRIM], to determine whether it uses the
Inline Invocation model or the Decoupled Invocation model.

The Service instance MAY be classified by a ClassificationNode under the canonical
ErrorHandlingModel ClassificationScheme as defined by [ebRIM], to determine whether the
Service should fail on first error or simply log the error as a warning and continue. See section
8.6.4 for details.

A ServiceBinding instance contained within the Service instance that MUST provide the
accessURI to the Cataloging Service.

An optional ExternalLink instance on the ServiceBinding that is resolvable to a web page
describing:

= The format of the supported content to be Cataloged
= The format of the supported Invocation Control File

Note that no SpecificationLink is required since this specification [ebRS] is implicit for Content
Cataloging Services.

One or more Invocation Control File(s) consisting of an ExtrinsicObject and a repository item
pair. The ExtrinsicObject for the Invocation Control File MUST have a required Association with
associationType value that references a descendant ClassificationNode of the canonical
ClassificationNode “InvocationControlFileFor.” This is exemplified by the
cppCatalogingServiceXSLT and the oagBODCatalogingServiceXSLT objects in Figure 17 (left
side of picture). The Invocation Control File MUST be the sourceObject while a
ClassificationNode in the canonical ObjectType ClassificationScheme MUST be the targetObject.

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 79 of 129

catalogerClassification:Classification N catalogingSenviceMode
classificationdode., -)
[code = "ContentZatalogingService"]

classified Ohject

objectTypes:ClassificationScheme

defaultXML CatalogingSernvice:Service xmiCataloginyServiceDoc:Externall ink
documentation
sourcelbject parent arent
catalogingSenviceAssoc:Association xmiObjectType:ClassificationMode imageObjectType:ClassificationNode
[associationType=ContentManagementServiceF ar]
targetObject
arent arent
cppCatalogingServiceXSLT:ExtrinsicObject
cppObject Type:ClassificationNode 0aygBODObjectType:ClassificationMode
\SourceObject —=
targetlpject
MabjectType targetQiject arent
invocationControlFile:Association
[agsociationType=InvocationZontrolFileFor]
AckDelive, ceiptObjectType:ClassificationNode
oagBODCatalogingServiceXSL T:ExtrinsicObject
\: bjectType
\sourceObject
chpDocument:ExtrinsicObject AckDelive ceiptDocument:ExtrinsicObject
invocationControlFile2:Association
[associationType=InvacationContralFileF ar]
2863
2864 Figure 17: Cataloging Service Configuration

2865 Figure 17 shows an example of the configuration of the Canonical XML Cataloging Service associated
2866 with the objectType for XML content. This Cataloging Service may be used with any XML content that
2867 has its objectType attribute hold a reference to the xmlObjectType ClassificationNode or one of its

2868 descendants.

2869 The figure also shows two different Invocation Control Files, cppCatalogingServiceXSLT and
2870 oagBODCatalogingServiceXSLT that may be used to catalog ebXML CPP and OAG Business Object
2871 Documents (BOD) respectively.

2872 8.5.1 Multiple Content Management Services and Invocation Control
2873 Files

2874 This specification allows clients to submit multiple Content Management Services of the same type (e.g.
2875 validation, cataloging) and multiple Invocation Control Files for the same objectType. Content

2876 Management Services of the same type of service for the same ObjectType are referred to as peer

2877 Content Management Services.

2878

2879 When there are multiple Content Management Services and Invocation Control Files for the same

2880 ObjectType there MUST be an unambiguous association between a Content Management Service and
2881 its Invocation Control File(s). This MUST be defined by an Association instance with associationType
2882 value that references a ClassificationNode that is a descendant of the canonical ClassificationNode
2883 “InvocationControlFileFor” where the ExtrinsicObject for each Invocation Control File is the sourceObject

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 80 of 129

2884

2885
2886

2887

2888

2889

2890
2891
2892

2893

2894

2895
2896
2897
2898
2899

2900
2901
2902

2903
2904
2905
2906
2907

2908
2909
2910
2911

2912
2913
2914

2915

2916
2917
2918
2919
2920
2921

2922

2923

2924

2925

2926

and the Service is the targetObject.

The order of invocation of peer Content Management Services is undefined and MAY be determined in a
registry specific manner.

8.6 Invocation of a Content Management Service

This section describes how a registry invokes a Content Management Service.

8.6.1 Resolution Algorithm For Service and Invocation Control File

When a registry receives a submission of a RegistryObject, it MUST use the following algorithm to
determine or resolve the Content Management Services and Invocation Control Files to be used for
dynamic content management for the RegistryObject:

1. Get the objectType attribute of the RegistryObject.

2. Query to see if the ClassificationNode referenced by the objectType is the targetObject of an Association
with associationType of ContentManagementServiceFor. If the desired Association is not found for this
ClassificationNode then repeat this step with its parent ClassificationNode. Repeat until the desired
Association is found or until the parent is the ClassificationScheme. If desired Association(s) is found then
repeat following steps for each such Association instance.

3. Check if the sourceObject of the desired Association is a Service instance. If not, log an
InvalidConfigurationException. If it is a Service instance, then use this Service as the Content
Management service for the RegistryObject.

4. Query to see if the objectType ClassificationNode is the targetObject of one or more Associations whose
associationType value references a ClassificationNode that is a descendant of the canonical
ClassificationNode InvocationControlFileFor. If desired Association is not found for this
ClassificationNode then repeat this step with its parent ClassificationNode. Repeat until the desired
Association is found or until the parent is the ClassificationScheme.

5. If desired Association(s) is found then check if the sourceObject of the desired Association is an
ExtrinsicObject instance. If not, log an InvalidConfigurationException. If sourceObject is an
ExtrinsicObject instance, then use its repository item as an Invocation Control File. If there are multiple
InvocationControlFiles then all of them MUST be provided when invoking the Service.

The above algorithm allows for objectType hierarchy to be used to configure Content Management
Services and Invocation Control Files with varying degrees of specificity or specialization with respect to
the type of content.

8.6.2 AuditTrail and Cataloged Content

The Cataloged Content generated as a result of the invocation of a Content Management Service has an
audit trail consistent with RegistryObject instances that are submitted by Registry Clients. However, since
a Registry Client does not submit Cataloged Content, the user attribute of the AuditableEvent instances
for such Cataloged Content references the Service object for the Content Management Service that
generated the Cataloged Content. This allows an efficient way to distinguish Cataloged Content from
content submitted by Registry Clients.

8.6.3 Referential Integrity

A registry MUST maintain referential integrity between the RegistryObjects and repository items
invocation of a Content Management Service.

8.6.4 Error Handling

If the Content Management Service is classified by the “FailOnError” ClassificationNode under canonical

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 81 of 129

2927
2928
2929

2930
2931
2932
2933
2934
2935
2936

2937

2938
2939
2940

2941
2942
2943

2944
2945

2946
2947

2948

2949
2950
2951
2952

2953

2954
2955
2956
2957
2958

ErrorHandlingModel ClassificationScheme as defined by [ebRIM], then the registry MUST stop further
processing of the Submit/UpdateObjectsRequest and return status of “Failure” upon first error returned
by a Content Management Service Invocation.

If the Content Management Service is classified by the “LogErrorAndContinue” ClassificationNode under
ErrorHandlingModel then the registry MUST continue to process the Submit/UpdateObjectsRequest and
not let any Content Management Service invocation error affect the storing of the RegistryObjects and
repository items that were submitted. Such errors SHOULD be logged as Warnings within the
RegistryResponse returned to the client. In this case a registry MUST return a normal response with
status of “Success” if the submitted content and metadata is stored successfully even when there are
errors encountered during dynamic invocation of one or more Content Management Services.

8.7 Validate Content Protocol

The interface of a Content Validation Service MUST implement a single method called validateContent.
The validateContent method accepts a ValidateContentRequest as parameter and returns a
ValidateContentResponse as its response if there are no errors.

The OriginalContent element within a ValidateContentRequest MUST contain exactly one RegistryObject
that needs to be cataloged. The resulting ValidateContentResponse contains the status attribute that
communicates whether the RegistryObject (and its content) are valid or not.

The Validate Content protocol does not specify the implementation details of any specific Content
Validation Service.

reqgistns1 validator
ContentalidationService

I
I
validateContent®falidate ContentReguestivalidate ContentResponse |

] b

Figure 18: Validate Content Protocol

8.7.1 ValidateContentRequest

The ValidateContentRequest is used to pass content to a Content Validation Service so that it can
validate the specified RegistryObject and any associated content. The RegistryObject typically is an
ExternalLink (in the case of external content) or an ExtrinsicObject. The ValidateContentRequest extends
the base type ContentManagementServiceRequestType.

8.7.1.1 Syntax:

<element name="ValidateContentRequest'>
<complexType>
<complexContent>
<extension base="cms:ContentManagementServiceRequestType">
<sequence>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 82 of 129

2959
2960
2961
2962
2963

2964

2965

2966
2967

2968
2969

2970
2971
2972
2973
2974
2975

2976

2977

2978

2979

2980

2981
2982
2983

2984

2985

2986
2987

2988

2989

2990
2991
2992
2993
2994
2995
2996
2997
2998
2999

3000

3001

3002
3003

</sequence>
</extension>
</complexContent>
</complexType>
</element>

8.7.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

= InvocationControlFile: Inherited from base type. This parameter may not be present. If
present its format is defined by the Content Validation Service.

= QOriginalContent: Inherited from base type. This parameter MUST contain exactly one
RegistryObject (e.g. ExternalLink, ExtrinsicObject) and potentially an associated content.
This specification does not specify the format of the content. If it is an ExtrinsicObject
then there MAY be a corresponding repository item as an attachment to this request that
is the content. The corresponding repository item SHOULD follow the same rules as
attachments in Submit/UpdateObjectsRequest.

8.7.1.3 Returns:

This request returns a ValidateContentResponse. See section 8.7.2 for details.

8.7.1.4 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

= InvalidContentException: signifies that the specified content was found to be invalid. The
exception SHOULD include enough detail for the client to be able to determine how to
make the content valid.

8.7.2 ValidateContentResponse

The ValidateContentResponse is sent by the Content Validation Service as a response to a
ValidateContentRequest.

8.7.2.1 Syntax:

<element name="ValidateContentResponse'>
<complexType>
<complexContent>
<extension base="cms:ContentManagementServiceResponseType">
<sequence>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

8.7.2.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 83 of 129

3004
3005

3006

3007
3008
3009
3010
3011
3012
3013
3014

3015

3016
3017
3018

3019
3020
3021

3022
3023

3024
3025

3026

3027
3028
3029
3030

3031

3032

= status: Inherited attribute. This enumerated value is used to indicate the status of the
request. Values for status are as follows:

« Success - This status specifies that the content specified in the
ValidateContentRequest was valid.

« Failure - This status specifies that the request failed. If the error returned is
an InvalidContentException then the content specified in the
ValidateContentRequest was invalid. If there was some other failure
encountered during the processing of the request then a different error
MAY be returned.

8.8 Catalog Content Protocol

The interface of the Content Cataloging Service MUST implement a single method called
catalogContent. The catalogContent method accepts a CatalogContentRequest as parameter and
returns a CatalogContentResponse as its response if there are no errors.

The CatalogContentRequest MAY contain repository items that need to be cataloged. The resulting
CatalogContentResponse contains the metadata and possibly content that gets generated or updated by
the Content Cataloging Service as a result of cataloging the specified repository items.

The Catalog Content protocol does not specify the implementation details of any specific Content
Cataloging Service.

reqgistns1 cataloger
ContentCataloginnService

I
I
catalogContent{CatalogContentRequest: CatalogContentResponse |

J g

Figure 19: Catalog Content Protocol

8.8.1 CatalogContentRequest

The CatalogContentRequest is used to pass content to a Content Cataloging Service so that it can
create catalog metadata for the specified RegistryObject and any associated content. The RegistryObject
typically is an ExternalLink (in case of external content) or an ExtrinsicObject. The
CatalogContentRequest extends the base type ContentManagementServiceRequestType.

8.8.1.1 Syntax:

<element name="CatalogContentRequest'">

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 84 of 129

3033
3034
3035
3036
3037
3038
3039
3040
3041

3042
3043

3044

3045
3046

3047
3048

3049
3050
3051
3052
3053
3054

3055

3056

3057

3058

3059

3060
3061

3062

3063

3064
3065

3066

3067

3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079

3080

<complexType>
<complexContent>
<extension base="cms:ContentManagementServiceRequestType">
<sequence>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

8.8.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

= InvocationControlFile: Inherited from base type. If present its format is defined by the
Content Cataloging Service.

= OriginalContent: Inherited from base type. This parameter MUST contain exactly one
RegistryObject (e.g. ExternalLink, ExtrinsicObject) and potentially an associated content.
This specification does not specify the format of the content. If it is an ExtrinsicObject
then there MAY be a corresponding repository item as an attachment to this request that
is the content. The corresponding repository item SHOULD follow the same rules as
attachments in Submit/UpdateObjectsRequest.

8.8.1.3 Returns:

This request returns a CatalogContentResponse. See section 8.8.2 for details.

8.8.14 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

= CatalogingException: signifies that an exception was encountered in the Cataloging
algorithm for the service.

8.8.2 CatalogContentResponse

The CatalogContentResponse is sent by the Content Cataloging Service as a response to a
CatalogContentRequest.

8.8.2.1 Syntax:

<element name="CatalogContentResponse'>
<complexType>
<complexContent>
<extension base="cms:ContentManagementServiceResponseType">
<sequence>
<element name='"CatalogedContent"
type="rim:RegistryObjectListType" />
</sequence>
</extension>
</complexContent>
</complexType>
</element>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 85 of 129

3081 8.8.2.2 Parameters:

3082 The following parameters are parameters that are either newly defined for this type or are inherited and
3083 have additional semantics beyond those defined in the base type description.

3084 = CatalogedContent: This parameter specifies a collection of RegistryObject instances
3085 that were created or updated as a result of dynamic content cataloging by a content
3086 cataloging service. The Content Cataloging Service may add metadata such as

3087 Classifications, Externalldentifiers, name, description etc. to the CatalogedContent
3088 element. There MAY be an accompanying repository item as an attachment to this
3089 response message if the original repository item was modified by the request.

3090

3091

302 8.9 lllustrative Example: Canonical XML Cataloging Service

3093 Figure 20 shows a UML instance diagram to illustrate how a Content Cataloging Service is used. This
3094 Content Cataloging Service is the normative Canonical XML Cataloging Service described in section
3095 8.10.

3096 o Inthe center we see a Content Cataloging Service name defaultXMLCataloger Service.

3097 o On the left we see a CPP repository item and its ExtrinsicObject inputExtObjForCPP being input
3098 as Original Content to the defaultXMLCataloging Service.

3099 o Ontop we see an XSLT style sheet repository item and its ExtrinsicObject that is configured as
3100 an Invocation Control File for the defaultXMLCataloger Service.

3101 o On the right we see the outputExtObjForCPP, which is the modified ExtrinsicObject for the CPP.
3102 We also see a Classification roleClassification, which classifies the CPP by the Role element
3103 within the CPP. These are the Cataloged Content generated as a result of the Cataloging Service
3104 cataloging the CPP.

- |cppCatalogingServiceXSLT:ExtrinsicObject CPP XSLT repository item
|
: —

a . . |
- Original Content ; . CatalogedContent
; I ‘w’ . .
[3 [. T ‘
1 inputExtObiFor CPP:ExtrinsicObject | ' |defaultkML CatalogingService:Senvice | outputExtOhiFor CPP:ExtrinsicObject !
| o - |
? ; ? i
| | ‘ | tlassifiedObject
| | : |
] | | : |
! Y | T |
| CPP document repository item ! i | roleClassification:Classification ‘
! ‘ 3
| i |
3105 —m o m o m - e -
3106 Figure 20: Example of CPP cataloging using Canonical XML Cataloging Service
3107
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 86 of 129

3108

3109
3110

3111
3112
3113
3114
3115
3116

3117
3118
3119
3120

3121
3122

3123
3124
3125
3126
3127
3128

3129
3130

3131

3132

3133
3134
3135

8.10

Canonical XML Content Cataloging Service

An ebXML Registry MUST provide the canonical XML Content Cataloging Service natively as a built-in
service with the following constraints:

There is exactly one Service instance for the Canonical XML Content Cataloging Service
The Service is an XSLT engine

The Service may be invoked with exactly one Invocation Control File

The Original Content for the Service MUST be XML document(s)

The Cataloged Content for the Service MUST be XML document(s)

The Invocation Control File MUST be an XSLT style sheet

Each invocation of the Service MAY be with different Invocation Control File (XSLT style sheet)
depending upon the objectType of the RegistryObject being cataloged. Each objectType
SHOULD have its own unique XSLT style sheet. For example, ebXML CPP documents SHOULD
have a specialized ebXML CPP Invocation Control XSLT style sheet.

The Service MUST have at least one input XML document that is a RegistryObject. Typically this
is an ExtrinsicObject or an ExternalLink.

The Service MAY have at most one additional input XML document that is the content
represented by the RegistryObject (e.g. a CPP document or an HL7 Conformance Profile). The
optional second input MUST be referenced within the XSLT Style sheet by a using the
“document” function with the document name specified by variable “repositoryltem” as in
“document($repositoryltem).” A registry MUST define the variable “repositoryltem” when
invoking the Canonical XML Cataloging Service.

The canonical XML Content Cataloging Service MUST apply the XSLT style sheet to the input
XML instance document(s) in an XSLT transformation to generate the Cataloged Output.

The Canonical XML Content Cataloging Service is a required normative feature of an ebXML Registry.

8.10.1

Publishing of Canonical XML Content Cataloging Service

An ebXML Registry MUST provide the canonical XML Content Cataloging Service natively as a built-in

service.

This built-in service MUST be published to the registry as part of the intrinsic bootstrapping of

required canonical data within the registry.

regrep-rs

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 87 of 129

3136

3137
3138

3139

3140
3141

3142

3143
3144

3145
3146

3147
3148

3149

3150

3151
3152
3153
3154

3155

3156
3157
3158

3159
3160

3161

3162

3163

3164
3165

9 Cooperating Registries Support

This chapter describes the capabilities and protocols that enable multiple ebXML registries to cooperate
with each other to meet advanced use cases.

9.1 Cooperating Registries Use Cases

The following is a list of use cases that illustrate different ways that ebXML registries cooperate with each
other.

9.1.1 Inter-registry Object References

A Submitting Organization wishes to submit a RegistryObject to a registry such that the submitted object
references a RegistryObject in another registry.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in
another registry.

Registry-1 Registry-2

Organization-A Organization-B

Figure 21: Inter-registry Object References

9.1.2 Federated Queries

A client wishes to issue a single query against multiple registries and get back a single response that
contains results based on all the data contained in all the registries. From the client’s perspective it is
issuing its query against a single logical registry that has the union of all data within all the physical
registries.

9.1.3 Local Caching of Data from Another Registry

A destination registry wishes to cache some or all the data of another source registry that is willing to
share its data. The shared dataset is copied from the source registry to the destination registry and is
visible to queries on the destination registry even when the source registry is not available.

Local caching of data may be desirable in order to improve performance and availability of accessing that
object.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in
another registry, and the first registry caches the second RegistryObject locally.

9.1.4 Object Relocation

A Submitting Organization wishes to relocate its RegistryObjects and/or repository items from the
registry where it was submitted to another registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 88 of 129

3166

3167
3168
3169

3170
3171

3172
3173
3174

3175
3176
3177

3178

3179

3180
3181
3182
3183

3184
3185
3186

3187
3188
3189

3190

9.2 Registry Federations

A registry federation is a group of registries that have voluntarily agreed to form a loosely coupled union.
Such a federation may be based on common business interests and specialties that the registries may
share. Registry federations appear as a single logical registry to registry clients.

Registry-1

b

Organization-A

Registry-2

) i)

Organization-B . Organization-B .

Individual Registries Registry Federation
Figure 22: Registry Federations

Registry federations are based on a peer-to-peer (P2P) model where all participating registries are
equal. Each participating registry is called a registry peer. There is no distinction between the registry
operator that created a federation and those registry operators that joined that Federation later.

Any registry operator MAY form a registry federation at any time. When a federation is created it MUST
have exactly one registry peer which is the registry operated by the registry operator that created the
federation.

Any registry MAY choose to voluntarily join or leave a federation at any time.

9.2.1 Federation Metadata

The Registry Information model defines the Registry and Federation classes. Instances of these classes
and the associations between these instances describe a federation and its members. Such instance
data is referred to as Federation Metadata. The Registry and Federation classes are described in detail
in [ebRIM].

The Federation information model is summarized here as follows:
o A Federation instance represents a registry federation.
o A Registry instance represents a registry that is a member of the Federation.

o An Association instance with associationType of HasFederationMember represents membership
of the registry in the federation. This Association links the Registry instance and the Federation
instance.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 89 of 129

federation

sourceQhject |sourceObject

req1-fed1:Association regZ-fed1:Association
[associationType=HasFederationdMember] [associationType=HasFederationMemher]
targetOhject targetOhject
registry-1 registry?
3191
3192 Figure 23: Federation Metadata Example

3193 9.2.2 Local Vs. Federated Queries

3194 A federation appears to registry clients as a single unified logical registry. An AdhocQueryRequest sent
3195 by a client to a federation member MAY be local or federated. A new boolean attribute named federated
3196 is added to AdhocQueryRequest to indicate whether the query is federated or not.

3197 9.2.2.1 Local Queries

3198 When the federated attribute of AdhocQueryRequest has the value of false then the query is a local
3199 query. In the absence of a federated attribute the default value of federated attribute is false.

3200 A local AdhocQueryRequest is only processed by the registry that receives the request. A local
3201 AdhocQueryRequest does not operate on data that belongs to other registries.

3202 9.2.2.2 Federated Queries

3203 When the federated attribute of AdhocQueryRequest has the value of true then the query is a federated
3204 query.

3205 A federation member MUST route a federated query received by it to all other federation member

3206 registries on a best attempt basis. If a member is not reachable for any reason then it MAY be skipped.

3207 When a registry routes a federated query to other federation members it MUST set the federated
3208 attribute value to false and the federation attribute value to null to avoid infinite loops.

3209 A federated query operates on data that belongs to all members of the federation.

3210 When a client submits a federated query to a registry such that the query specifies no federation and no
3211 federations exist in the registry, then the registry MUST treat it as a local query.

3212 When a client submits a federated query that invokes a parameterized stored query, the registry MUST
3213 resolve the parameterized stored query into its non-stored formed and MUST replace all variables with
3214 user-supplied parameters on registry supplied contextual parameters before routing it to a federation
3215 member.

3216 When a client submits a federated iterative query, the registry MUST use the startindex attribute value of
3217 the original request as the startindex attribute value of the routed request sent to each federation

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 90 of 129

3218
3219
3220
3221

3222

3223
3224
3225

3226
3227
3228

3229

3230

3231
3232

3233
3234
3235

3236

3237
3238

3239
3240
3241

3242
3243

3244

3245

3246
3247
3248
3249
3250

3251
3252
3253
3254

3255

3256
3257
3258

member. The response to the original request MUST be the union of the results from each routed query.
In such cases the registry MUST return a totalResultCount attribute value on the federated query
response to be equal to the maximum of all totalResultCount attribute values returned by each federation
member.

9.2.2.3 Membership in Multiple Federations

A registry MAY be a member of multiple federations. In such cases if the federated attribute of
AdhocQueryRequest has the value of true then the registry MUST route the federated query to all
federations that it is a member of.

Alternatively, the client MAY specify the id of a specific federation that the registry is a member of, as the
value of the federation parameter. The type of the federation parameter is anyURI and identifies the “id”
attribute of the desired Federation.

In such cases the registry MUST route the federated query to the specified federation only.

9.2.3 Federated Lifecycle Management Operations

Details on how to create and delete federations and how to join and leave a federation are described in
9.2.8.

All lifecycle operations SHOULD be performed on a RegistryObject within its home registry using the
operations defined by the LifeCycleManager interface. Unlike query requests, lifecycle management
requests do not support any federated capabilities.

9.2.4 Federations and Local Caching of Remote Data

A federation member is not required to maintain a local cache of replicas of RegistryObjects and
repository items that belong to other members of the federation.

A registry MAY choose to locally cache some or all data from any other registry whether that registry is a
federation member or not. Data caching is orthogonal to registry federation and is described in section
9.3.

Since by default there is minimal replication in the members of a federation, the federation architecture
scales well with respect to memory and disk utilization at each registry.

Data replication is often necessary for performance, scalability and fault-tolerance reasons.

9.2.5 Caching of Federation Metadata

A special case for local caching is the caching of the Federation and Registry instances and related
Associations that define a federation and its members. Such data is referred to as federation metadata. A
federation member is required to locally cache the federation metadata, from the federation home for
each federation that it is a member of. The reason for this requirement is consistent with a Peer-to-Peer
(P2P) model and ensures fault-tolerance in case the Federation home registry is unavailable.

The federation member MUST keep the cached federation metadata synchronized with the master copy
in the Federation home, within the time period specified by the replicationSyncLatency attribute of the
Federation. Synchronization of cached Federation metadata may be done via synchronous polling or
asynchronous event notification using the event notification feature of the registry.

9.2.6 Time Synchronization Between Registry Peers

Federation members are not required to synchronize their system clocks with each other. However, each
Federation member SHOULD keep its clock synchronized with an atomic clock server within the latency
described by the replicationSyncLatency attribute of the Federation.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 91 of 129

3259

3260
3261
3262
3263
3264
3265
3266

3267

3268
3269
3270
3271
3272

3273

3274

3275
3276
3277
3278

3279
3280
3281
3282

3283

3284

3285

3286
3287

3288
3289

3290

3291

3292

3293
3294
3295

3296

3297

3298
3299

9.2.7 Federations and Security

Federated operations abide by the same security rules as standard operations against a single registry.
However, federation operations often require registry-to-registry communication. Such communication is
governed by the same security rules as a Registry Client to registry communication. The only difference
is that the requesting registry plays the role of Registry Client. Such registry-to-registry communication
SHOULD be conducted over a secure channel such as HTTP/S. Federation members SHOULD be part
of the same SAML Federation if member registries implement the Registry SAML Profile described in
chapter 11.

9.2.8 Federation Lifecycle Management Protocols

This section describes the various operations that manage the lifecycle of a federation and its
membership. Federation lifecycle operations are done using standard LifeCycleManager interface of the
registry in a stylized manner. Federation lifecycle operations are privileged operations. A registry
SHOULD restrict Federation lifecycle operations to registry User’s that have the RegistryAdministrator
role.

9.2.8.1 Joining a Federation

The following rules govern how a registry joins a federation:

» Each registry SHOULD have exactly one Registry instance within that registry for which it is a
home. The Registry instance is owned by the RegistryOperator and may be placed in the registry
using any operator specific means. The Registry instance SHOULD never change its home
registry.

* Aregistry MAY request to join an existing federation by submitting an instance of an Extramural
Association that associates the Federation instance as sourceObject, to its Registry instance as
targetObject, using an associationType of HasFederationMember. The home registry for the
Association and the Federation objects MUST be the same.

9.2.8.2 Creating a Federation

The following rules govern how a federation is created:

* A Federation is created by submitting a Federation instance to a registry using
SubmitObjectsRequest.

* The registry where the Federation is submitted is referred to as the federation home.
* The federation home may or may not be a member of that Federation.

» A federation home MAY contain multiple Federation instances.

9.2.8.3 Leaving a Federation

The following rules govern how a registry leaves a federation:

A registry MAY leave a federation at any time by removing its HasFederationMember Association
instance that links it with the Federation instance. This is done using the standard
RemoveObjectsRequest.

9.2.8.4 Dissolving a Federation

The following rules govern how a federation is dissolved:

» Afederation is dissolved by sending a RemoveObjectsRequest to its home registry and removing
its Federation instance.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 92 of 129

3300
3301

3302
3303
3304
3305

3306

3307

3308
3309
3310
3311

3312
3313
3314

3315

3316
3317

3318

3319

3320
3321

3322
3323
3324

3325
3326

3327
3328

9.3

The removal of a Federation instance is controlled by the same Access Control Policies that
govern any RegistryObject.

The removal of a Federation instance is controlled by the same lifecycle management rules that
govern any RegistryObject. Typically, this means that a federation MUST NOT be dissolved while
it has federation members. It MAY however be deprecated at any time. Once a Federation is
deprecated no new members can join it.

Object Replication

RegistryObjects within a registry MAY be replicated in another registry. A replicated copy of a remote
object is referred to as its replica. The remote object MAY be an original object or it MAY be a replica. A
replica from an original is referred to as a first-generation replica. A replica of a replica is referred to as a
second-generation replica (and so on).

The registry that replicates a remote object locally is referred to as the destination registry for the
replication. The registry that contains the remote object being replicated is referred to as the source
registry for the replication.

Registry-1 Registry-1

b b

Organization-A Organizétion-A
Registry-2 ' Registry-2
Feplica of

Organization-B Organization-B

Organization-A

9.3.1

Before Replication After Replication
Figure 24: Object Replication

Use Cases for Object Replication

A registry MAY create a local replica of a remote object for a variety of reasons. A few sample use cases

follow:

(0]

regrep-rs

Improve access time and fault tolerance by locally caching remote objects. For example, a
registry MAY automatically create a local replica when a remote ObjectRef is submitted to the

registry.
Improve scalability by distributing access to hotly contested objects, such as NAICS scheme,
across multiple replicas.

Enable cooperating registry features such as hierarchical registry topology and local caching of
federation metadata.

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 93 of 129

3329

3330
3331
3332

3333
3334
3335

3336

3337
3338

3339

3340
3341
3342

3343

3344
3345
3346
3347
3348

3349
3350

3351
3352

3353
3354
3355
3356

3357
3358
3359

3360
3361

3362

3363
3364

3365
3366

3367
3368

3369

3370

3371

9.3.2 Queries And Replicas

A registry MUST support client queries to consider a local replica of remote object as if it were a local
object. Local replicas are considered within the extent of the data set of a registry as far as local queries
are concerned.

When a client submits a local query that retrieves a remote object by its id attribute, if the registry
contains a local replica of that object then the registry SHOULD return the state defined by the local
replica.

9.3.3 Lifecycle Operations And Replicas

LifeCycle operations on an original object MUST be performed at the home registry for that object.
LifeCycle operations on replicas of an original object should result in an InvalidRequestException.

9.3.4 Object Replication and Federated Registries

Object replication capability is orthogonal to the registry federation capability. Objects MAY be replicated
from any registry to any other registry without any requirement that the registries belong to the same
federation.

9.3.5 Creating a Local Replica

Any Submitting Organization can create a replica by using the standard SubmitObjectsRequest. If a
registry receives a SubmitObjectsRequest that has a RegistryObjectList containing a remote ObjectRef,
then it MUST create a replica for that remote ObjectRef. In such cases the User that submitted the
ObjectRef (via a SubmitObjectsRequest) owns the replica while the original RegistryObject is owned by
its original owner.

In addition to Submitting Organizations, a registry itself MAY create a replica under specific situations in
a registry specific manner.

Creating a local replica requires the destination registry to read the state of the remote object from the
source registry and then create a local replica of the remote object.

A registry SHOULD use standard QueryManager interface to read the state of a remote object (whether
it is an original or a replica). No new APls are needed to read the state of a remote object. Since query
functionality does not need prior registration, no prior registration or contract is needed for a registry to
read the state of a remote object.

Once the state of the remote object has been read, a registry MAY use registry specific means to create
a local replica of the remote object. Such registry specific means MAY include the use of the
LifeCycleManager interface.

A replica of a RegistryObject may be distinguished from an original since a replica MUST have its home
attribute point to the remote registry where the original for the replica resides.

9.3.6 Transactional Replication

Transactional replication enables a registry to replicate events in another registry in a transactionally
consistent manner. This is typically the case when entire registries are replicated to another registry.

This specification defines a more loosely coupled replication model as an alternative to transactional
replication for the following reasons:

* Transactional replication requires a tight coupling between registries participating in the
replication

* Transactional replication is not a typical use case for registries

» Loosely coupled replication as defined by this specification typically suffices for most use cases

» Transaction replication is very complex and error prone

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 94 of 129

3372

3373

3374

3375
3376
3377

3378

3379

3380
3381
3382
3383

3384

3385
3386
3387
3388
3389

3390

3391
3392
3393

3394

3395
3396
3397

3398

3399
3400
3401

3402
3403

3404
3405

Registry implementations are not required to implement transactional replication.

9.3.7 Keeping Replicas Current

A registry MUST keep its replicas current within the latency specified by the value of the
replicationSyncLatency attribute defined by the registry. This includes removal of the replica when its
original is removed from its home registry.

Replicas MAY be kept current using the event notification feature of the registry or via periodic polling.

9.3.8 Lifecycle Management of Local Replicas

Local Replicas are read-only objects. Lifecycle management actions are not permitted on local replicas
with the exception of the Delete action which is used to remove the replica. All other lifecycle
management actions MUST be performed on the original RegistryObject in the home registry for the
object.

9.3.9 Tracking Location of a Replica

A local replica of a remote RegistryObject instance MUST have exactly one ObjectRef instance within
the local registry. The home attribute of the ObjectRef associated with the replica tracks its home
location. A RegistryObject MUST have exactly one home. The home for a RegistryObject MAY change
via Object Relocation as described in section 9.4. It is optional for a registry to track location changes for
replicas within it.

9.3.10 Remote Object References to a Replica

It is possible to have a remote ObjectRef to a RegistryObject that is a replica of another RegistryObject.
In such cases the home attribute of the ObjectRef contains the base URI to the home registry for the
replica.

9.3.11 Removing a Local Replica

A client can remove a replica by using the RemoveObjectsRequest. If a registry receives a
RemoveObjectsRequest that has an ObjectRefList containing a remote ObjectRef, then it MUST remove
the local replica for that remote ObjectRef assuming that the client was authorized to remove the replica.

9.4 Object Relocation Protocol

Every RegistryObject has a home registry and a User within the home registry that is the Submitter or
owner of that object. Initially, the home registry is the where the object is originally submitted. Initially, the
owner is the User that submitted the object.

A RegistryObject MAY be relocated from one home registry to another home registry using the Object
Relocation protocol.

Within the Object Relocation protocol, the new home registry is referred to as the destination registry
while the previous home registry is called the source registry.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 95 of 129

3406
3407

3408
3409
3410
3411

3412
3413
3414

3415

3416
3417

3418
3419

3420
3421
3422
3423
3424

3425
3426

3427
3428

3429
3430
3431

3432
3433

3434

sourceRegistry sourceRegistry
ﬁl _______________________ -
Organization-A Uﬁ:l % Iﬁ- 1
destinationRegistry de étinationRegistry
'. E ______________________ e
User-2 Organization-A User-2
Before After

Figure 25: Object Relocation

The User at the source registry who owns the objects being relocated is referred to as the
ownerAtSource. The User at the destination registry, who is the new owner of the objects, is referred to
as the ownerAtDestination. While the ownerAtSource and the ownerAtDestination may often be the
same, the Object Relocation protocol treats them as two distinct identities.

A special case usage of the Object Relocation protocol is to transfer ownership of RegistryObjects from
one User to another within the same registry. In such cases the protocol is the same except for the fact
that the source and destination registries are the same.

Following are some notable points regarding object relocation:

regrep-rs

Object relocation does not require that the source and destination registries be in the same
federation or that either registry have a prior contract with the other.

Object relocation MUST preserve object id. While the home registry for a RegistryObject MAY
change due to object relocation, its id never changes.

ObjectRelocation MUST preserve referential integrity of RegistryObjects. Relocated objects that
have references to an object that did not get relocated MUST preserve their reference. Similarly
objects that have references to a relocated object MUST also preserve their reference. Thus,
relocating an object may result in making the value of a reference attribute go from being a local
reference to being a remote reference or vice versa.

AcceptObjectsRequest does not include ObjectRefList. It only includes an opaque transactonid
identifying the relocateObjects transaction.

The requests defined by the Relocate Objects protocol MUST be sent to the source or
destination registry only.

When an object is relocated an AuditableEvent of type “Relocated” MUST be recorded by the
sourceRegistry. Relocated events MUST have the source and destination registry’s base URIs
recorded as two Slots on the Relocated event. The names of these Slots are:

o urn:oasis:nanes:tc:ebxm -regrep:rs:events:sourceRegistry
o urn:oasis:nanes:tc:ebxm -regrep:rs:events: destinationRegistry

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 96 of 129

3435
3436

3437
3438
3439

3440

3441
3442
3443
3444
3445
3446

3447
3448
3449
3450
3451

3452
3453
3454
3455
3456

3457
3458
3459

3460
3461
3462
3463

3464
3465
3466
3467

ownerAtSource sourcel CM sourceQm srcRenistny istener destinationl CM owner AtDestinationl istener
Lger LifeCycleManager GQueryManager RegistryClient LifeCycleManager RegistryClient

—————

|

| relocateObjectSE_elhcateObjectsRequest)lRegistryResponse |

= | | |

relocatedbjects(RelocateObjectsReguest: RenistyResponse |
I

onResponsedMatification) vgid

submiﬂdhoc@ue{y(dhoc@uewRequest}IAdhocQueryResponse

Al

L |

|
|
|
|
f ==
| | L
| accdptObjectstbcceptObjectsRdguest: RegistvRespanse
' [

[[Fl
| | [submitObjects(SubmitObjpctsRequestiRegistvResponse
| onResponse{Motification)void

|
|
£
|
oveOhbjectsRequest:RegistyResponse J |
|
|
|
|
|
|
|
|
|

ey
‘h_‘=
|
|
|
|
I

remaove Ohjectsf

Figure 26: Relocate Objects Protocol

Figure 26 illustrates the Relocate Objects Protocol. The participants in the protocol are the
ownerAtSource and ownerAtDestination User instances as well as the LifeCycleManager interfaces of
the sourceRegistry and destinationRegistry.

The steps in the protocol are described next:

1.

The protocol is initiated by the ownerAtSource sending a RelocateObjectsRequest message to
the LifeCycleManager interface of the sourceRegistry. The sourceRegistry MUST make sure that
the ownerAtSource is authorized to perform this request. The id of this RelocateObjectsRequest
is used as the transaction identifier for this instance of the protocol. This
RelocateObjectsRequest message MUST contain an ad hoc query that specifies the objects that
are to be relocated.

Next, the sourceRegistry MUST relay the same RelocateObjectsRequest message to the
LifeCycleManager interface of the destinationRegistry. This message enlists the
detsinationRegistry to participate in relocation protocol. The destinationRegistry MUST store the
request information until the protocol is completed or until a registry specific period after which
the protocol times out.

The destinationRegistry MUST relay the RelocateObjectsRequest message to the
ownerAtDestination. This notification MAY be done using the event notification feature of the
registry as described in chapter 7. The notification MAY be done by invoking a listener Service for
the ownerAtDestination or by sending an email to the ownerAtDestination. This concludes the
first phase of the Object Relocation protocol.

The ownerAtDestination at a later time MAY send an AcceptObjectsRequest message to the
destinationRegistry. This request MUST identify the object relocation transaction via the
correlationld. The value of this attribute MUST be the id of the original RelocateObjectsRequest.

The destinationRegistry sends an AdhocQueryRequest message to the sourceRegistry. The
source registry returns the objects being relocated as an AdhocQueryResponse. In the event of
a large number of objects this may involve multiple AdhocQueryRequest/responses as described
by the iterative query feature described in section 6.2.

The destinationRegistry submits the relocated data to itself assigning the identity of the
ownerAtDestination as the owner. The relocated data MAY be submitted to the destination
registry using any registry specific means or a SubmitObjectsRequest. However, the effect
SHOULD be the same as if a SubmitObjectsRequest was used.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 97 of 129

3468
3469

3470
3471

3472

3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488

3489

3490

3491

3492
3493

3494
3495
3496

3497
3498

3499

3500
3501

3502

3503

3504

3505

3506

3507
3508

3509

3510

3511
3512
3513
3514
3515
3516

7. The destinationRegistry notifies the sourceRegistry that the relocated objects have been safely
committed using the Event Notification feature of the registry as described in chapter 7.
8. The sourceRegistry removes the relocated objects using any registry specific means and logging
an AuditableEvent of type Relocated. This concludes the Object Relocation transaction.
9.4.1 RelocateObjectsRequest
<element name="RelocateObjectsRequest'>
<complexType>
<complexContent>
<extension base="rs:RegistryRequestType'">
<sequence>
<element name="Query" type='"rim:AdhocQueryType'/>
<element name="SourceRegistry'" type="rim:0bjectRefType'"/>
<element name="DestinationRegistry"
type="rim:0bjectRefType'" />
<element name="OwnerAtSource" type="rim:0bjectRefType'"/>
<element name="OwnerAtDestination" type="rim:0bjectRefType"/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>
9.4.1.1 Parameters:
= id: the attribute id provides the transaction identifier for this instance of the protocol.
= AdhocQuery: This element specifies an ad hoc query that selects the RegistryObjects that are
being relocated.
= sourceRegistry: This element specifies the ObjectRef to the sourceRegistry Registry instance. The
value of this attribute MUST be a local reference when the message is sent by the ownerAtSource
to the sourceRegistry.
= destinationRegistry: This element specifies the ObjectRef to the destinationRegistry Registry
instance.
= ownerAtSource: This element specifies the ObjectRef to the ownerAtSource User instance.
= ownerAtDestination: This element specifies the ObjectRef to the ownerAtDestination User
instance.
9.4.1.2 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

9.4.1.3

Exceptions:

In addition to the exceptions common to all requests, the following exceptions MAY be returned:

9.4.2

regrep-rs
Copyright © OASIS Open 2007. All Rights Reserved.

= ObjectNotFoundException: signifies that the specified Registry or User was not found in

the registry.

AcceptObjectsRequest

<element name='"AcceptObjectsRequest'">
<complexType>
<complexContent>
<extension base="rs:RegistryRequestType'">
<attribute name='"correlationId" use='"required"
type="{http://www.w3.0rg/2001/XMLSchema}lanyURI" />

Feb 22, 2007
Page 98 of 129

3517
3518
3519
3520

3521

3522

3523
3524

3525

3526

3527

3528

3529
3530

3531

3532

3533

3534
3535

3536
3537

3538

3539
3540

3541

3542
3543

3544
3545

3546
3547

3548
3549
3550
3551
3552

3553
3554
3555

3556
3557
3558
3559

</extension>
</complexContent>
</complexType>
</element>

9.4.2.1 Parameters:

= correlationld: Provides the transaction identifier for this instance of the protocol.

9.4.2.2 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

9.4.2.3 Exceptions:

In addition to the exceptions common to all requests, the following exceptions MAY be returned:

= InvalidRequestException: signifies that the specified correlationld was not found to
match an ongoing RelocateObjectsRequest in the registry.

9.4.3 Object Relocation and Remote ObjectRefs

The following scenario describes what typically happens when a person moves:

1. When a person moves from one house to another, other persons may have their old postal
addresses.

2. When a person moves, they leave their new address as the forwarding address with the post
office.

3. The post office forwards their mail for some time to their new address.

4. Eventually the forwarding request expires and the post office no longer forwards mail for that
person.

5. During this forwarding interval the person notifies interested parties of their change of address.

The Object Relocation feature supports a similar model for relocation of RegistryObjects. The following
steps describe the expected behavior when an object is relocated.

1. When a RegistryObject O1 is relocated from one registry R1 to another registry R2, other
RegistryObjects may have remote ObjectRefs to O1.

2. The registry R1 MUST create an AuditableEvent of type Relocated that includes the home URI
for the new registry R2.

3. As long as the AuditableEvent exists in R1, if R1 gets a request to retrieve O1 by id, it MUST
forward the request to R2 and transparently retrieve O1 from R2 and deliver it to the client. The
object O1 MUST include the home URI to R2 within the optional home attribute of
RegistryObject. Clients are advised to check the home attribute and update the home attribute of
their local ObjectRef to match the new home URI value for the object.

4. Eventually the AuditableEvent is cleaned up after a registry specific interval. R1 is no longer
required to relay requests for O1 to R2 transparent to the client. Instead R1 MUST return an
ObjectNotFoundException.

5. Clients that are interested in the relocation of O1 and being notified of its new address may
choose to be notified by having a prior subscription using the event notification facility of the
registry. For example a Registry that has a remote ObjectRefs to O1 may create a subscription
on relocation events for O1. This however, is not required behavior.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 99 of 129

3560

3561
3562

3563
3564

3565

3566
3567

3568
3569
3570

3571
3572
3573
3574

3575

3576
3577
3578
3579
3580

3581

3582
3583
3584

3585
3586
3587

3588
3589

3590
3591
3592

3593

3594
3595
3596

3597

9.4.4 Notification of Object Relocation To ownerAtDestination

This section describes how the destinationRegistry uses the event notification feature of the registry to
notify the ownerAtDestination of a Relocated event.

The destinationRegistry MUST send a Notification with the following required characteristics:
* The notification MUST be an instance of a Notification element.

* The Notification instance MUST have at least one Slot as follows:

o The Slot MUST have the name:
urn: oasi s: names:tc: ebxm -regrep:rs:events:correl ationld

o The Slot MUST have the correlationld for the Object Relocation transaction as the value
of the Slot.

9.4.5 Notification of Object Commit To sourceRegistry

This section describes how the destinationRegistry uses the event notification feature of the registry to
notify the sourceRegistry that it has completed committing the relocated objects.
The destinationRegistry MUST send a Notification with the following required characteristics:

¢ The notification MUST be an instance of a Notification element.

* The Notification instance MUST have at least one Slot as follows:

o The Slot MUST have the name
urn: oasi s: names:tc: ebxm -regrep:rs: events: obj ectsCommitted

o The Slot MUST have the value of true.

9.4.6 Object Ownership and Owner Reassignment

A registry MUST determine the ownership of a RegistryObject based upon the most recent
AuditableEvent that has the eventType matching the canonical EventType ClassificationNode for Create
or Relocate events.

A special case of Object Relocation is when an ObjectRelocationRequest to a registry specifies the
same registry as sourceRegistry and destinationRegistry. In such cases the request is effectively to
change the owner of the specified objects from current owner to a new owner.

In such case if the client does not have the RegistryAdministrator role then the protocol requires the
ownerAtDestination to issue an AcceptObjectsRequest as described earlier.

However, if the client does have the RegistryAdministrator role then the registry MUST change the owner
of the object to the user specified as ownerAtDestination without the ownerAtDestination to issue an
AcceptObjectsRequest.

9.4.7 Object Relocation and Timeouts

No timeouts are specified for the Object Relocation protocol. Registry implementations MAY cleanup
incomplete Object Relocation transactions in a registry specific manner as an administrative task using
registry specific policies.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 100 of 129

3598

3599
3600
3601

3602
3603
3604
3605

3606

3607
3608

3609

3610
3611
3612
3613

3614

3615
3616
3617
3618

3619

3620
3621
3622
3623

3624

3625
3626
3627

3628

3629
3630
3631
3632

3633

3634
3635
3636

10 Registry Security

This chapter describes the security features of ebXML Registry. A glossary of security terms can be
referenced from [RFC 2828]. The registry security specification incorporates by reference the following
specifications:

e [WSI-BSP] WS-I Basic Security Profile 1.0

* [WSS-SMS] Web Services Security: SOAP Message Security 1.0

+ [WSS-SWA] Web Services Security: SOAP Messages with Attachments (SwA) Profile 1.0
This chapter provides registry specific details not present in above specifications.

10.1 Security Use Cases

This section describes various use cases that require security features from the registry. Subsequent
sections describe specific registry mechanisms that enable each of these use cases.

10.1.1 Identity Management

An organization deploys an ebXML Registry and needs to define the set of users and services that are
authorized to use the services offered by the registry. They require that the registry provide some
mechanism for registering and subsequently managing the identity and credentials associated with such
authorized users and services.

10.1.2 Message Security

A Registered User sends a request message to the registry and receives a response back from the
registry. The user requires that the message integrity be protected during transmission from tampering
(man-in-the-middle attack). The user may also require that the message communication is not available
to unauthorized parties (confidentiality).

10.1.3 Repository Item Security

A Registered User submits a repository item to the registry. The user requires that the registry provide
mechanisms to protect the integrity of the repository item during transmission on the wire and as long as
it is stored in the registry. The user may also require that the content of the Repositoryltem is not
available to unauthorized parties (confidentiality).

10.1.4 Authentication

An organization that deploys an ebXML Registry requires that when a Registered User sends a request
to the registry, the registry checks the credentials provided by the user to ensure that the user is a
Registered User and to unambiguously determine the user’s identity.

10.1.5 Authorization and Access Control

An organization that deploys an ebXML Registry requires that the registry provide a mechanism that
protect its resources from unauthorized access. Specifically, when a Registry Requestor sends a request
to the registry, the registry restricts the actions of the requestor to specific actions on specific resources
for which the requestor is authorized.

10.1.6 Audit Trail

An organization that deploys an ebXML Registry requires that the registry keep a journal or Audit Trail of
all significant actions performed by Registry Requestors on registry resources. This provides a basic form
of non-repudiation where a Registry Requestor cannot repudiate that that they performed actions that

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 101 of 129

3637

3638

3639
3640

3641
3642
3643

3644
3645

3646

3647
3648

3649

3650
3651
3652

3653

3654

3655
3656
3657
3658

3659

3660
3661
3662
3663
3664
3665
3666

3667
3668
3669

3670
3671

3672

3673
3674
3675
3676
3677
3678
3679

are logged in the Audit Trail.

10.2 Identity Management

An ebXML Registry MUST provide an Identity Management mechnism that allows identities and
credentials to be registered for authorized users of the registry and subsequently managed.

If a registry implements the Registry SAML Profile as described in chapter 11 then the Identity
Management capability MUST be provided by an Identity Provider service that integrates with the
registry using the SAML 2.0 protocols as defined by [SAMLCore].

If a registry does not implement the Registry SAML Profile then it MUST provide User Registration and
Identity Management functionality in an implementation specific manner.

10.3 Message Security

A registry MUST provide mechanisms to securely exchange messages between a Registry Requestor
and the registry to ensure data and source integrity as described in this section.

10.3.1 Transport Layer Security

A registry MUST support HTTP/S communication between an HTTP Requestor and its HTTP interface
binding. A registry MUST also support HTTP/S communication between a SOAP Requestor and its
SOAP interface binding when the underlying transport protocol is HTTP.

HTTP/S support SHOULD allow for both SSL and TLS as transport protocols.

10.3.2 SOAP Message Security

A registry MUST support signing and verification of all registry protocol messages (requests and
responses) between a SOAP Requestor and its SOAP binding. Such mechanisms MUST conform to
[WSI-BSP], [WSS-SMS], [WSS-SWA] and [XMLDSIG]. The reader should refer to these specifications for
details on these message security mechanisms.

10.3.2.1 Request Message Signature

When a Registered User sends a request message to the registry, the requestor SHOULD sign the
request message with a Message Signature. This ensures the integrity of the message and also enables
the registry to perform authentication and authorization for the request. If the registry receives a request
that does not include a Message signature then it MUST implicitly treat the request as coming from a
Registry Guest. A Registered User need not sign a request message with a Message Signature when
the SOAP communication is conducted over HTTP/S as the message security is handled by the
transport layer security provided by HTTP/S in this case.

When a Registered User sends a request message to the registry that contains a Repositoryltem as a
SOAP Attachment, the requestor MUST also reference and sign the Repositoryltem from the message
signature. This MUST conform to [RFC2392] and [WSS-SWA].

If the registry receives a request containing an unsigned Repositoryltem then it MUST return an
UnsignedRepositoryltemException.

10.3.2.2 Response Message Signature

When a Registered User sends a request message to the registry, the registry MAY use a pre-
established preference policy or a default policy to determine whether the response message SHOULD
be signed with a Message Signature. When a Registry Guest sends a request, the Registration Authority
MAY use a default policy to determine whether the response contains a header signature. A registry
need not sign a response message with a Message Signature when the SOAP communication is
conducted over HTTP/S as the message security is handled by the transport layer security provided by
HTTP/S in this case.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 102 of 129

3680
3681
3682

3683
3684
3685

3686

3687
3688
3689
3690
3691
3692

3693

3694

3695
3696

3697
3698
3699

3700
3701
3702

3703

3704

3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735

When a registry sends a signed response message to a Registry Client that contains a Repositoryltem
as a SOAP Attachement, the registry MUST also reference and sign the Repositoryltem from the
message signature. This MUST conform to [RFC2392] and [WSS-SWA].

If the Registry Client receives a signed response with a Repositoryltem that does not include a
Repositoryltem Signature then it SHOULD not trust the integrity of the response and treat it as an error
condition.

10.3.2.3 Keylnfo Requirements

The sender of a registry protocol message (Registry Requestor and Registry) SHOULD provide their
public key under the <wsse:Security> element. If provided, it MUST be contained in a
<wsse:BinarySecurityToken> element and MUST be referenced from the <ds:KeyInfo> element in the
Message Signature. The value of wsu:ld attribute of the <wsse:BinarySecurityToken> containing the
senders public key MUST be urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert.
The <wsse:BinarySecurityToken> SHOULD contain a X509 Certificate.

Listing 3 shows an example of Message signature including specifying the Keylnfo.

10.3.2.4 Message Signature Validation

Signature validation ensures message and attached Repositoryltems integrity and security, concerning
both data and source.

If the registry receives a request containing a Message Signature then it MUST validate the Message
Signature as defined by [WSS-SMS]. In case the request contains an attached Repositoryltem it MUST
validate the Repositoryltems signature as defined by [WSS-SWA].

If the Registry Requestor receives a response containing a Message Signature then it SHOULD validate
the Message Signature as defined by [WSS-SMS]. In case the response contains an attached
Repositoryltem then it SHOULD validate the Repositoryltem signature as defined by [WSS-SWA].

10.3.2.5 Message Signature Example

The following example shows the format of a Message Signature:

<soap:Envelope>
<soap:Header>
<wsse:Security>
<wsse:BinarySecurityToken EncodingType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-soap-message-security-
1.0#Baseb4Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert'>
1ui+Jy4WYKGIW5xM3aHnLx0OpGVIpzSg4V486hHFe7sHET /uxxVBovT7JV1A2RnWS
WkXm9jAEdsm/
hs+f3NwvK23bh46mNmnCQVsUYHbYAREZpykrd/eRwNgx8T+ByeFhmSviW77n6yTc
I17XU7xZT54S59
hTSyBLN2SceldEQpQXh5ssZK9aZTMrsFTINBvNHC3Qg7w00Otr5V4axH3MXffsul9
WzxPCfHdalN4
rLRENY318pc6bn00zAMwOomUWWBEJZxxBGGUc9QY3VjwNALgGDaEAT7gpURkCI85
HjdnSA5SM4cY
7jAsYX/CIpEKRIJcBULITEFrBZIBYDPzRW1SdsJRIngF7yCoGWJ+/HYOyP8P40M59
FDiOkM8GwWOEO
WgYrJHH92gqaVhoiPTLi7
</wsse:BinarySecurityToken>
<ds:Signature>

<!--The Message Signature -->
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" ">
<cl4n:InclusiveNamespaces PrefixList="wsse soap"
xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc—-cl4n#"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<ds:Reference URI="#TheBody">

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 103 of 129

3736 <ds:Transforms>

3737 <ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-
3738 exc—-cl4n#">

3739 <cl4n:InclusiveNamespaces PrefixList=""

3740 xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc—-cl4n#"/>

3741 </ds:Transform>

3742 </ds:Transforms>

3743 <ds:DigestMethod

3744 Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />

3745 <ds:DigestValue>i3gi5GjhHnfoBn/jOjOp2mgONa4=</ds:DigestValue
3746 >

3747 </ds:Reference>

3748 </ds:SignedInfo>

3749 <ds:SignatureValue>PipXJ2Sfc+LTDng4pM5JcIYt9gg=</ds:Signatureval
3750 ue>

3751 <ds:KeyInfo>

3752 <wsse:SecurityTokenReference>

3753 <wsse:Reference URI="#urn:oasis:names:tc:ebxml-

3754 regrep:rs:security:SenderCert" ValueType="http://docs.oasis-

3755 open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"/>
3756 </wsse:SecurityTokenReference>

3757 </ds:KeyInfo>

3758 </ds:Signature>

3759 </wsse:Security>

3760 </soap:Header>

3761 <soap:Body wsu:Id="TheBody">

3762 <lcm:SubmitObjectsRequest/>

3763 </soap:Body>

3764 </soap:Envelope>

3765 Listing 3: Message Signature Example

3766 10.3.2.6 Message With Repositoryltem: Signature Example

3767 The following example shows the format of a Message Signature that also signs the
3768 attached Respositoryltem:

3769

3770 Content-Type: multipart/related; boundary="”BoundaryStr” type="text/xml”
3771 --BoundaryStr

3772 Content-Type: text/xml

3773 <soap:Envelope>

3774 <soap:Header>

3775 <wsse:Security>

3776 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-

3777 open.org/wss/2004/01/0asis-200401-wss-soap-message-security-

3778 1.0#Baseb4Binary" ValueType="http://docs.oasis-

3779 open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"

3780 wsu:Id="urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert'>

3781 1ui+Jy4WYKGIW5xM3aHnLx0OpGVIpzSg4V486hHFe7sHET /uxxVBovT7JV1A2RnWS
3782 WkXm9jAEdsm/

3783 hs+f3NwvK23bh46mNmnCQVsUYHbYAREZpykrd/eRwNgx8T+ByeFhmSviW77n6yTc
3784 I7XU7xZT54S9

3785 hTSyBLN2SceldEQpQXh5ssZK9aZTMrsFTINBVNHC3Qq7w00tr5V4axH3MXffsulo
3786 WzxPCfHdalN4

3787 rLRENY318pc6bn00zAMwOomUWWBEJZxxBGGUc9QY3VjwNALgGDaEAT7gpURkCI85
3788 HjdnSA5SM4cY

3789 7jAsYX/CIpEKRIJcBULITEFrBZIBYDPzRW1SdsJRIngF7yCoGWJ+/HYOyP8P40M59
3790 FDiOkM8GwWOEO

3791 WgYrJHH92gqaVhoiPTLi7

3792 </wsse:BinarySecurityToken>

3793 <ds:Signature>

3794 <!-- The Message Signature -->

3795 <ds:SignedInfo>

3796 <ds:CanonicalizationMethod

3797 Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" ">

3798 <cl4n:InclusiveNamespaces PrefixList="wsse soap"

3799 xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc—-cl4n#"/>

3800 </ds:CanonicalizationMethod>

3801 <ds:SignatureMethod

3802 Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 104 of 129

3868

3869
3870

<ds:Reference URI="#TheBody'">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-
exc-cl4n#">
<cl4n:InclusiveNamespaces PrefixList=""
xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>i3gi5GjhHnfoBn/jOj0p2mgONa4=</ds:DigestValue
>
</ds:Reference>
</ds:SignedInfo>

<!--A reference to a RepositorylItem (one for each
RepositoryItem) -->
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" ">
<cl4n:InclusiveNamespaces PrefixList="wsse soap"
xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc—-cl4n#"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<ds:Reference URI="cid:${REPOSITORY ITEM1 ID}">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-
exc—-cl4n#'">
<ds:Transform Algorithm="http://docs.oasis-
open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-
Content-Only-Transform' />
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>j6lwx3rvEPOOVKtMup4NbeVu8nk=</ds:DigestValue

>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>PipXJ2Sfc+LTDng4pM5JcIYt9gg=</ds:Signatureval
ue>

<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#urn:oasis:names:tc:ebxml-
regrep:rs:security:SenderCert" ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"/>
</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>
</soap:Header>
<soap:Body wsu:Id="TheBody">
<lcm:SubmitObjectsRequest/>
</soap:Body>
</soap:Envelope>
—--BoundaryStr
Content-Type: image/png
Content-ID: <${REPOSITORY_ITEM1_ID}>
Content-Transfer-Encoding: base64
the repository item (e.g. PNG Image) goes here..

Listing 4: Repositoryltem Signature Example

10.3.2.7 SOAP Message Security and HTTP/S

When using HTTP/S between a Registry Client and a registry, SOAP message security MUST NOT be
used. Specifically:

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 105 of 129

3871
3872
3873
3874

3875

3876
3877

3878
3879

3880

3881

3882
3883

3884
3885

3886
3887
3888
3889
3890

3891
3892

3893
3894
3895

3896

3897
3898
3899
3900

3901
3902

3903
3904

3905

3906
3907
3908
3909
3910
3911

» The Registry Client MUST NOT sign the request message or any repository items in the request.
« The registry MUST NOT verify request or Repositoryltem signatures.

» The registry MUST NOT sign the response message or any repository items in the response.

« The Registry Client MUST NOT verify response or Repositoryltem signatures.

10.3.3 Message Confidentiality

A registry SHOULD support encryption of protocol messages as defined section 9 of [WSI-BSP] as a
mechanism to support confidentiality of protocol messages during transmission on the wire.

A Registry Client MAY use encryption of Repositoryltems as defined by [WSS-SWA] as a mechanism to
support confidentiality of Repositoryltems during transmission on the wire.

A registry SHOULD support the submission of encrypted repository items.

10.3.4 Key Distribution Requirements

The registry and Registered Users MUST mutually exchange their public keys. This is necessary to
enable:

» Mutual Authentication of Registry Client and registry using SSL/TLS handshake for transport
layer security over HTTP/S

» Validation of Message Signature and Repositoryltem Signature (described in section).
» Decryption of encrypted messages

In order to enable Message Security the following requirements MUST be met:

1. A Certificate is associated with the registry.

2. A Certificate is associated with Registry Client.

3. A Registry Client registers its public key certificate with the registry. This is typically done during User
Registration and is implementation specific.

4. Registry Client obtains the registry’s public key certificate and stores it in its own local key store. This
is done in an implementation specific manner.

10.4 Authentication

The Registry MUST be able to authenticate the identity of the User associated with client requests in
order to perform authorization and access control and to maintain an Audit Trail of registry access. In
security terms a service that provides the ability to authenticate requestors is referred to as an
Authentication Authority.

A registry MUST provide one or more of the following Authentication mechanisms:
* Registry as Authentication Authority
» External Authentication Authority

10.4.1 Registry as Authentication Authority

A registry MAY provide authentication capability by serving as an Authentication Authority. In this role the
registry uses the <ds:Keylnfo> in the Message Signature as credentials to authenticate the requestor.
This typically requires checking that the public key supplied in the <ds:KeyInfo> of the Message
Signature matches the public key of a Registered User. This also requires that the registry maintain a
“registry keystore” that contains the public keys of Registered Users. The remaining details of registry as
an authentication authority are implementation specific.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 106 of 129

3912
3913
3914
3915

3916

3917
3918
3919

3920

3921
3922
3923
3924

3925

3926
3927
3928

3929
3930

3931
3932

3933
3934

3935
3936

3937
3938
3939
3940

3941

3942
3943
3944
3945
3946
3947
3948

3949
3950

Alternatively, if the Registry Client communicates with the registry over HTTP/S, the registry MUST
authenticate the Registry Client User if a registered certificate is provided through SSL Client
Authentication. If the certificate is not known to the registry then the Registry MUST assign the
RegistryGuest principal with the Registry Client.

10.4.2 External Authentication Authority

A registry MAY also use an external Authentication Authority to auhenticate client requests. The use of
an external Authentication Authority requires that the registry implement the Registry SAML Profile as
described in chapter 11.

10.4.3 Authenticated Session Support

Once a request is authenticated a Registry SHOULD establish an authenticated session using
implementation specific means to avoid having to re-authenticate subsequent request from the same
requestor. When the underlying transport protocol is HTTP, a registry SHOULD implement authenticated
session support based upon HTTP session capability as defined by [RFC2965].

10.5 Authorization and Access Control

Once a registry has authenticated the identity of the Registered User associated with a client request it
MUST perform authorization and subsequently enforce access control rules based upon the
authorization decision.

Authorization and access control is an operation conducted by the registry that decides WHO can do
WHAT ACTION on WHICH RESOURCE.

 The WHO is the User determined by the authentication step.
e« The WHAT ACTION is determined by the registry protocol request sent by the client.

 The WHICH RESOURCE consists of the RegistryObjects and Repositoryltems impacted by the
registry protocol request.

The Access Control Policy associated with the resource that is impacted by the action determines
authorization and access control.

A registry MUST provide an access control and authorization mechanism based upon chapter titled
“Access Control Information Model” in [ebRIM]. This model defines a default access control policy that
MUST be supported by the registry. In addition it also defines a binding to [XACML] that allows fine-
grained access control policies to be defined.

10.6 Audit Trail

Once a registry has performed authorization checks, enforced access control and allowed a client
request to proceed it services the client request. A registry MUST create an Audit Trail of all
LifeCycleManager operations. A registry MAY create an Audit Trail of QueryManager operations. To
conserve storage resources, a registry MAY prune the Audit Trail information it stores in an
implementation specific manner. A registry SHOULD perform such pruning by removing the older
information in its Audit Trail content. However, it MUST not remove the original Create Event at the
beginning of the audit trail since the Create Event establishes the owner of the RegistryObject.

Details of how a registry maintains an Audit Trail of client requests is described in the chapter title “Event
Information Model” of [ebRIM].

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 107 of 129

3951

3952
3953
3954

3955

3956
3957

3958

3959

3960

3961
3962

11 Registry SAML Profile

This chapter defines the Registry SAML Profile that a registry MAY implement in order to support SAML
2.0 protocols defined by [SAMLCore]. A specific focus of the Registry SAML Profile is the Web Single
Sign On (SSO) profile defined by [SAMLProf].

11.1 Terminology

The reader should refer to the SAML Glossary [SAMLGloss] for various terms used in the Registry SAML
profile. A few terms are described here for convenience:

Term Definition
Authentication An Authentication Authority is a system entity (typically a service) that enables
Authority other system entities (typically a user or service) to establish an authenticated

session by proving their identity by providing necessary credentials (e.g.
username / password, certificate alias / password). An Authentication Authority
produces authentication assertions as a result of successful authentication.
Enhanced Client | Describes a client that operates under certain constraints such as not being able
Proxy (ECP) to support HTTP Redirect protocol. Typically these are clients that do not have a
Web Browser environment. In this document the main example of an ECP is a
Registry Client that uses SOAP to communicate with the registry (SOAP

Requestor).
Identity Provider | A kind of service provider that creates, maintains, and manages identity
(IdP) information for principals (e.g. users). An ldentity Provider is usually also an

Authentication Authority.

Principal A system entity whose identity can be authenticated. This maps to User in
[ebRIM].
SAML Requestor | A system entity that utilizes the SAML protocol to request

services from another system entity (a SAML authority, a
responder). The term “client” for this notion is not used because
many system entities simultaneously or serially act as both
clients and servers.

Service Provider | A role donned by a system entity where the system entity provides services to

(SP) principals or other system entities. The Registry Service is a SP
Single Sign On The ability to share a single authenticated session across multiple SSO enabled
(SSO) services and application. The client may establish the authenticated session by

authenticating with any Authentication Authority within the system. The client may
then perform secure operations with any SSO enabled service within the system
using the authenticated session.

Single Logout The ability to logout nearly simultaneously from multiple Service Providers within a

federated system.

11.2 Use Cases for SAML Profile

The Registry SAML Profile is intended to address following use cases using the protocols defined by
[SAMLCore].

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 108 of 129

3963

3964
3965
3966
3967
3968

3969
3970
3971
3972

3973

3974
3975

3976

3977
3978

3979

3980
3981

3982

3983

3984
3985
3986

3987

11.2.1 Registry as SSO Participant:

A large enterprise is deploying an ebXML Registry. The enterprise already has an existing Identity
Provider (e.g. an Access Manager service) where it maintains user information and credentials. The
enterprise also has an existing Authentication Authority (which may be the same service as the Identity
Provider) that is used to authenticate users and enable Single Sign On (SSO) across all their enterprise
services applications.

The enterprise wishes to use its existing Identity Provider to manage registry users and to avoid
duplicating the user database contained in the Identity Provider within the registry. The enterprise also
wishes to use its existing Authentication Authority to authenticate registry users and expects the registry
to participate in SSO capability provided by their Authentication Authority service.

Source Web Site
(Company.com)

Asserting Party
Destination Web Site
(Travel.com)
==
— Relying Party
: i :

Figure 27: SAML SSO Typical Scenario

11.3 SAML Roles Played By Registry

In order to conform to the registry SAML Profile an ebXML Registry plays the Service Provider (SP) role
based upon conformance with SAML 2.0 protocols.

11.3.1 Service Provider Role

The Service Provider role enables the registry to participate in SAML protocols. Specifically it allows the
registry to utilize an Identity Provider to perform client authentication on its behalf.

11.3.1.1 Service Provider Requirements

The following are a list of requirements for the Service Provider role of the registry:

e MUST support the protocols, messages and bindings that are the responsibility of the Service
Provider as defined by Web SSO Profile in [SAMLProf]. Specifically it MUST be able to intiate
and participate in the Authentication Request Protocol with an Identity Provider.

e MUST be able to use a SAML Identity Provider to authenticate client requests.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 109 of 129

3988
3989

3990

3991

3992
3993

3994
3995

3996
3997
3998

3999

4000
4001

4002
4003

4004
4005
4006

4007
4008

4009
4010

* MUST support the ability to maintain a security context for registry clients across multiple client
requests.

11.4 Registry SAML Interface

In order to conform to the registry SAML Profile an ebXML Registry MUST implement a new SAML
interface in addition to its service interfaces such as QueryManager and LifeCycleManager.

Details of the registry’s SAML interface are not described by this specification. Instead they are described
by the SAML 2.0 specifications and MUST support SAML HTTP and SOAP requests.

A registry uses its SAML interface to participate in SAML protocols with SAML Clients and SAML Identity
Providers. Specifically, an IdentityProvider uses the registry’s SAML Service Provider interface to deliver
the Response to an Authentication Request.

11.5 Requirements for Registry SAML Profile

In order to conform to the Registry SAML Profile a registry MUST implement specific SAML protocol that
support specific SAML protocol message exchanges using specific protocol bindings.

Table 7 lists the matrix of SAML Profiles, Protocols Messages and their Bindings that a registry MUST
support in order to conform to the registry SAML Profile.

The reader should refer to:
e [SAMLProf] for description of profiles listed
¢ [SAMLCore] for description of Message Flows listed
e [SAMLBInd] for description of Bindings listed

Profile Message Flows Binding Implementation
Requirement
Web SSO <AuthnRequest> from Registry ||[HTTP redirect MUST
to IdentityProvider
dentityProvider <Response>to ||[HTTP POST |MUST |
Registry [HTTP artifact |[MUST |
Single Logout <LogoutRequest> ‘HTTP redirect HMUST ‘
[SOAP |ImAY |
<LogoutResponse> ‘HTTP redirect HMUST ‘
[SOAP |IMAY |
. . |<ArtifactResolve>, lsoaP IMusT |
Artifact Resolution
‘<ArtifactResponse> HSOAP HMUST ‘
Enhanced Client/Proxy ||[ECP to Registry, Registry to ECP ||PAOS MUST
SSO to IdentityProvider
IdentityProvider to ECP to PAOS MUST
Registry, Registry to ECP

Table 7: Required SAML Profiles, Protocols and Bindings

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 110 of 129

4011

4012

4013

4014
4015

4016
4017

4018
4019

4020
4021
4022

4023
4024

4025

4026
4027

11.6

SSO Operation

This section describes the interaction sequnce for various types of SSO operations.

11.6.1

Scenario Actors

The following are the actors that will be participating the various SSO Operation scenarios described in
subsequent section:

11.6.2

HTTP Requestor: This represents a Registry Client that accesses the registry using the HTTP
binding of the registry protocols typically through a User Agent such as a Web Browser.

SOAP Requestor: This represents a Registry Client that accesses the registry using the SOAP
binding of the registry protocols.

Registry: This represents a Registry and includes all Registry interfaces such as QueryManager,
LifeCycleManager and the registry’s SAML Service Provider. The Registry participates in ebXML
Registry protocols as well as SAML protocols.

IdentityProvider: This represents the IdentityProvider used by the registry to perform
Authentication on its behalf.

SSO Operation — Unauthenticated HTTP Requestor

Figure 28 shows a high level view of the Single Sign On (SSO) operation when the SOAP Requestor is
unauthenticated and accesses the registry over HTTP via a User Agent such as a Web Browser.

regrep-rs

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 111 of 129

4028
4029

4030

4031

4032
4033

4034
4035

4036
4037
4038

4039
4040
4041
4042
4043
4044

4045
4046
4047

HTTF Requestor

Reqgistry

| 1. HTTP GET or POST recw&

51

b5

IdentityProvider

.1: Does a security context exist. Mo, Mded to create one (impl. specific)

1.2: <samlp AuthnFequest = message.u.s.iqg HTTF Fedirect via HTTP Fequestor

1.2 1 identify Suldject (rmpl. specific)

1.2.2: <samlp:Epsponse> message using HTTP

11.6.2.1

HTTP Eesponsze with requested resnurceb|

]

= — — — — — — — —

ST or HT TP Artifact wia HTTP Eeguestor

1.2.2.1: estalilish security context far

1.2.2.2: Map Subject to User (spec de

1.2.2 .3 perfarm authorization decisio

Fuject (mpl. specific)

inph

, pprocess request (spec defined)

Figure 28: SSO Operation — Unauthenticated HTTP Requestor

Scenario Sequence

Figure 28 shows the following sequence of steps for the operation:
The HTTP Requestor sends a HTTP GET or POST request to a Registry interface such as the

The Registry checks to see if it already has a security context established for the Subject
associated with the request. It determines that there is no pre-existing security context.

In order to establish a security context, the Registry therefor initiates the <samlp:AuthnRequest>
protocol with the IdentityProvider. The <AuthnRequest> is sent using HTTP Redirect via the User

1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the User Agent being used by the HTTP Requestor to get the
credentials associated with the Subject and then using the credentials to authenticate that the
IdentityProvider knows the Subject. In case of SSL/TLS based communication the credetials are
acquired without any user intervention directly from the User Agent. The figure assumes that the

2 The IdentityProvider sends a <sampl:Response> message containing a
<saml:AuthenticationStatement> to the Registry using either HTTP POST or HTTP Artifact

,
QueryManager or LifeCycleManager.
1.1
1.2
Agent (e.g. Web Browser) used by the HTTP Requestor.
1.2
IdentityProvider is able to authenticate the Subject.
1.2
SAML Binding via the User Agent.
regrep-rs

Copyright © OASIS Open 2007. All Rights Reserved.

Feb 22, 2007
Page 112 of 129

4048
4049
4050
4051

4052
4053

4054
4055
4056
4057

4058

4059

4060
4061

4062
4063
4064
4065

4066

4067
4068

4069

1.2.2.1 The Registry uses implementation specific means to establish a security context for the Subject
authenticated by the IdentityProvider based upon the information contained about the Subject
in the <samlp:Response> message. This may include creating an HTTP Session for the HTTP
Requestor.

1.2.2.2 The Registry maps the information about the Subject in the <samlp:Response> message into a
<rim:User> instance. This establishes the <rim:User>context for the security context.

1.2.2.3 The Registry then performs authorization decision based upon the original HTTP request and
the <rim:User>. The figure assumes that authorization decision was to allow the request to be
processed. The Registry processes the request and subsequently return the requested
resource to the HTTP Requestor via the HTTP response.

11.6.3 SSO Operation — Authenticated HTTP Requestor

This is the case where the HTTP Requestor first authenticates with an IdentityProvider and then
accesses the registry over HTTP via a User Agent such as a Web Browser.

Currently there are no standard means defined for carrying SAML Assertions resulting from the Registry
Requestor authenticating with an IdentityProvider over HTTP protocol to a Service Provider such as the
registry. A registry MAY support this scenario in an implementation specific manner. Typically, the Identity
Provider will define any such implementation specific manner.

11.6.4 SSO Operation — Unuthenticated SOAP Requestor

This is the case where an unauthenticated Registry Requestor accesses the registry over SOAP.
Figure 29 shows the steps involved.

SOAP Requestor Reqgistry IdentityProvider

| | |
| 1. <rs:RegistnyFequast> S0AF request | |
|

{===
l
1.1: Does a security context exist. Mo, Meed tolcreate one (mpl. specificy
|

1.2, <samiplauthnReguest 'O£ message using PACS Binding HTTP OFK response
==}

|
|
1.2.1: <samlpAuthnREequest > message using HTTP POST or HTTP Artifact I

fo==
fii==

1.2.1.1: identify Principal {impl. specific)

1.2.1.2: <zamlp:Eespanszes> message using AL S0AF Binding targetted to RegistnSerce

==}

1.2.1.2.1: <samlp:Response> message using PADY Binding (i.e. HTTF POST)

1.2.1.2.1.1: establish security context far SUbJect (impl. specificy

1.2.1.2.1.2: Map Subject to User {spec defifed)

1.2.1.2.1.3; perform authorization decision)| process reguest {spec defined)

<Registn/Response > SOAP messagell|

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 113 of 129

4070

4071

4072

4073
4074
4075
4076

4077
4078

4079
4080
4081
4082

4083
4084
4085

4086
4087
4088
4089
4090
4091

4092
4093
4094

4095
4096

4097
4098
4099
4100

4101
4102

4103
4104
4105
4106
4107

4108

4109

4110
4111

Figure 29: SSO Operation - Unauthenticated SOAP Requestor

11.6.4.1 Scenario Sequence

Figure 29 shows the following sequence of steps for the operation:

1 The SOAP Requestor sends a <rs:RegistryRequest> SOAP message such as a
<lcm:SubmitObjectsRequest> to a Registry interface such as the LifeCycleManagerManager. In the
request header the SOAP Requestor declares that it is an ECP requestor as defined by the ECP
Profile in [SAMLProf].

1.1 The Registry checks to see if it already has a security context established for the Subject
associated with the request. It determines that there is no pre-existing security context.

1.2 Because the request is from an ECP client, the registry uses the ECP Profile defined by
[SAMLProf] and sends a <samlp:AuthnRequest> SOAP message as response to the
<rs:RegistryRequest> SOAP message to the SOAP Requestor using the PAOS Binding as defined
by [SAMLBInd]. The response has an HTTP Response status of OK.

1.2.1 The SOAP Requestor then initiates the <samlp:AuthnRequest> protocol with the IdentityProvider.
The <sampl:AuthnRequest> is sent using HTTP POST or Artifact Binding directly to the
IdentityProvider.

1.2.1.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the SOAP Requestor to get the credentials associated with the
Subject and then using the credentials to authenticate that the IdentityProvider knows the
Subject. In case of SSL/TLS based communication the credetials are acquired without any user
intervention directly from the SOAP Requestor. The figure assumes that the IdentityProvider is
able to authenticate the Subject.

1.2.1.2 The IdentityProvider sends a <sampl:Response> message containing a
<saml:AuthenticationStatement> to the SOAP Requestor using SAML SOAP Binding. The
HTTP header specifies the Registry as the ultimate target of the response.

1.2.1.2.1 The SOAP Requestor forwards the <sampl:Response> message containing a
<saml:AuthenticationStatement> to the Registry using PAOS Binding via HTTP POST.

1.2.1.2.1.1 The Registry uses implementation specific means to establish a security context for the
Subject authenticated by the IdentityProvider based upon the information contained about
the Subject in the <samlp:Response> message. This may include creating an HTTP
Session for the HTTP Requestor.

1.2.1.2.1.2 The Registry maps the information about the Subject in the <samlp:Response> message
into a <rim:User> instance. This establishes the <rim:User>context for the security context.

1.2.1.2.1.3 The Registry then performs authorization decision based upon the original SOAP request
and the <rim:User>. The figure assumes that authorization decision was to allow the request
to be processed. The Registry processes the request and subsequently return a
<rs:RegistryResponse> SOAP message as response to the original <rs:RegistryRequest>
SOAP request.

11.6.5 SSO Operation — Authenticated SOAP Requestor

This is the case where the Registry Requestor first authenticates with an IdentityProvider directly and
then makes a request to the registry using SOAP.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 114 of 129

4112
4113

4114

4115

4116
4117

4118
4119
4120
4121
4122
4123

4124
4125
4126

4127
4128

S50AP Requestor Registry IdentityProvider

| 1 <samip:authnRequests messhoe using HTTP POST or HTTP Arttags '

|
| 1.1 identify Principal {mpl. specific)
[

1.2: <zamlp:Response > messhge using HTTP POST or HTTP Artifact
[

I
21 <rs:RegistryReguest> message with SaML Tokens T
I

2.1 map SAML Takens 1o User (spec:defined)

2.2 perform authorization deciszion, 4rncess request (spec defined)

<rz:RegistryResponse » Ill

message

Figure 30: SSO Operation - Authenticated SOAP Requestor

11.6.5.1 Scenario Sequence

The figure shows the following sequence of steps for the operation:

1 The SOAP Requestor then initiates the <samlp:AuthnRequest> protocol directly with the
IdentityProvider. The <sampl:AuthnRequest> is sent using HTTP POST or Artifact Binding.

1.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the SOAP Requestor to get the credentials associated with the
Subject and then using the credentials to authenticate that the IdentityProvider knows the Subject.
In case of SSL/TLS based communication the credetials are acquired without any user
intervention directly from the SOAP Requestor. The figure assumes that the IdentityProvider is
able to authenticate the Subject.

1.2 The IdentityProvider sends a <sampl:Response> message containing a
<saml:AuthenticationStatement> to the SOAP Requestor using SAML HTTP POST or HTTP
Artifact Binding.

2 The SOAP Requestor sends a <rs:RegistryRequest> SOAP message such as a
<lcm:SubmitObjectsRequest> to a Registry interface such as the LifeCycleManagerManager. The

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 115 of 129

4129
4130
4131

4132
4133

4134
4135
4136
4137

4138

4139

4140
4141

4142
4143

4144
4145
4146

4147

4148

4149

4150

4151
4152

4153
4154
4155

4156
4157

4158

4159
4160

4161

4162
4163

4164
4165

4166

4167
4168
4169
4170

<rs:RegistryRequest> SOAP message includes SAML Tokens in the <soap:Header> of the SOAP
message as defined by [WSS-SAML]. The SAML Tokens are based upon the <sampl:Response>
during authentication.

2.1 The registry maps the SAML Tokens from the <soap:Header> of the <rs:RegistryRequest> to a
<rim:User> instance. This establishes the <rim:User> context for the request.

2.2 The Registry then performs authorization decision based upon the original SOAP request and the
<rim:User>. The figure assumes that authorization decision was to allow the request to be
processed. The Registry processes the request and subsequently return a <rs:RegistryResponse>
SOAP message as response to the original <rs:RegistryRequest> SOAP request.

11.6.6 <samlp:AuthnRequest> Generation Rules

The following rules MUST be observed when the registry or Registry Client issues a
<samlp:AuthnRequest>:

* Aregistry MUST specify a NamelDPolicy within the <samlp:AuthRequest>

e The Format of the NamelDPolicy MUST be urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent as defined by section in [SAMLCore]. Note that it is the Persistent Identifier that
maps to the id attribute of <rim:User>.

11.6.7 <samlp:Response> Processing Rules
This section describes how the registry processes the <sampl:Response> to a <sampl:AuthnRequest>:
<samlp:Response> Processing

» Response Processing: The registry MUST verify the <ds:Signature> for the <sampl:Response> if
present.

* The registry MUST check the <samlp:Status> associated with <sampl:Response> for errors. If

the <samlp:Status> has a top level <samlp:StatusCode> whose value is NOT
urn:oasis:names:tc:SAML:2.0:status:Success then the registry MUST throw

an AuthenticationException. The AuthenticationException message SHOULD include the
information from the StatusCode, StatusMessage and StatusDetail from the <samlp:Status>.

<saml:Assertion> Processing

e The registry SHOULD check the <saml:Assertion> for Conditions and honour any standard
Conditions defined by [SAMLCore] if any are specified.

<saml:AuthnStatement> Processing

e The registry MUST check the SessionNotOnOrAfter attribute of the <saml:AuthnStatement> for
validity of the authenticated session.

<saml:Subject> Processing

* Aregistry MUST map the <saml:Subject> to a <rim:User> instance as described in 11.6.8.

11.6.8 Mapping Subject to User

As required by [SAMLCore] a <samlp:Response> to a <samlp:AuthnRequest> MUST contain a
<saml:Subject> that identifies the Subject that was authenticated by the IdentityProvider. In addition it
MUST contain a <sampl:AuthnStatement> which asserts that the IdentityProvider indeed authenticated
the Subject.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 116 of 129

4171
4172

4173

4174
4175
4176

4177

4178
4179
4180

4181

4182
4183

4184
4185
4186

4187
4188
4189
4190
4191
4192

The following table defines the mapping between a <saml:Subject> and a <rim:User>:

— Subject — User Attribute — Description
Attribute
— NamelD content - id attribute NamelD Format MUST be

“urn:oasis:names:tc:SAML:1.1:nameid-
format:persistent”

Table 8: Mapping Subject to User

Note that any attribute of Subject not specified above SHOULD be ignored when mapping Subject to
User. Note that any attribute of User not specified above MUST be left unspecified when mapping
Subject to User.

11.7 External Users

The SAML Profile allows registry Users to be registered in an Identity Provider external to the registry.
These are referred to as “External Users”. A registry dynamically creates such External Users by
mapping a SAML Subject to a User instance dynamically.

The following are some restrictions on External User instances:

» External User instances are transient from the registry’s perspective and MUST not be stored
within the registry as User instances

* A RegistryObject MUST not have a reference to an External User unless it is composed within
that RegistryObject. Composed RegistryObjects such as Classification instances are allowed to
reference their parent External User instance.

» Since External User instances are transient they MUST not match a registry Query.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 117 of 129

4193

4194

4195

4196

4197

4198

4199
4200

4201
4202
4203

4204

4205
4206
4207

4208

4209
4210

4211
4212
4213

4214

4215

4216
4217
4218

4219
4220
4221

12 Native Language Support (NLS)

This chapter describes the Native Languages Support (NLS) features of ebXML Registry.

12.1 Terminology

The following terms are used in NLS.

NLS Term Description

Coded Character Set (CCS) CCS is a mapping from a set of abstract characters
to a set of integers. [RFC 2130]. Examples of CCS
are 1ISO-10646, US-ASCII, 1ISO-8859-1, and so on.

Character Encoding Scheme (CES) CES is a mapping from a CCS (or several) to a set
of octets. [RFC 2130]. Examples of CES are ISO-
2022, UTF-8.

Character Set (charset) + charset is a set of rules for mapping from a

sequence of octets to a sequence of
characters.[RFC 2277],[RFC 2278].
Examples of character set are ISO-2022-JP,
EUC-KR.

« Alist of registered character sets can be
found at [TANA].

12.2 NLS and Registry Protcol Messages

For the accurate processing of data in both registry client and registry services, it is essential for the
recipient of a protocol message to know the character set being used by it.

A Registry Client SHOULD specify charset parameter in MIME header when they specify text/xml as
Content-Type. A registry MUST specify charset parameter in MIME header when they specify text/xml as
Content-Type.

The following is an example of specifying the character set in the MIME header.

Content-Type: text/xml; charset=I1S0-2022-JP

If a registry receives a protocol message with the charset parameter omitted then it MUST use the
default charset value of "us-ascii" as defined in [RFC 3023].

Also, when an application/xml entity is used, the charset parameter is optional, and registry client and
registry services MUST follow the requirements in Section 4.3.3 of [REC-XML] which directly address
this contingency.

If another Content-Type is used, then usage of charset MUST follow [RFC 3023].

12.3 NLS Support in RegistryObjects

The information model XML Schema [RR-RIM-XSD] defines the <rim:InternationalStringType> for
defining elements that contains a locale senstive string value.

<complexType name='"InternationalStringType'">
<sequence maxOccurs="unbounded" minOccurs="0">
<element ref="tns:LocalizedString"/>

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 118 of 129

4222 </sequence>
4223 </complexType>

4224

4225 An InternationalStringType may contain zero or more LocalizedStrings within it where each
4226 LocalizedString contain a string value is a specified local language and character set.

4227

4228 <complexType name='"LocalizedStringType">

4229 <attribute ref="xml:lang" default="en-US"/>

4230 <attribute default="UTF-8" name='"charset"/>

4231 <attribute name="value" type="tns:FreeFormText" use='"required"/>
4232 </complexType>

4233

4234 Examples of such attributes are the “name” and “description” attributes of the RegistryObject class
4235 defined by [ebRIM] as shown below.

4236 <complexType name="InternationalStringType">

4237 <sequence maxOccurs="unbounded" minOccurs="0">

4238 <element ref="tns:LocalizedString"/>

4239 </sequence>

4240 </complexType>

4241 <element name="InternationalString"

4242 type="tns:InternationalStringType"/>

4243 <element name="Name" type='"tns:InternationalStringType"/>

4244 <element name="Description" type="tns:InternationalStringType'"/>
4245

4246 <complexType name='"LocalizedStringType">

4247 <attribute ref="xml:lang" default="en-US"/>

4248 <!--attribute name = '"lang" default = "en-US" form = "qualified"
4249 type = '"language"/-->

4250 <attribute default="UTF-8" name="charset"/>

4251 <attribute name='"value" type="tns:FreeFormText" use="required"/>
4252 </complexType>

4253 <element name="LocalizedString'" type="tns:LocalizedStringType'/>
4254

4255 An element InternationalString is capable of supporting multiple locales within its collection of
4256 LocalizedStrings.

4257 The above schema allows a single RegistryObject instance to include values for any NLS sensitive
4258 element in multiple locales.

4259 The following example illustrates how a single RegistryObject can contain NLS sesnitive <rim:Name>
4260 and “<rim:Description> elements with their value specified in multiple locales. Note that the <rim:Name>
4261 and <rim:Description> use the <rim:InternationalStringType> as their type.

4262 <rim:ExtrinsicObject id="S${ID}" mimeType="text/xml">

4263 <rim:Name>

4264 <rim:LocalizedString xml:lang="en-US" value="customACP1l.xml"/>
4265 <rim:LocalizedString xml:lang="fi-FI" value="customACP1l.xml"/>
4266 <rim:LocalizedString xml:lang="pt-BR" value="customACP1l.xml"/>
4267 </rim:Name>

4268 <rim:Description>

4269 <rim:LocalizedString xml:lang="en-US" value="A sample custom
4270 ACP"/>

4271 <rim:LocalizedString xml:lang="fi-FI" value="Esimerkki custom
4272 ACP"/>

4273 <rim:LocalizedString xml:lang="pt-BR" value="Exemplo de ACP
4274 customizado

4275 />

4276 </rim:Description>

4277 </rim:ExtrinsicObject>

4278

4279 Since locale information is specified at the sub-element level there is no language or character set
4280 associated with a specific RegistryObject instance.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 119 of 129

4281

4282
4283
4284

4285

4286

4287

4288
4289
4290

4291

4292
4293
4294
4295
4296
4297
4298

4299
4300
4301

4302

4303
4304
4305

4306
4307
4308
4309
4310

12.3.1 Character Set of LocalizedString

The character set used by a locale specific String (LocalizedString) is defined by the charset attribute.
Registry Clients SHOULD specify UTF-8 or UTF-16 as the value of the charset attribute of
LocalizedStrings for maximum interoperability.

12.3.2 Language of LocalizedString
The language MAY be specified in xml:lang attribute (Section 2.12 [REC-XML)).

12.4 NLS and Repository Items

While a single instance of an ExtrinsicObject is capable of supporting multiple locales, it is always
associated with a single repository item. The repository item MAY be in a single locale or MAY be in
multiple locales. This specification does not specify any NLS requirements for repository items.

12.4.1 Character Set of Repository Items

When a submitter submits a repository item, they MAY specify the character set used by the respository
item using the MIME Content-Type mime header for the mime multipart containing the repository item
as shown below:

Content-Type: text/xml; charset="UTF-8"

Registry Clients SHOULD specify UTF-8 or UTF-16 as the value of the charset attribute of
LocalizedStrings for maximum interoperability. A registry MUST preserve the charset of a repository item
as it is originally specified when it is submitted to the registry.

12.4.2 Language of Repository Items

The Content-language mime header for the mime bodypart containing the repository item MAY specify
the language for a locale specific repository item. The value of the Content-language mime header
property MUST conform to [RFC 1766].

This document currently specifies only the method of sending the information of character set and
language, and how it is stored in a registry. However, the language information MAY be used as one of
the query criteria, such as retrieving only DTD written in French. Furthermore, a language negotiation
procedure, like registry client is asking a favorite language for messages from registry services, could be
another functionality for the future revision of this document.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 120 of 129

4311

4312
4313

4314

4315

4316
4317

4318
4319

4320

4321
4322

13 Conformance

This chapter defines the technical conformance requirements for ebXML Registry. Note that it does not
define specific conformance tests to verify compliance with various conformance profiles.

13.1 Conformance Profiles

An ebXML Registry MUST comply with one of the following conformance profiles:

* Registry Lite — This conformance profile requires the regsitry to implement a minimal set of core
features defined by this specification.

* Registry Full — This conformance profile requires the registry to implement additional set of features in
addition to those required by the Registry Lite conformance profile.

13.2 Feature Matrix

The following table identifies the implementation requirements for each feature defined by this
specification for each conformance profile defined above.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 121 of 129

Table 9: Feature Conformance Matrix

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 122 of 129

Feature Registry Lite Registry Full
SOAP Binding
QueryManager binding MUST MUST
LifeCycleManager binding MUST MUST
HTTP Binding
RPC Encoded URL MUST MUST
User Defined URL MAY MUST
File Path URL MAY MUST
LifeCycleManager
SubmitObjects Protocol MUST MUST
UpdateObjects Protocol MUST MUST
ApproveObijects Protocol MUST MUST
DeprecateObjects Protocol MUST MUST
UnderprecateObjects Protocol MUST MUST
RemoveObjects Protocol MUST MUST
Registry Managed Version Control MAY MUST
QueryManager
SQL Query MAY MUST
Filter Query MUST MUST
Stored Parameterized Query MAY MUST
Iterative Query MAY MUST
Event Notification MAY MUST
Content Management Services
Validate Content Protocol MAY MUST
Catalog Content Protocol MAY MUST
Canonical XML Cataloging Service MAY MUST
Cooperating Registries
Remote object references MAY MUST
Federated queries MAY MUST
Object Replication MAY MUST
Object Relocation MAY MUST
Registry Security
Identity Management MUST MUST
Message Security
Transport layer security MAY MUST
SOAP Message Security MUST MUST
Repository Item Security MUST MUST
Authorization and Access Control
Default Access Control Policy MUST MUST
Custom Access Control Policies MAY MUST
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved.

Page 123 of 129

4323

Feature Registry Lite Registry Full
Audit Trail MUST MUST
Registry SAML Profile MAY MUST
NLS MUST MUST
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved.

Page 124 of 129

=4 14 References

4325 14.1 Normative References

4326 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF
4327 RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.1xt.
4328 [ebRIM] ebXML Registry Information Model Version 3.0.1
4329 http://www.oasis-open.org/committees/regrep/documents/3.0.1/specs/regrep-
4330 rim-3.0.1-cs-01.pdf
4331 [REC-XML] W3C Recommendation. Extensible Markup language(XML)1.0(Second Edition)
4332 http://www.w3.0rg/TR/REC-xml
4333 [RFC 1766] IETF (Internet Engineering Task Force). RFC 1766:
4334 Tags for the Identification of Languages, ed. H. Alvestrand. 1995.
4335 http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html
4336 [RFC 2130] IETF (Internet Engineering Task Force). RFC 2130
4337 The Report of the IAB Character Set Workshop held 29 February - 1 March,
4338 1996
4339 http://www.fags.org/rfcs/rfc2130.html
4340 [RFC 2277] IETF (Internet Engineering Task Force). RFC 2277:
4341 IETF policy on character sets and languages, ed. H. Alvestrand. 1998.
4342 http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
4343 [RFC 2278] IETF (Internet Engineering Task Force). RFC 2278:
4344 IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998.
4345 http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
4346 [RFC2616] IETF (Internet Engineering Task Force). RFC 2616:
4347 Fielding et al. Hypertext Transfer Protocol -- HTTP/1.1 . 1999.
4348 http://www.w3.org/Protocols/rfc2616/rfc2616.html
4349 [RFC2965] IETF (Internet Engineering Task Force). RFC 2965:
4350 D. Kristol et al. HTTP State Management Mechanism. 2000.
4351 http://www.w3.org/Protocols/rfc2616/rfc2616.html
4352 [RR-CMS-XSD] ebXML Registry Content Management Services XML Schema
4353 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
4354 [RR-LCM-XSD] ebXML Registry LifeCycleManager XML Schema
4355 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd
4356 [RR-RIM-XSD] ebXML Registry Information Model XML Schema
4357 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
4358 [RR-RS-XSD] ebXML Registry Service Protocol XML Schema
4359 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd
4360 [RR-QM-XSD] ebXML Registry QueryManager XML Schema
4361 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd
4362 [SAMLBInd] S. Cantor et al., Bindings for the OASIS Security Assertion Markup Language
4363 (SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-bindings-
4364 2.0-cd-03.
4365 http://www.oasis-open.org/committees/security/.
4366 Note: when this document is finalized, this URL will be updated.
4367 [SAMLConform] P.Mishra et al. Conformance Requirements for the OASIS Security Assertion
4368 Markup Language (SAML) V2.0. OASIS SSTC, September 2004. Document ID
4369 sstc-saml-conformance-2.0-cd-03.
regrep-rs Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 125 of 129

http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.w3.org/TR/REC-xml
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
http://www.faqs.org/rfcs/rfc2130.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.ietf.org/rfc/rfc2119.txt

4370
4371
4372
4373
4374
4375
4376

4377
4378
4379

4380
4381

4382
4383

4384
4385

4386
4387

4388
4389

4390
4391

4392
4393
4394
4395
4396
4397
4398
4399
4400
4401

4402
4403

4404
4405
4406
4407

4408
4409

4410
4411
4412
4413
4414
4415
4416

[SAMLCore]

[SAMLProf]

[SAMLP-XSD]

[SAML-XSD]

[SOAP11]
[SwA]
[SQL]
[SQL/PSM]
[UUID]
[WSDL]

[XML]

[XMLDSIG]

[WSI-BSP]

[WSS-SMS]

[WSS-SWA]

regrep-rs

http://www.oasis-open.org/committees/security/.

Note: when this document is finalized, this URL will be updated.

S. Cantor et al., Assertions and Protocals far the OA SIS Security Assertion
Markup Language (SAML) V2.0.0ASIS SSTC, December 2004. Document ID
sstcesaml-core-2.0-cd-03.

http://www.oasis-open.org/com mittees/securityy.

Note: when this document is finalized, this URL will be updated.

S. Cantor et al., Profiles for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-profiles-
2.0-cd-03.

http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

S. Cantor et al., SAML protocols schema. OASIS SSTC, September 2004.
Document ID sstc-saml-schema-protocol-2.0.

http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

S. Cantor et al., SAML assertions schema. OASIS SSTC, September 2004.
Document ID sstc-saml-schema-assertion-2.0.

http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

W3C Note. Simple Object Access Protocol, May 2000
http://www.w3.0rg/TR/SOAP

W3C Note: SOAP with Attachments, Dec 2000
http://www.w3.0rg/TR/SOAP-attachments

Structured Query Language (FIPS PUB 127-2)
http://www.itl.nist.gov/fipspubs/fip127-2.htm

Database Language SQL — Part 4: Persistent Stored Modules
(SQL/PSM) [ISO/IEC 9075-4:1996]

DCE 128 bit Universal Unique Identifier
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
W3C Note. Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

T. Bray, et al. Extensible Markup Language (XML) 1.0 (Second Edition). World
Wide Web Consortium, October 2000.

http://www.w3.0org/TR/REC-xml

XML-Signature Syntax and Processing
http://www.w3.0rg/TR/2001/PR-xmldsig-core-20010820/
WS-I: Basic Security Profile 1.0

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
Note: when this document is finalized, this URL will be updated.

Web Services Security: SOAP Message Security 1.0
http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-soap-message-
security-1.0.pdf

Web Services Security: SOAP Message with Attachments (SwA) Profile 1.0
http://www.oasis-open.org/apps/org/workgroup/wss/download.php/10902/wss-
swa-profile-1.0-cd-01.pdf

Note: when this document is finalized, this URL will be updated.

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 126 of 129

http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/wsdl
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.itl.nist.gov/fipspubs/fip127-2.htm
http://www.w3.org/TR/SOAP-attachments
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/

4417

4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439

4440
4441
4442

4443

4444
4445
4446

4447

4448
4449
4450

4451
4452
4453

4454
4455

4456

4457
4458

4459

14.2 Informative

[ebBPSS]
[ebCPP]
[ebMS]
[DeltaV]
[XPT]

[IANA]

[RFC2392]

[RFC 2828]

[RFC 3023]

[SAMLMeta]

[SAMLGIloss]

[SAMLSecure]

[SAMLTech]

[UML]

regrep-rs

ebXML Business Process Specification Schema
http://www.ebxml.org/specs

ebXML Collaboration-Protocol Profile and Agreement Specification
http://www.ebxml.org/specs/

ebXML Messaging Service Specification, Version 1.0
http://www.ebxml.org/specs/

Versioning Extension to WebDAV, IETF RFC 3253
http://www.webdav.org/deltav/protocol/rfc3253.html

XML Path Language (XPath) Version 1.0
http://www.w3.0rg/TR/xpath

IANA (Internet Assigned Numbers Authority).

Official Names for Character Sets, ed. Keld Simonsen et al.
http://www.iana.org/

E. Levinson, Content-ID and Message-ID Uniform Resource Locators, IETF
RFC 2392,

http://lwww.ietf.org/rfc/rfc2392.txt

IETF (Internet Engineering Task Force). RFC 2828:
Internet Security Glossary, ed. R. Shirey. May 2000.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2828.html
IETF (Internet Engineering Task Force). RFC 3023:
XML Media Types, ed. M. Murata. 2001.
ftp://ftp.isi.edu/in-notes/rfc3023.txt

S. Cantor et al., Metadata for the OASIS Security Assertion Markup Language
(SAML) v2.0. OASIS SSTC, September 2004. Document ID sstc-saml-
metadata-2.0-cd-02.

http://www.oasis-open.org/committees/security/.

J. Hodges et al., Glossary for the OASIS Security Assertion Markup Language
(SAML) v2.0. OASIS SSTC, September 2004. Document ID sstc-saml-glossary-
2.0-cd-02.

http://www.oasis-open.org/committees/security/.

F. Hirsch et al., Security and Privacy Considerations for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS SSTC, September 2004.
Document ID sstc-saml-sec-consider-2.0-cd-02.

http://www.oasis-open.org/committees/security/.
J.Hughes et al.,Technical Overview of the OASIS Security
Assertion Markup Language (SAML)V2.0.

http://www.oasis-open.org/committees/download.php/7874/sstc-saml-tech-
overview-2.0-draft-01.pdf

Unified Modeling Language

http://www.uml.org
http://www.omg.org/cgi-bin/doc?formal/03-03-01

Feb 22, 2007

Copyright © OASIS Open 2007. All Rights Reserved. Page 127 of 129

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.uml.org/
http://www.w3.org/TR/xpath
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
ftp://ftp.isi.edu/in-notes/rfc3023.txt
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.ietf.org/rfc/rfc2392.txt
http://www.iana.org/
http://www.w3.org/TR/xpath
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs
http://www.ebxml.org/specs

4460

4461
4462
4463

4464
4465
4466

4467

A. Acknowledgments

The editors would like to acknowledge the contributions of the OASIS ebXML Registry Technical
Committee, whose voting members at the time of publication are listed as contributors on the title page of

this document.

» Finally, the editors wish to acknowledge the following people for their contributions of material used
as input to the OASIS ebXML Registry specifications:

Name Affiliation
Aziz. Abouelfoutouh Government of Canada
Ed Buchinski Government of Canada
Asuman Dogac Middle East Technical University,
Ankara Turkey
Michael Kass NIST

Richard Lessard Government of Canada
Evan Wallace NIST
David Webber Individual

regrep-rs

Copyright © OASIS Open 2007. All Rights Reserved.

Feb 22, 2007
Page 128 of 129

4468

4469
4470
4471
4472
4473
4474
4475
4476

4477
4478
4479

4480

4481
4482
4483
4484
4485
4486
4487
4488

4489
4490

4491
4492
4493
4494

B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself does not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required
to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

regrep-rs Feb 22, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 129 of 129

	1 Introduction
	1.1 Audience
	1.2 Terminology
	1.3 Notational Conventions
	1.3.1 UML Diagrams
	1.3.2 Identifier Placeholders
	1.3.3 Constants
	1.3.4 Bold Text
	1.3.5 Example Values

	1.4 XML Schema Conventions
	1.4.1 Schemas Defined by ebXML Registry
	1.4.2 Schemas Used By ebXML Registry

	1.5 Registry Actors
	1.6 Registry Use Cases
	1.7 Registry Architecture
	1.7.1 Registry Clients
	1.7.1.1 Client API

	1.7.2 Registry Service Interfaces
	1.7.3 Service Interface: Protocol Bindings
	1.7.4 Authentication and Authorization
	1.7.5 Metadata Registry and Content Repository

	2 Registry Protocols
	2.1 Requests and Responses
	2.1.1 RegistryRequestType
	2.1.1.1 Syntax:
	2.1.1.2 Parameters:
	2.1.1.3 Returns:
	2.1.1.4 Exceptions:

	2.1.2 RegistryRequest
	2.1.3 RegistryResponseType
	2.1.3.1 Syntax:
	2.1.3.2 Parameters:

	2.1.4 RegistryResponse
	2.1.5 RegistryErrorList
	2.1.5.1 Syntax:
	2.1.5.2 Parameters:

	2.1.6 RegistryError
	2.1.6.1 Syntax:
	2.1.6.2 Parameters:

	3 SOAP Binding
	3.1 ebXML Registry Service Interfaces: Abstract Definition
	3.2 ebXML Registry Service Interfaces SOAP Binding
	3.3 ebXML Registry Service Interfaces SOAP Service Template
	3.4 Mapping of Exception to SOAP Fault

	4 HTTP Binding
	4.1 HTTP Interface URL Pattern
	4.2 RPC Encoding URL
	4.2.1 Standard URL Parameters
	4.2.2 QueryManager Binding
	4.2.2.1 Sample getRegistryObject Request
	4.2.2.2 Sample getRegistryObject Response
	4.2.2.3 Sample getRepositoryItem Request
	4.2.2.4 Sample getRepositoryItem Response

	4.2.3 LifeCycleManager HTTP Interface

	4.3 Submitter Defined URL
	4.3.1 Submitter defined URL Syntax
	4.3.2 Assigning URL to a RegistryObject
	4.3.3 Assigning URL to a Repository Item

	4.4 File Path Based URL
	4.4.1 File Folder Metaphor
	4.4.2 File Path of a RegistryObject
	4.4.2.1 File Path Example

	4.4.3 Matching URL To Objects
	4.4.4 URL Matches a Single Object
	4.4.5 URL Matches Multiple Object
	4.4.6 Directory Listing
	4.4.7 Access Control In RegistryPackage Hierarchy

	4.5 URL Resolution Algorithm
	4.6 Security Consideration
	4.7 Exception Handling

	5 Lifecycle Management Protocols
	5.1 Submit Objects Protocol
	5.1.1 SubmitObjectsRequest
	5.1.1.1 Syntax:
	5.1.1.2 Parameters:
	5.1.1.3 Returns:
	5.1.1.4 Exceptions:

	5.1.2 Unique ID Generation
	5.1.3 ID Attribute And Object References
	5.1.4 Audit Trail
	5.1.5 Sample SubmitObjectsRequest

	5.2 The Update Objects Protocol
	5.2.1 UpdateObjectsRequest
	5.2.1.1 Syntax:
	5.2.1.2 Parameters:
	5.2.1.3 Returns:
	5.2.1.4 Exceptions:

	5.2.2 Audit Trail

	5.3 The Approve Objects Protocol
	5.3.1 ApproveObjectsRequest
	5.3.1.1 Syntax:
	5.3.1.2 Parameters:
	5.3.1.3 Returns:
	5.3.1.4 Exceptions:

	5.3.2 Audit Trail

	5.4 The Deprecate Objects Protocol
	5.4.1 DeprecateObjectsRequest
	5.4.1.1 Syntax:
	5.4.1.2 Parameters:
	5.4.1.3 Returns:
	5.4.1.4 Exceptions:

	5.4.2 Audit Trail

	5.5 The Undeprecate Objects Protocol
	5.5.1 UndeprecateObjectsRequest
	5.5.1.1 Syntax:
	5.5.1.2 Parameters:
	5.5.1.3 Returns:
	5.5.1.4 Exceptions:

	5.5.2 Audit Trail

	5.6 The Remove Objects Protocol
	5.6.1 RemoveObjectsRequest
	5.6.1.1 Syntax:
	5.6.1.2 Parameters:
	5.6.1.3 Returns:
	5.6.1.4 Exceptions:

	5.7 Registry Managed Version Control
	5.7.1 Version Controlled Resources
	5.7.2 Versioning and Object Identification
	5.7.3 Logical ID
	5.7.4 Version Identification
	5.7.4.1 Version Identification for a RegistryObject
	5.7.4.2 Version Identification for a RepositoryItem

	5.7.5 Versioning of ExtrinsicObject and Repository Items
	5.7.5.1 ExtrinsicObject and Shared RepositoryItem

	5.7.6 Versioning and Composed Objects
	5.7.7 Versioning and References
	5.7.8 Versioning and Audit Trail
	5.7.9 Inter-versions Association
	5.7.10 Client Initiated Version Removal
	5.7.11 Registry Initiated Version Removal
	5.7.12 Locking and Concurrent Modifications
	5.7.13 Version Creation
	5.7.14 Versioning Override

	6 Query Management Protocols
	6.1 Ad Hoc Query Protocol
	6.1.1 AdhocQueryRequest
	6.1.1.1 Syntax:
	6.1.1.2 Parameters:
	6.1.1.3 Returns:
	6.1.1.4 Exceptions:

	6.1.2 AdhocQueryResponse
	6.1.2.1 Syntax:
	6.1.2.2 Parameters:

	6.1.3 AdhocQuery
	6.1.3.1 Syntax:
	6.1.3.2 Parameters:

	6.1.4 ReponseOption
	6.1.4.1 Syntax:
	6.1.4.2 Parameters:

	6.2 Iterative Query Support
	6.2.1 Query Iteration Example

	6.3 Stored Query Support
	6.3.1 Submitting a Stored Query
	6.3.1.1 Declaring Query Parameters
	6.3.1.2 Canonical Context Parameters

	6.3.2 Invoking a Stored Query
	6.3.2.1 Specifying Query Invocation Parameters

	6.3.3 Response to Stored Query Invocation
	6.3.4 Access Control on a Stored Query
	6.3.5 Canonical Query: Get Client’s User Object

	6.4 SQL Query Syntax
	6.4.1 Relational Schema for SQL Queries
	6.4.2 SQL Query Results

	6.5 Filter Query Syntax
	6.5.1 Filter Query Structure
	6.5.2 Query Elements
	6.5.3 Filter Elements
	6.5.3.1 FilterType
	6.5.3.1.1 Parameters:

	6.5.3.2 SimpleFilterType
	6.5.3.2.1 Parameters:

	6.5.3.3 BooleanFilter
	6.5.3.3.1 Parameters:

	6.5.3.4 FloatFilter
	6.5.3.4.1 Parameters:

	6.5.3.5 IntegerFilter
	6.5.3.5.1 Parameters:

	6.5.3.6 DateTimeFilter
	6.5.3.6.1 Parameters:

	6.5.3.7 StringFilter
	6.5.3.7.1 Parameters:

	6.5.3.8 CompoundFilter
	6.5.3.8.1 Parameters:

	6.5.4 Nested Query Elements
	6.5.5 Branch Elements

	6.6 Query Examples
	6.6.1 Name and Description Queries
	6.6.2 Classification Queries
	6.6.2.1 Retrieving ClassificationSchemes
	6.6.2.2 Retrieving Children of Specified ClassificationNode
	6.6.2.3 Retrieving Objects Classified By a ClassificationNode
	6.6.2.4 Retrieving Classifications that Classify an Object

	6.6.3 Association Queries
	6.6.3.1 Retrieving All Associations With Specified Object As Source
	6.6.3.2 Retrieving All Associations With Specified Object As Target
	6.6.3.3 Retrieving Associated Objects Based On Association Type
	6.6.3.4 Complex Association Query

	6.6.4 Package Queries
	6.6.5 ExternalLink Queries
	6.6.6 Audit Trail Queries

	7 Event Notification Protocols
	7.1 Use Cases
	7.1.1 CPP Has Changed
	7.1.2 New Service is Offered
	7.1.3 Monitor Download of Content
	7.1.4 Monitor Price Changes
	7.1.5 Keep Replicas Consistent With Source Object

	7.2 Registry Events
	7.3 Subscribing to Events
	7.3.1 Event Selection
	7.3.2 Notification Action
	7.3.3 Subscription Authorization
	7.3.4 Subscription Quotas
	7.3.5 Subscription Expiration
	7.3.6 Subscription Rejection

	7.4 Unsubscribing from Events
	7.5 Notification of Events
	7.6 Retrieval of Events
	7.7 Pruning of Events

	8 Content Management Services
	8.1 Content Validation
	8.1.1 Content Validation: Use Cases
	8.1.1.1 Validation of HL7 Conformance Profiles
	8.1.1.2 Validation of Business Processes
	8.1.1.3 Validation of UBL Business Documents

	8.2 Content Cataloging
	8.2.1 Content-based Discovery: Use Cases
	8.2.1.1 Find All CPPs Where Role is “Buyer”
	8.2.1.2 Find All XML Schema’s That Use Specified Namespace
	8.2.1.3 Find All WSDL Descriptions with a SOAP Binding

	8.3 Abstract Content Management Service
	8.3.1 Inline Invocation Model
	8.3.2 Decoupled Invocation Model

	8.4 Content Management Service Protocol
	8.4.1 ContentManagementServiceRequestType
	8.4.1.1 Syntax:
	8.4.1.2 Parameters:
	8.4.1.3 Returns:
	8.4.1.4 Exceptions:

	8.4.2 ContentManagementServiceResponseType
	8.4.2.1 Syntax:
	8.4.2.2 Parameters:

	8.5 Publishing / Configuration of a Content Management Service
	8.5.1 Multiple Content Management Services and Invocation Control Files

	8.6 Invocation of a Content Management Service
	8.6.1 Resolution Algorithm For Service and Invocation Control File
	8.6.2 Audit Trail and Cataloged Content
	8.6.3 Referential Integrity
	8.6.4 Error Handling

	8.7 Validate Content Protocol
	8.7.1 ValidateContentRequest
	8.7.1.1 Syntax:
	8.7.1.2 Parameters:
	8.7.1.3 Returns:
	8.7.1.4 Exceptions:

	8.7.2 ValidateContentResponse
	8.7.2.1 Syntax:
	8.7.2.2 Parameters:

	8.8 Catalog Content Protocol
	8.8.1 CatalogContentRequest
	8.8.1.1 Syntax:
	8.8.1.2 Parameters:
	8.8.1.3 Returns:
	8.8.1.4 Exceptions:

	8.8.2 CatalogContentResponse
	8.8.2.1 Syntax:
	8.8.2.2 Parameters:

	8.9 Illustrative Example: Canonical XML Cataloging Service
	8.10 Canonical XML Content Cataloging Service
	8.10.1 Publishing of Canonical XML Content Cataloging Service

	9 Cooperating Registries Support
	9.1 Cooperating Registries Use Cases
	9.1.1 Inter-registry Object References
	9.1.2 Federated Queries
	9.1.3 Local Caching of Data from Another Registry
	9.1.4 Object Relocation

	9.2 Registry Federations
	9.2.1 Federation Metadata
	9.2.2 Local Vs. Federated Queries
	9.2.2.1 Local Queries
	9.2.2.2 Federated Queries
	9.2.2.3 Membership in Multiple Federations

	9.2.3 Federated Lifecycle Management Operations
	9.2.4 Federations and Local Caching of Remote Data
	9.2.5 Caching of Federation Metadata
	9.2.6 Time Synchronization Between Registry Peers
	9.2.7 Federations and Security
	9.2.8 Federation Lifecycle Management Protocols
	9.2.8.1 Joining a Federation
	9.2.8.2 Creating a Federation
	9.2.8.3 Leaving a Federation
	9.2.8.4 Dissolving a Federation

	9.3 Object Replication
	9.3.1 Use Cases for Object Replication
	9.3.2 Queries And Replicas
	9.3.3 Lifecycle Operations And Replicas
	9.3.4 Object Replication and Federated Registries
	9.3.5 Creating a Local Replica
	9.3.6 Transactional Replication
	9.3.7 Keeping Replicas Current
	9.3.8 Lifecycle Management of Local Replicas
	9.3.9 Tracking Location of a Replica
	9.3.10 Remote Object References to a Replica
	9.3.11 Removing a Local Replica

	9.4 Object Relocation Protocol
	9.4.1 RelocateObjectsRequest
	9.4.1.1 Parameters:
	9.4.1.2 Returns:
	9.4.1.3 Exceptions:

	9.4.2 AcceptObjectsRequest
	9.4.2.1 Parameters:
	9.4.2.2 Returns:
	9.4.2.3 Exceptions:

	9.4.3 Object Relocation and Remote ObjectRefs
	9.4.4 Notification of Object Relocation To ownerAtDestination
	9.4.5 Notification of Object Commit To sourceRegistry
	9.4.6 Object Ownership and Owner Reassignment
	9.4.7 Object Relocation and Timeouts

	10 Registry Security
	10.1 Security Use Cases
	10.1.1 Identity Management
	10.1.2 Message Security
	10.1.3 Repository Item Security
	10.1.4 Authentication
	10.1.5 Authorization and Access Control
	10.1.6 Audit Trail

	10.2 Identity Management
	10.3 Message Security
	10.3.1 Transport Layer Security
	10.3.2 SOAP Message Security
	10.3.2.1 Request Message Signature
	10.3.2.2 Response Message Signature
	10.3.2.3 KeyInfo Requirements
	10.3.2.4 Message Signature Validation
	10.3.2.5 Message Signature Example
	10.3.2.6 Message With RepositoryItem: Signature Example
	10.3.2.7 SOAP Message Security and HTTP/S

	10.3.3 Message Confidentiality
	10.3.4 Key Distribution Requirements

	10.4 Authentication
	10.4.1 Registry as Authentication Authority
	10.4.2 External Authentication Authority
	10.4.3 Authenticated Session Support

	10.5 Authorization and Access Control
	10.6 Audit Trail

	11 Registry SAML Profile
	11.1 Terminology
	11.2 Use Cases for SAML Profile
	11.2.1 Registry as SSO Participant:

	11.3 SAML Roles Played By Registry
	11.3.1 Service Provider Role
	11.3.1.1 Service Provider Requirements

	11.4 Registry SAML Interface
	11.5 Requirements for Registry SAML Profile
	11.6 SSO Operation
	11.6.1 Scenario Actors
	11.6.2 SSO Operation – Unauthenticated HTTP Requestor
	11.6.2.1 Scenario Sequence

	11.6.3 SSO Operation – Authenticated HTTP Requestor
	11.6.4 SSO Operation – Unuthenticated SOAP Requestor
	11.6.4.1 Scenario Sequence

	11.6.5 SSO Operation – Authenticated SOAP Requestor
	11.6.5.1 Scenario Sequence

	11.6.6 <samlp:AuthnRequest> Generation Rules
	11.6.7 <samlp:Response> Processing Rules
	11.6.8 Mapping Subject to User

	11.7 External Users

	12 Native Language Support (NLS)
	12.1 Terminology
	12.2 NLS and Registry Protcol Messages
	12.3 NLS Support in RegistryObjects
	12.3.1 Character Set of LocalizedString
	12.3.2 Language of LocalizedString

	12.4 NLS and Repository Items
	12.4.1 Character Set of Repository Items
	12.4.2 Language of Repository Items

	13 Conformance
	13.1 Conformance Profiles
	13.2 Feature Matrix

	14 References
	14.1 Normative References
	14.2 Informative

