N

w

ul

oo

9
10

11

12

13

14

15

16

17

OASIS 19

@Il

ebXML Registry Services and Protocols

Version 3.0.1

\ Committee Draft, Feb 22, 2007_

Document identifier:
regrep-rs

Location:

Latest Version: http://docs.oasis-open.org/regrep-rs/latest/
This Version: http://docs.oasis-open.org/regrep-rs/v3.0.1/
Previous Version: http://docs.oasis-open.org/regrep-rs/v3.0/

Editors:
Name Affiliation
Kathryn Breininger The Boeing Company
Farrukh Najmi Wellfleet Software Corporation
Nikola Stojanovic GS1 US
Contributors:
Name Affiliation
Ivan Bedini France Telecom
Ted Haas GS1 US
Paul Macias ILMI
Carl Mattocks MetLife
Monica Martin Sun Microsvstems
David Webber Individual
Editors:
N Affiliati
Tndividual
Satly Puge — :
NikolaStor - R N A
FranBedint Franece Teleecom
;]3 chi 5 B m 3:H .l] 3
Peter Kaeandes Adobe-Systems
Paul-Maeias EMIE-Government-Consulting
CarbMattecks CHECKNM
Matthew MaeKenzie Adobe-Systems

regrep-rs
Copyright © OASIS Open 26052007. All Rights Reserved.

May-2,2005Feb 22, 2007
Page 1 of 130

http://docs.oasis-open.org/regrep-rs/v3.0/
http://docs.oasis-open.org/regrep-rs/v3.0/
http://docs.oasis-open.org/regrep-rs/v3.0.1/
http://docs.oasis-open.org/regrep-rs/latest/

18

19
20

21
22

23
24

25
26
27
28

29
30
31
32

Richard Martel GaldesSystemsIne

Puane Niekult AdebeSystems
GeranZugie ebXMbsoftdne:
Abstract:

This document defines the services and protocols for an ebXML Registry

A separate document, ebXML Registry: Information Model [ebRIM], defines the types of
metadata and content that can be stored in an ebXML Registry.

Status:
This document is an OASIS ebXML Registry Technical Committee Approved Draft Specification.

Committee members should send comments on this specification to the regrep@lists.oasis-
open.org list. Others should subscribe to and send comments to the regrep-
comment@lists.oasis-open.org list. To subscribe, send an email message to regrep-comment-
request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the OASIS ebXML Registry TC web page
(http://www.oasis-open.org/committees/regrep/).

regrep-rs May-2,2005Feb 22, 2007
Copyright © OASIS Open 26052007. All Rights Reserved. Page 2 of 130

http://www.oasis-open.org/committees/regrep/
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Table of Contents

L Lo (Ut o] o PO ST OUPPPRPRRUPPPPPRN 13
LI B8 (o 1Y o Tl OO PP PRSPPI 13
LIV K=10 0T Lo (o Te V2SR STPPPPOPN 13
1.3 NOtatioNal CONVENTIONS.......eiiiiiiiii ittt e e e e e e ettt et e e e e e e e s e aaiibebebeeeeeeeeaanns 13

T.3.7 UML DIAgIamS. ..ccoeuiieeiiiiiteee ettt ettt ettt ettt e e ettt e e s eab et e e s bttt e e sttt e e e samtteeessabtaeeeesabbaeeeenane 13
1.3.2 Identifier PIaCehOlders...........ooiiiiiiiiiiiiiee ettt e e s aeeee e s enbaeee e e 13
T.3.3 CONSEANES. ...ttt e e e e e e e e e e e e e e e e eaeas 13
LR = To] o B o S PP UUPPUPUPPPRRRNt 14
T.3.5 EXAMPIE VAIUEBS......eeeet et e e e e e e e e e e e e e e e e e eeaeaaaaeaeaaaaeaaaaaaeaaaaaaaaaaaaaaaaaaaaanns 14
1.4 XML Schema ConVENtIONS........coooiiiiiiiceeee e 14
1.4.1 Schemas Defined by €bXML REGISIIY......ciiiiiieiiiiiiiie ettt e e e ee e e e e eerrveee s 14
1.4.2 Schemas Used By bDXML REQGISTIY...ccoiiiiiiiiiiiiiee ettt e e e e ee e 15
T.5 REGISTIY ACLOIS ...ttt ettt eteeeeabaeaesaesassassessnssnssnsnssnnnnsnnssssnnsnsnnsssasasasessasasaseneseseneeees 16
1.6 REGISIIY USE CaSES... ittt e e e e e e e e e e e e e e aaaaaaaeeaaaaaaaaaaeaaaaaaaeaaaaaaaaaaaaaens 16
1.7 ReQISTY ATCHITECIUNEeiiiiiiiie ettt e e et e et e e et e e s e e s enaieees 16
T1.7. 1 ReGISIY ClENES .o 17
L T I 1 1= o | Y = PSPPSR 17
1.7.2 ReqiStry SerIVICE INtEITACES.viiiiiieeiitieeee ettt te e e et ee e e e e e e atsnbeeeeeeesennseneeeas 17
1.7.3 Service Interface: Protocol BINdiNGS........coooeeiiiiiiiiiieeeeee e, 18
1.7.4 Authentication and AUThOFIZAtioN.............uiiiiiiiii e e e e e eee e 18
1.7.5 Metadata Registry and Content REPOSILOIY......ccceeeeeiieiiiii i e 18

2 REGISIIY PrOTOCOIS.eeeeeiiieeette et et et e sttt e st e e et e e e eabe e e e sabeeeesnaneee 19

2.7 REQUESES @NA RESPONSES....ouiiiiiieiieiiiiiiiiiieeeeeeeitittrteeeeeeeeesettareteeaeeeesssssssasteaaesssssssssssssereeesseesssssns 19

2.1.1 REGISIIY R EQUESTTYPE. ... ittt ettt et eaeaaaes s asaassasasasssssssssssasasssssassssssesrasessnaen 19
D T T B) 01 = D PO POPRPRPPPPPPPRY 19
D B B e = 10 1 1<) (=T £ OO PU R PRTPPUPRN 20
2.0 0.3 REIUINS ettt ettt e e ettt e e ettt et e e ettt e e e e e ettt e e e e e nanb et eeeeeaas 20
B T I A) Cel=Y o] o] =T OO U ST UUTPPUTR 20
2.7.2 REGISIIYREQUEST.eeiieiiiiieee ettt ettt e ettt e e sttt e e e eab bt e e e eaabee e e e e abeees 20
2.1.3 REQIStIYRESPONSETY P ..ceeeiiiiiiiiiieieitiitereteeeeeeeeereteererreretetetreettttettetettrerteeteteeeereererrerrerrerererrrrrree 20
2.1 30T SYNEAX et e e e et e e e s et e e e e et e e e e et e e e e e nneeeeeeenas 21
2.1.3.2 ParamMELEIS:....cei ittt ettt e ettt e et e e e ettt et e e e ettt e e e e enan et e eeeeaas 21
2.1.4 REQISIIYRESPONSE. ..coeiiiiiiiiiie e ettt ee e e ettt eaaa s s b aaasaesassssasasaesssssssesesesrasessraen 21
2.1.5 REGISTIYEITOILIST....ceiiiiiiiieieit ettt e et e e ettt e e s e bt e e e e saabee e e s s nabeees 21
D TR T)Y 1 =) PSPPSR 22
D RS T o= 1 2= 1 1) (=Y =P PP PPPPPPPPPPPPPPPRY 22
B I G B o =T o 151 (4 =1 o] TRt 22
201007 SYNEAX ettt et e e e ettt e e s ettt e e e et e e e e e s e et e e s e irneeeeeeenas 22
2.1.6.2 ParamMEeIS:....coiiiiiiiteee ettt ettt e e et e e e et e e e e e ettt e e e e e nab et e eeeeaas 22

YO 7Y e =114 e 10T S PSP UPPPUPPN 24
3.1 ebXML Registry Service Interfaces: Abstract Definition...........cccooveeeiiiiiiiiie e 24
3.2 ebXML Registry Service Interfaces SOAP BiNAiNgG.......uuuuuuuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeveeveeeeeeaeeens 24
3.3 ebXML Registry Service Interfaces SOAP Service Template.........ccccovviiiiiiiiiiieeeeeiiee e 25

regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 3 of 130

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
08
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

3.4 Mapping of EXception t0 SOAP FaUILcooiiiiiiiiiiie ettt e e e e e e aeee e e e e e enenns 25

o I I =11 Vo [T TR 27
4.1 HTTP Interface URL Patt@rN.......u ettt 27
4.2 RPC ENCOAING URL..ccoiiiiiiiiiieieccee e snnn 27

4.2.71 Standard URL Parameters.coo ittt ettt e e ettt e e e e e e et e e e e e e e e eaneee 27
4.2.2 QUEryManager BiNAING......coeeeeiiiiiiiee et e e ettt te e e e ettt ee e e e e sessbeaeeeeseennnnsaeaaeeeeeeennnnnns 28
4.2.2.1 Sample getRegistryObJeCt REQUEST.........cccciiiiiie et e e ee e e e e etrareee s 28
4.2.2.2 Sample getRegistryObject RESPONSE.......cooiiiiiiiiii ittt 28
4.2.2.3 Sample getReposSitoryltemM REGUESE.......cc..eiiiiiiieeciiee et e e e et re e e e e e eesaraaeeee s 29
4.2.2.4 Sample getRepoSItOryltem RESPONSE.cccuuti ittt ettt e et e st reeenaraees 29
4.2.3 LifeCycleManager HTTP INtEHACE..........uviiiiiie ettt e e e earve e e e e eeeanns 29
4.3 Submitter DefiN@d URL ...ttt e e e e e ettt e e e e e e e s e s s nnnbbbaeeeeeaaeeeesaannnnne 29
4.3.1 Submitter defin@d URL SYNTAX.......cccuiiiiiiiieee e cciiiiettee e e e e eeeiirre et ee e e e e e e esnrsararaeeeaesssssnnnnnnns 30
4.3.2 Assigning URL t0 @ REGISIIYODJECEuuuueiiiiiiiiiiiiiieees e s e e e e e e e e e e e e e e e e eeeaeeeeeeeeeeeneeens 30
4.3.3 Assigning URL t0 @ REPOSITOIY &Mcuviiiiiiiiiiiee et e et e e e e eeeraeee e e e eennes 31
4.4 File Path BaAs@d URL......cciiiiiiiiiieie ettt e e e ettt te e e e e e e s sttt e e e e e e e e aaaeene 31
4.4.7 File Folder Metaphor.cooueuiiiiiie ettt e e e e ettt e e e e e e e e neneeeeeeeeeeesnnnnee 31
4.4.2 File Path of @ RegIStrYODJEC.....cc ittt e e e ee e e e e etarraaeeeeeeeeenennns 31
4.4.2.7 File Path EXAMPIE....c.eeeiiiiieiiee ettt ettt e e ettt e e e ettt e e e e e eaasaeeeeaas seaeeeesnsraneaeeeansraseeeeas 31
4.4.3 Matching URL TO ObjJECES. ...ctiiiiiiiieiiitee ettt ettt ettt e e et e e s s 32
4.4.4 URL Matches a Single ODJeCt........cooiiiiiii ettt ae e eesseaesesssseerenees 32
4.4.5 URL Matches MUItIPIe ObBJECE.........iiiiiiiiiiiieeeeie ettt 33
N G T <ot (o Y IR =]] o USSPt 33
4.4.7 Access Control In RegistryPackage HierarChy.............oeeviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeveeeeene 33
4.5 URL ReSOIUtION AlGOTTNML...ciiiiiiiiiiiiiie ettt e ettt e e e e e ettt teeeeeeeessnnnsseeeeaeeeeesnnnsnns 34
N Y=Yl U 414 A @le T [o [=Y o] o O 34
4.7 EXCEPION HANAING. ...eiiiiiiiiiiiiieee ettt et e sttt e e sttt e e st ee e s sabeeeesbteeeeeane 34

5 Lifecycle Management ProtOCOIS.cciieiiiiiiiiieciiete ettt e e e e e et e e e e e e e e essttaaeeeeeesensernneens 35

5.1 Submit OBJECtS ProtOCOL...... ..o nnnnnnns 35

5.1.7 SUDMItODJECISREQUESE.....ciiiie ettt e e e e e et et e e ee e e s s ssnnsaraeeeaeeesesnnnsnnns 35
TR I B B} 01 = RO T TSRO PP O PRPRPOPPPPPPPPPRY 35

T I B o= 1=) (=Y PP PP PPPPPPPPPPPPPPRY 36

ot I RGBT (U1 1 PSPPI 36

DT 4 EXCEPIIONS .ttt ettt et e bbbttt e e bt e et e s e et e e e bt e e ettt e sabaaeenaabeeeas 36
5.1.2 UNIQUE ID GENEIATION.....eviviiiiieiiiiiiiiiiitittiteittiteeeeteaenee s ssssasasssasaasaasasasssasaesaeeeeeseseeeeeenes 36
5.1.3 ID Attribute And Object REefErenCEeS.coooiiiiiii e 37
o I N H T 11 0 I T USRI 37
5.1.5 Sample SUDMItODJECISREGQUEST.........uuiiiiiiiiiiiiiiiiiiiii et ae e e saerssasasaesrssssssasresrsrerrraee 37
5.2 The Update ODbjJects ProtOCOL............uiiiiiiiiiiiieeee ettt ee e e e e e e rrreeeeeeeeeeeennnnns 37
5.2.1 UpdateODbJECISREQUEST.uueieiiiiiiiiitiiiitt ittt aa et aeaaaaesasasssssssssssssssaesssssssssssessnsesssnnes 38
T B B) 01 = D PP PP OPPPOPPPPPUPPPRY 38
5,212 ParamMELEIS: ..ottt ettt ettt e e ettt et e ettt e e e e e ettt e e e e e e b et e e eeeeaas 38

T I B o L= (1 ¢ 1= PP PU PP PPPPPPPPPPPPPRY 39
L A) Cel=Y o] i o] = PSPPSR UPPUR 39
5.2.2 AUAIE TIAIL ...ttt ettt e e e e ettt e e e e e e ettt eeaeeeeenbbbeeteeaeeaeeaannnnee 39
5.3 The Approve ODbJECES ProtOCOL..........oiiiiiieiiiiie ettt et e e e et e e e e e e ennsaeaeeeseesnnnnns 39
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 4 of 130

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

5.7 Registry Managed Version Control
5.7.1 Version Controlled Resources

5.7.2 Versioning and Object Identification.............coooiiiiiiii e e 45
5.7.3 LOGICAI ID ...ttt ettt e bt e et e e et e e s e rees 45
5.7.4 Version [dentifiCation..........ooiiieiiiiiie ettt e e e 46
5.7.4.1 Version Identification for @ RegistryObjJECt............vviiiiiiiiieeeeeeee e e 46

5.7.4.2 Version Identification for @ REPOSITONYIEM.........cciiiiiiiiiiiieiiiee et e e e e 46

5.7.5 Versioning of ExtrinsicObject and Repository fems...........oooriiiiieieeieeee e 46
5.7.5.1 ExtrinsicObject and Shared RepOSIitOryltemM........cooiiiiiiiiiiieeeee et 47

5.7.6 Versioning and Composed ObJECES.........uviiiiiiiiiiiiiiee ettt e e e e e e e e e setnbeee e e e e eennns 47
5.7.7 Versioning and REfEIENCES.ccoeeeieieeee e 47
5.7.8 Versioning and AUt Traiil........coouiiiiiiiiiiiie e 48
5.7.9 INter-versions ASSOCIAtION.coiiiiiiiiiiee ettt e e et e e e e e e 48
5.7.10 Client Initiated Version REMOVAL...........uuuuuuiiiiiiiieiiccieceeeeeee e 48
5.7.11 Registry Initiated Version Removal............cooooiiiiiiiii e 48
5.7.12 Locking and Concurrent ModifiCationsS.......cccceeeeeeeiiiiiiiiiic e 48

5.7. 13 Version CrEatiON......cooiiiiiiiiiiie ettt ettt e ettt e et e e ettt e e s st e e esabeee s sabeeeesbbeeeeenarees 48

5.7. 14 VersioNiNG OVEITIAE.ttt ittt et taaasaesaaaasasasasssasssasssssssssssasassssssssssssesrasnsrsnnes 49

6 Query Management ProtOCOIS.uiii ittt ettt ettt e et e et e e et e e s 50
(oI o I o To Tl @ LU T=Y YA o] (oY el 50
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 5 of 130

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

[T T R) 01 = D U OO POPRPRPPPPPPPPRRY 51

(ST I B o= 1=) (< PP PPPPPPPPPPPPPPPPRY 51

B. 1. 1.3 REIUINS ..ottt et e ettt e e et e e e e sttt e e e e e sttt e e e e eeanb et e eeeeaas 52
B.7.1.4 EXCEPUONS .. ettt ettt e et e e ettt sttt e et e et e s e et e e bt e e et et e nantneenaebeeeas 52
6.1.2 ADNOCQUEIY R ESPONSE. ... e ettt ettt et sesessasssssssssssssssaessssnssnsennssnsnnnnnnn 52

ST I B 41 = PO PPPP Y 52
B.71.2.2 ParamMELEIS:....ceii ittt ettt et e ettt e et et e ettt et e e e sttt e e e e e e aeeeeeeeaas 52

[T IRC I X | o Tl @ U= YA PPt 53
B. 1. 3T SYNEAX et e s et e e e et e e e e e s e e e e s e neeeeeeaas 53
B.71.3.2 ParamMELEIS: ..ottt ettt ettt e e e ettt et e e e ettt et e e e et e e e e e e bbbt e eee e e e aabbbeeeeeeeeaaas 53

ST I B T o Yo g 1T @ o) o) TSRS UUSURRTRN 53

LS T B) 0 = D U OO PO PPPRPPPPPPPPRY 53
(ST B A = 1=) (=Y =TT P PP PP PP PPPPPPPPPPPPPPPRY 53

A (S = LV O LU= VA T o] o LY S 54
6.2.1 Query teration EXAmMPIe. ..o 54
6.3 StOred QUEIY SUPPOI. iiiiiiiiieeeeeeeciit ittt e e ee e ettt e eeeeee e tetreteeaeeesssssnsssaaaeaaesssssssssssseereeassesssnnsnns 55
6.3.1 SUbMItting @ STOred QUEIY ... e e e e e e e e e e e e aaeeaaaeaaeeeaeeeeeeens 55
6.3.1.1 Declaring QUEIY ParameELersS........cooo i uuiiiiee ettt e ettt e e e e e ettt e e e e e ettt e e e e e aanbeeeeeeseenneeeeeaeanas 55
6.3.1.2 Canonical Context Parameters..........oiiuiiiiiiieiiie ettt ettt e et e ettt e et e e eateeesnbeeeens 56
6.3.2 INVOKING @ STOred QUETY ..cc.ueiiiiiiiiiteeeeee ettt et e e et e e e e e s e areees 56
6.3.2.1 Specifying Query INVOCation ParameterS..........cvviiiiiiieiiiiieee ettt e ettt e e e e e e bare e e e e e esnebaeeeeeeeans 56
6.3.3 Response to Stored QUEry INVOCAtION..........ccceeeiiiiiettr et ae e s resereereresreaees 57
6.3.4 Access Control 0N @ StOred QUEIY......ccovuiiiiiiiiieee ettt ettt e et e et e e e 57
6.3.5 Canonical Query: Get Client's User ODbJECH..........coooiiiiiiiiiiieeeeeerr e e e eeeeeene 58
0.4 SQL QUETY SYNEAX . citiiiiiiiiiiiiitiiiiie ittt s e e e s e e e e e e e e e e eeeeeaaeeeeeeete ettt ataeaebesbnenaabaaas 58
6.4.1 Relational Schema for SQL QUEKIES..........euiiiiiiiiieee ettt et e e e e e e esseerrrreaeeeeeeeeeeesssssnnnnnns 58
6.4.2 SQL QUEIY RESUIES..ccoiiiieieeeeeeeeeeeee s 59
6.5 Filter QUEIY SYNTAX......iiiiiiiie ittt e ettt ee e e e ettt e e e e e s rtteeeeeeesnasbraeeeeee s snssaaaeaesssesssssseeaseeesnnnnnns 59
6.5.1 Filter QUEINY SHIUCIUIE. .. .eiieei et s s s e e e e e e e e e eeeaaaaaaaeaeeeeaeeeseeens 59
6.5.2 QUEIY EIRMENES....eeiiiiiiiee e ettt e s et e e e et e e et e e s e 59
B.5.3 FIlter EIEMENTS. ..ottt ettt e e e s e et ee e e e e e e e s 60
6.5, 3. P Ty PO ettt ettt e e ettt ettt et e et e s e e e e e b et e e et et e e nabeaeenaabeeeas 61
(ST I Y 100] o] (=Y 11 T=T g Y] o =T PSSP UUPPRRR 61
6.5.3.3 BOOIEANFIIET ..ottt e ettt e e ettt e e e et e e e e e nnteeeeeeannteee 2eeenneeeaeeeeas 62
6.5.3.4 FIOATFIEEI ..ttt ettt ettt e et e ettt et e e et e et e e eatee e nabeeeeas 62
(SR TE Rl [(=Te [T 1| (Y PSPPSR 62
6.5.3.6 DateTIMERIIENottt ettt e e ettt e e e e et e e eee e e s s bbb b eeeeeesanntbbeeeeeeennnnbaaeeeeeannnn 63
6.5.3.7 SHNGFIIEL ...ttt ettt e e ettt e e e e e ettt e e e e e e nbbbtteeeeeeannnbaeeeeeeannns 63
6.5.3.8 COMPOUNAFIIET......eiiiiiieiee ettt ettt e ettt e ettt e s eabte e e sab et e e eabe et esabaeeenaabeeenns 63
6.5.4 Nested QUErY ElemMENtS.cco oottt aeeaa b s s esaeaesreseaaeaeaesrnrerrraee 64
6.5.5 BranCh EI@MENTS. ...ttt et e e e e e ettt te e e e e e e e eanneaeeeaaeeeaeannee 64
6.6 QUEIY EXAMPIES...oeiiiiieeiiiiiet ettt e e ettt e e e e e e ttaaeeeeeeessssssbaaaaaeeeessssssaaaaeesssssssssseaeaesenssnsnns 65
6.6.1 Name and DesSCription QUEKIES.uuuiiieieieeeeeeeeeeeeeeeeeee et e e e eeeaeaaaeeaeeeaeeens 65
6.6.2 ClassifiCation QUETIES.uiiiii ettt e eee ettt e e e e e e e ettt eeeeeeeesssnsaaeaeeeaesasssnsssaeeaaseesenannsnnns 66
6.6.2.1 Retrieving ClassifiCatioNSCREMES.coouiii ettt e e e e e ee e eeeeeesnreeeeas 66
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 6 of 130

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

6.6.2.2 Retrieving Children of Specified ClassificationNOde..........cccccoriiriiiiiiiniiiiiieeeeeeee e 66

6.6.2.3 Retrieving Objects Classified By a ClassificationNOde.............ccoooiiiiieiiiiiiiiie e 66
6.6.2.4 Retrieving Classifications that Classify an ObJECE...........cooiiiiiiiiieee e 67
6.6.3 ASSOCIAtION QUETIES..cciiiiiiiiiiiie ettt e e ettt e e e e s ettt eeeeeesaabbbeeeeeeeeeeseannnee 67
6.6.3.1 Retrieving All Associations With Specified Object AS SOUICE........c.cccovievieriiineenieniceeeeeeeeee 67
6.6.3.2 Retrieving All Associations With Specified Object As Target.........cccvviveiieeiciiiiiiee e 67
6.6.3.3 Retrieving Associated Objects Based On ASSOCIation TYPe......coeeiiiiiiiiiiieeiiiiiiiieeee e 67
6.6.3.4 Complex ASSOCIAtION QUETY ...cc..uiiiiiiiiiiiiee ettt ettt e ettt ettt ettt e ettt e s ettt e e sttt e eeabeaeesabeneesaabeeenas 68
6.6.4 PaCKAGE QUEIIES. .. .ciee ettt e taaeses et asssssasassssssssssssssssesssssssaneaesrnsennnnne 68
6.6.5 EXtEINAILINK QUETIES. .. .o ettt e et e searnnes 68
6.6.6 AUIt Trail QUETIES. .. .coeeeeiieee e et ennnes 69

7 Event NOtifiCation ProtOCOIS.oiiii ettt e et te e e e e e ettt e e e e e e e e enaeneeeas 70
7.1 USE CASS.ceiiiiiiiiiieie ettt ettt ettt et e et e s ettt et e e e e e ettt ettt e e e e e e et ettt et e e e e e e bbbttt et eeeeeeeaannne 70
7.1.1 CPP Has Changed.........coooiiiieiiei ettt ettt aeatasaaasasaessssssssasaesssssssssssnssasnsnnnens 70
7. 1.2 NeW SErviCe iS OffQrd......ooveeiiiiiiiiiiee et e e e e e e e e e e e e e aeeaaeaaaeaeeeereeeeaeeees 70
7.1.3 Monitor Download Of CONTENT........coeiiuiiiiiiiiiie et et e e e e e e 70
7.7.4 MONItOr PriCe CRangeS.eeiiiiiiiiii ittt ettt et e e e e e s e 70
7.1.5 Keep Replicas Consistent With SOUIrce ObJECE.........cccuuiiiiiiiiiiieeeeee e 70
7.2 REQISIIY EVENES...ciiiiiiiiiiiiiiieieeeiee ettt b e s ssseaaaaaaaaaaaaaasasesesesesssesesssessssssnsnnnsnnns 70
7.3 SUDSCIIDING t0 EVENES....ciiiiiiiiiiiieee ettt ettt e e st e e s ebtt e e e st e eeeentaeesebteeesnane 71
7.3.1 EVENTE SEIBCHION. ..ttt e e ettt e e e e e e ettt e e e e e e e e e eabanee 71
7.3.2 NOFICAtION ACHON.....ciiiiiiiieeeeeeeeeee e e e e s e e e e eeaaaaeaaaaaaaaasaseeeeereeens 71
ARCE BT U1 o3l g] o1 To] W ANE | da o T (4 o] o FON Rt 72
7.3.4 SUDSCIIPtON QUOTAS....ciiiiiiiiiiececc ettt ae e b aeaeaeaearaaaaaaaeaaararaaaaaaa 72
7.3.5 SUDSCIIPLION EXPIratioN.uuueeiitiiieieeieeeeeceeeeee e e e e ee e e e e e e e ee e e e e ee e e e e ee eeeeeeeeeeeeeeeeeens 72
7.3.6 SUDSCIIPLON REJECHON. ... uuiiiiiiiriecce e e ee e e e e e e ee e e e e e e e e e e e e e e eeaeeaeeaeeeeeeeeeeeeeeeeeeeeeeeereeeereeens 72
7.4 UNsubsCribing from EVENES.....cooiiiiiiiiiiiicee ettt et e e sttt ee e e st e e e e 72
7.5 NOIfICAtION Of EVENES....oiiiiiiiiieiiieie ettt ettt e ettt e e sttt e e sttt e e e sneeeeeentaeesesaeeaeenes 72
7.6 RetrieVal Of EVENTS. ... ettt e e ettt e e e e e ettt te e e e e s ettt eeaeeeaanannee 73
7.7 PrUNING Of EVENES...cciiiiiiiiiiiiitie e e ettt e e e e e ettt et e eeeeeesnatabateeeeeeesssssssaaseaaesessassssssssereeassesssnssens 73
8 Content ManNagEMENt SEIVICES.......ccc i ettt a e aa s aeasataesensssnsnsnnnnnnnnen 74
T I @) a1 1T a1 =1 o =Y o o TSSO PTPUUPRRN 74
8.1.71 Content Validation: USE Cas@S......c.uueiiiiiiiiieiiiieee ettt e e e e e e ettt ee e e e e e e e 74
8.1.1.1 Validation of HL7 Conformance Profiles..........coouii ittt 74
8.1.1.2 Validation Of BUSINESS PrOCESSES.iiiiuiiiiiiiiiitie ettt ettt ettt e et et e et ee et e ene e e eaneeesabeeeens 74
8.1.1.3 Validation of UBL BUSINESS DOCUMENES......cccciuiiiiiieeieiiiiiieteeeeeieeeeeeeeseiteeteeeeeeentnreeaeesesnnnsneeeaeeannns 74

8.2 Content Cataloging....ccciiiiei i nnnnnnns 75
8.2.1 Content-based DiSCOVEIY: USE CaSES.....ccoiiuiiiiiiiiieiiiiie ettt ettt et s ittt e e e e e e 75
8.2.1.1 Find All CPPS Where ROIE IS “BUYEBI.........iiiiieieiiiiee e e ettt e e e ettt te e e e e eeittaeeeeeesnbaraeeeseessnnsneeeaeeannns 75
8.2.1.2 Find All XML Schema’s That Use Specified NameSPace.c.eveeviieiieeiiiiiiieeeeee e 75
8.2.1.3 Find All WSDL Descriptions with @ SOAP BiNdiNg........cccceeiriiiimiiiiniieeniieenieeeniee et e niveeeens 75

8.3 Abstract Content ManagemeNnt SEIVICE.......coooeee e i i aaaaas 75
8.3.1 Inline INVOCAION MOAEI ..o e e e e e e e e e e e e e e eaeaaaaaeeeeeeeeeeeeens 76
8.3.2 Decoupled INVOCation MOMEL..........ccooiiiiiiieeeeeeeeeeeee ettt e e e eraraene 77
8.4 Content Management Service ProtoCoLl............oooiiiiiiiii e 78
8.4.1 ContentManagementServiCEREQUESTTYPE.cciueiiriiiieeeeeecieiieee e e e e srreee e e e e e e senrereeeeeeeeennnnns 78
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 7 of 130

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

S B e = 10 111 (=T £ PO PSP PR PUTRN 79

T T IR B S U= (1] ¢ 1= T T OO PPPPPPPPPPPPPPPPPRY 79
o I A b Col=Y o] i o] = O US TP UPPPUPR 79
8.4.2 ContentManagementServiCERESPONSETYPE.iiiiiiiiiiiiiiiee ettt 79
R T B) 0 = U OO PO PPPOPPPPPUPPPRY 79

R A e 1 2= 1 1<) (< OO PP P PP PP PPPPPPPPPPPPPRY 79

8.5 Publishing / Configuration of a Content Management SErViCe........cccccveevviviiiiiiieeeeeciiieie e ee e 80
8.5.1 Multiple Content Management Services and Invocation Control Files.............ccoovvviiiiiiieennnns 81
8.6 Invocation of a Content ManagemeENt SEIVICE.........ecccviiiiiieeieeciiiiete e e e eeieee e e e e e e snrareereeeeeeeennnnns 82
8.6.1 Resolution Algorithm For Service and Invocation Control File.............eevvvvieviiiivivieieeeeveereeeenenen. 82
8.6.2 Audit Trail and Cataloged CONTENT.........cciiiiiiiiiiiie et e e 82
8.6.3 Referential INtEGIItYeiiiieeiiiiieie ettt e e e e ettt e e e e e e s tttrabeeeeeeeessnssnssaeeaeeeesssssnnns 82
8.6.4 Error Handling........ooooiiiii s 82
8.7 Validate ConteNt ProtOCO.ciii ittt ettt e sttt e e e s btee e e s bt eeeesneeeeeenee 83
8.7.1 ValidateCoNtENREQUEST........ccoee i e e e e e e e e e e e e eaaeaaaeaaeeeeeeeseeens 83
I T) 01 = P T T TSRO OO PO PRPPPOPPPPPPPPPRY 83
B.7.1.2 ParamMEEIS:....ceiiiiiteitee ettt ettt e e ettt e e ettt e e ettt e e e e e ettt e e e e e e b baeeeeeeeaas 84

ST G B o U= (U1 1S U PRSP 84
I I A) Cel=Y o1 i o] = OO P PSR UPUTPPRTR 84
8.7.2 ValidateCoNtENTRESPONSE.eiiiiiieeeeiete ettt e e e e e ettt e e e e e ettt teeeeeesnneeteeeaeeeannnee 84
B.7.2.T SYNEAX ..ttt e e e et e e s ettt e e e et e e e e e s e et e e s e anneeeeeeenas 84
I e = 11 111 (= £ PSSP PP UUPUPRN 84

8.8 Catalog CoNtENt PrOtOCOL.......uiiieeiiieiiiiiiiee e e e ettt et e e e e e et tr et e e eeeeeesensbaaaeaeesssssssnssssreaeeaesesssnnsnns 85
8.8.1 CatalogCoNteNtREQUEST......ceiiiiiieeeeeiei et aeraa e aaaaaaaa 85
IR TR I) 01 = S U U T TSRO PO PRPRPOPPPPPPPPPRY 85
B.8.1.2 ParamMeLErS:....coiiiiieeittet ettt ettt e e ettt e e e ettt e e e e ettt e e e e e e b baeeeeeeeaas 86

S T NG B o U= (U1 1 PSPPSR 86

o T I A b Cel=Y o1 i o] = O PU U UPPPUTR 86
8.8.2 CatalogCoNtENtRESPONSE.eiiiiiiiie ittt ee e st e e e bttt e e sttt e e s bbee e e e narees 86
8821 SYNEAX ..ttt e et e e ettt e e e et e e e e et e e e e s e ana et eeeeeas 86

R I e 1= 10 111 (= £ PSPPSR 87

8.9 lllustrative Example: Canonical XML Cataloging SEIVICE.......cc.uuviiiieeieiiiiciiiiiieeeeeeeeeciiireeeee e e e eieene 87
8.10 Canonical XML Content Cataloging SEIVICE......coiieeeiieiiiiieeceeeeeeeeerrree e e e e e e e e e e e e e eeeeeereeeeaeraenees 88
8.10.1 Publishing of Canonical XML Content Cataloging ServiCe..........cccovvuviieeiiniiieeeenniieee e 88

9 Cooperating ReEGISIIIES SUPPOIT. ueiiiiiereeecereser e e e e e s e ee e e e e e e e e e e eeeeeeeeeeeeeeeaaeaeaaeeeeeeeeeeeeeeresrsersssssnsnnnnnnnnns 89
9.1 Cooperating REGIStrEs USE CaSES....cocuuuiiiiiiiiiiiiieeiiiiieee ettt ettt ettt e s st e e s eteteeesieaeeesane 89
9.1.1 Inter-registry ObjJECt REfEIENCES........iiiii ittt ee e e e e eeeraeeeeeeeesennns 89

Lo T I o Yo [T =1 (Yo [O LU =T ¢ (IR 89
9.1.3 Local Caching of Data from Another REeQIStrY.........oovviiieioiiiiiiiiei e 89
9.71.4 ODJECt REIOCALION.cccieieee ittt aa e ea e st asasasssasassssssssssssssssessssnsssnssnssnsesnnnnns 89
9.2 REGISIIY FEAGIAtIONS.ttt e e bbb e e sttt e e s ettt e e e sbbteeeenaaee 90
9.2.7 Federation Metadata.......ooeeiiiiiiiiee e e e e e 90
0.2.2 Local Vs. Federated QUEIIES.oiiiee e e e et e et e e e e e e aeaans 91
9.2.2.1 LOCAI QUEIIES.c.eeteeieieeeee ettt e e e e e e e e e e e et catb b abeaeeeeeaaaaeeeeeaeaesasssssssasassaasasaaaeesesasaanssssssranens 91
0.2.2.2 FEARIated QUEBIIES.ot e et e e e e e ettt e e e e e e e et e e e e e e e et etasaeeeeeaeeaanans 91
regrep-rs May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 8 of 130

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

9.2.2.3 Membership in Multiple FEAerations...........ocueeiiiiiiiriiiieree et 92

9.2.3 Federated Lifecycle Management OperationsS..........cccuuvviieeeiiiciiiiieee e eeiiireeeeeeeeeeirreeeeeeeesennns 92
9.2.4 Federations and Local Caching of Remote Data.........cccceeeeeeeieeiiiiiiiiiieieee e 92
9.2.5 Caching of Federation Metadata............ceoveeeieciiiiiiieieeee e e e ee e e e e e e e enennes 92
9.2.6 Time Synchronization Between RegiStry PEEIS........ceiiieiiiiie i e e e eeeens 92
9.2.7 Federations and SECUIILY.....ccoouuiii ittt ettt e et e e et e s et ee e eaieees 93
9.2.8 Federation Lifecycle Management ProtOCOIScoooeiiiiiiiiiiiiiieee e 93
9.2.8.7 JOINING @ FEAGTALION.eiiiiiiiiiiii ettt ettt ettt e e e e s ettt e e sttt e e eabe et e sabbeeesaabeeenas 93
9.2.8.2 Creating @ FEAEIAtION.ccciiiiiiiee ettt eie e e ee et ee e e e sttt e e e e seseabeeeeeeessssaeseeeeessssseaeeeesnssssseeeesannns 93
9.2.8.3 LeaViNg @ FEAEBIATION.......ciiiiiiiiiiie ettt ettt ettt e sttt e s bt e st e e ettt e sanbeeenebeeeeas 93
9.2.8.4 DisSOIVING @ FEARIAtION.......cciiiiiiiiie et e ettt e e e e s etbe e e e e e e e sababaeeeseessnnsaeeeaesannns 93

S RC I @] o] =Tot a1 2 = o1 1 Tat=1 i o] o TS U U RSP 94
9.3.1 Use Cases for Object RepliCaAtioN.........cocuuiiiiiiii ettt ee e e et e e e e e e e e ennes 94
9.3.2 QUENES AN REPICAS. . .uuuiiiiiiiicre e er eaeaeeeeaeeaaeaaeaaeaeeeeeeeereeeeeeeens 95
9.3.3 Lifecycle Operations ANd REPICAS.cciiiiiiiiiiiiiie ettt e e e e e e e e e e e 95
9.3.4 Object Replication and Federated RegiStrieS......cccovvviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 95
9.3.5 Creating @ LOCAI REPIICA.ttt ittt e e aaaaasasassssassasssasassssssssssssessassesenens 95
9.3.6 Transactional REPICATION.uuuuiitieieceee e e e ee e e e e e e ee eeeeaeaens 95
9.3.7 Keeping REPlICAS CUIMENL......cccee et e e eeeee e e e ee e eaeees 96
9.3.8 Lifecycle Management of Local REPICAS.......ccoiuiiiiiiiiiiiiiiie e 96
9.3.9 Tracking Location Of @ REPIHCA........uiiiiiiiiiieciiie et e e et rreeee e e e e e esanees 96
9.3.10 Remote Object References to a RepPliCa......coovuiiiiiiiiiiiiiiiiiicceceeee e 96
9.3.11 RemoVving @ LOCAl REPIICA....ccci ittt e e e e e et eee e e e e e tnnaaaeeeeeeeesnnnnns 96
9.4 Object ReloCation ProtOCOL...........ooiiiii e nnnnas 96
9.4.71 ReloCateODhJECISREQUESE.....iiiieeeeiiiiiiee ettt e e ettt ee e e e e e s eetaaeaeeeeeees e nssnsaaeeaeeeessnnnnnns 99

S I I B = 1= 10 1 1< (= PSPPSR 99

1S IR T B o L= (1] 4 1= T P PP PUPPPPPPPPPPPPPPPPPRY 99

1S IR Ny IR B et~ o 1 o =PRI 99
9.4.2 ACCEPLODJECISREGUEST.uiiiiiiieieeeeee ettt e e e e e e e ettt e eeeeeeeeesnsssbeaaeeeaeeesennnnnnnns 99
O.4.2.T ParamMELEIS:....ceeiiieiteeet ettt e e e ettt e e e ettt e e e e ettt et e bbbt et e e e e e e aeeeee s 100

S R A o U= (1] 4 1= T TP PP PPPPPPPPPPRt 100

1 I e T b Cel=Y o] i [o] =S U 100
9.4.3 Object Relocation and Remote ObjeCtRefs........coooo oo 100
9.4.4 Notification of Object Relocation To ownerAtDestination..............ccccveeeeeeeeeciiiiiiiieeeeeeeeee e 101
9.4.5 Notification of Object Commit TO SOUrCEREGISIIY.....ccoovviiiiiiiiiiieiee e 101
9.4.6 Object Ownership and Owner ReasSigNMENt........ccooouvutiiiiiiieeeiiiiieee et eeeee e 101
9.4.7 Object Relocation and TiMEOULS.......ccoeiieeiite e eeeaeeeeesnnnnsnnsnsesnnnnsnnnnnes 101
TO REGISIY SECUIEY ..o i e e e e e e e e e e e e e e e e e aaaaaaeaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 102
TO.T SECUILY USE CaSES..uuiiiiiieiiiiiiiiieeeeeeeiitttteeeeeesttteteeeeeeesstsssaeeeeesassssssaeeeaesessassssseeeeseesssssssseeeees 102
O It I e [=T o 1Y\ = Lo =T [T 0 0= o SO 102
T0.7.2 MESSAGE SECUIMEY c.uitiieiiiitee ettt ettt ettt e ettt e e e ettt e e sttt e e e s ebbtteeesabteeeesabeeeeesns 102
10.7.3 REPOSILONY IHEM S@CUIEY..ceeeeeeieeec e e e eeeeeeaeeeeeaeaeaeeeeaaeaeanaaaaseaneeeenas 102
T0.T.4 AULNENTICATION.eiiiiie ettt e e e ettt e e e e e ettt e e e e e s snnbetteeeee s nnanneeeeeas 102
10.1.5 Authorization and ACCESS CONIOL.....cccoiuuiiiiiiiiiiie ettt et e e e ebaeee e 102
LT B U T [= T TSP USSURUPPRS 102
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 9 of 130

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

10.2 [dentity ManagemENt.......cceeciiiiiiieeee ettt e e e ee et teeeeeeesstareaeeeeeeessnssseeeeaeeessanssssaeaeessessnnssneeeeeas 103

T0.3 MESSAGE SECUNTY ..ciiiiiiiiiieeeee e 103
10.3.7 TranSPOIt LAYl SECUIILY....cceviiiiieiiiiie ettt ettt e ettt e e sttt e e s sttt e e e s abbteeeeaas 103
T10.3.2 SOAP MESSAQE SECUIMEY ...uuiuuiiiiiiiriieeeeeeesees e e seeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeaererssessnsssnsnnnnnnnnnnnnnnns 103

10.3.2.1 Request MeSSAgE SIGNAtUIE.........oieiiiiiiiiie ettt tee ettt e et ee sttt e e s ibee e e snteeeeeaeeeeesnbeeeennnee 103
10.3.2.2 ReSpoNSse MESSAQE SIgNATUIE.......eiiiieiiiiiieeee ettt e e eeeireeeeeeesesibtbeeeeseesstsnbaeeeeeesnnssaeeaeeessnssssees 103
10.3.2.3 KeYINfO REQUIFEMENES.oiiiiiieiiiiiei ettt e e e ettt e e e e ettt eeeeeeeeataabeeeeeeessnasaeeeeeesnnsnnnees 104
10.3.2.4 Message Signature Validation.............coiiiiiiiiiiee et e et e e ettt ee e e e e eareeeeeeesnnnnees 104
10.3.2.5 Message Signature EXAMPIE......ccouiiiiiiii ettt e e e e et e e e e e e e e narbeaeeeseessnsrnnees 104
10.3.2.6 Message With Repositoryltem: Signature EXample..........coooveiiiiiiiiiiiineeceeeeceeee e 105
10.3.2.7 SOAP Message Security and HTTP/S... ..ottt e et e e e e e seevvaeeaesesnnnnes 106
10.3.3 Message Confidentiality.........eeeeieiiiiiiiiiii e, 107
10.3.4 Key Distribution REQUIFEMENTS.......cceiiiiiiiiiiie et e e ee e e e e e e e e e e senerrrreaaeeeeeas 107

T0.4 AULNENTICATION. ...ttt e e e e ettt e e e e e ettt e e e e e s e eaebbeeaeeeeeas 107
10.4.1 Registry as Authentication AUhOTItY...........coiiiiiiiiiiiii e 107
10.4.2 External Authentication AUTNOIITY........ccooo e e e e e e e e e e e e e e e e e e e 108
10.4.3 Authenticated SeSSION SUPPOIT......coiiiiiiiiiiiiiiee ettt e e e e e e e e e eeeeeeeeeas 108

10.5 Authorization and ACCESS CONIIOL.......uiiiiiiiiiiiiiiiie e e eccieeee e e eerrr e e e e e e e etrrrrreeeeeeeessennsenaeaeeeas 108

O G RN E o 1 I =11 OSSP PP PPRPPPP 108

11 ReQISTY SAML Profil@......cooiiiieeee ettt ettt e st e et e e e bttt e e saeeeeens 109

B I I =10 1T 0 T] Lo T Y2 109

11.2 UsE Cases fOr SAML Profil.......ccoo oo ee e e e e ae e e e 109
11.2.71 Registry @s SSO PartiCiPant:cccoeeeeeieeeeee et eeee e as 110

11.3 SAML Roles Played By ReQIStIY.....cooviiiiiiii e, 110
11.3.71 Service Provider ROIE..........uuiiiiiiiieeeiieeee ettt e e e e e ettt e e ae e e e e ennnreaaeaeeees 110

11.3.1.1 Service Provider REQUIFEMENES.cviiiiiiiiiiiieiiieieieieeeieee i ieve e e e aaeeaeeeaeeaaaaaaennnnannnnnnnn s anss 110

11.4 ReQIStrY SAML INtEITACE. ... iiiiiiie ettt ettt e e e e e e et reeeeeeeeeesssssssnnssaaaeaeeens 111

11.5 Requirements for Registry SAML Profil@ouviiiiiiiiiiiiiiiiiiiiiie e 111

L SIS @ O o 1T 11 Te] s PR 112
TT.6.T SCENAIO ACEOIS. ... ettt e e ettt e e e e ettt e ee e e s e bbbttt eeeeeeaaasiebeeeeeeas 112
11.6.2 SSO Operation — Unauthenticated HTTP RequUeSstOr............uiiiiiiiiiiiiiiieee e 112

T71.6.2.7 SCENAMO SEOUENCE.....ceeiiiiiiiiee ettt e e e e ettt e e eeeeetbeteeeeaesasaeeeeeasassssssaaeessaasssseaeesssssnssaeesesesnssssnees 113
11.6.3 SSO Operation — Authenticated HTTP ReqQUESTOF.........uuvviiiiimiiiiieiiiiiiiiiiiiieiiee e 114
11.6.4 SSO Operation — Unuthenticated SOAP REQUESEON.........ccvtiiieeeeiiiiiiiiieeeee e eeeeeireeeee e 114

B I T IS Yot o =T 4 To IS Y =T [=T [l U 115
11.6.5 SSO Operation — Authenticated SOAP REQUESTON...........covvviiiviiiiiiiiieeeeee e 115

T71.6.5.7 SCENAMO SEUUENCE.....cceiiiiiiiee e ettt e e e e ettt ee e e e e eetbeeeeeeeeareeeeeeesesssssbeaeeeeassssssaaeaeesssssssaeesesessssssees 116
11.6.6 <samlp:AuthnRequest> Generation RUIES.............uviiiiiviiiiieiiiiii e e e 117
11.6.7 <samlp:Response> Processing RUIES..........ccoiiiieoiiiiiieiieeiieieee et errree e e e erreee e 117
LR R Y oY) o g Te ST U] o =Tet i (o N0 1= 117

1.7 EXEEINAl USEIS .. 118

12 Native Language SUPPOIT (NLS)...cccceeeee et e e e e e e e s 119

T2.7 TEIMINOIOGY .ttt ettt ettt ettt e e bttt e e sttt e e et ee e e eabbb e e e e e abaeeeeenabaeeeeeeasnee 119

12.2 NLS and Registry ProtCol MESSAQES.uuviiiiiiiiiiieiiiiiiiteee e e e eeiiittteeee e e e e ettarreeeeeeeeessensnaaaeaeeens 119

12.3 NLS Support in ReQiStryODJECESuvviiiiiiiiiiiiiiiiiiieiiieeeee e e e e s 119

regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 10 of 130

397
398
399
400
401
402
403
404
405
406
407
408

12.3.1 Character Set of LOCAlIZEASIING....cciiiiiiiiiiieee ettt e e e e e e e e e e eenreraeeee s 121

12.3.2 Language of LOCAliZeAStNG......cocuuiiiiiiie ettt e e e e eeaar b reeeae e 121

12.4 NLS and REPOSILONY HEMISciiiiiiiiiiiiiiie ettt ettt et e st e e e e e e e 121
12.4.1 Character Set of REPOSItOrY HEMIS........uuiiiiiiiiie et e e e e e eeee e e 121
12.4.2 Language of REPOSItOrY HEMS.......uviiiiiiiiiiiiiiieeeeeeee e 121

B HC T @leT 0] o] 1 4 F= T o Lol YRS 122
13.71 Conformance ProfileS......o e, 122
T3.2 FEALUIE IMALIX.c.veiiiiiiiiiiiiiiiiitiitt et e e e e e e e e eeeeeeeeaeeaaeaaaaeseessaeessessasssressasssasnnnnannnnnnnnses 122
T4 REIEIENCES. ... ittiiiee ettt e e e e e ettt e e e e e e e ttbbbeeeeaeeessaesasaaeaeeaaassssssaeaaseeasssssssssaeaeasssssssrasaaeaanans 126
T14.7 NOIrMaAtiVe REfEIENCES.....uviiiiiiieieeeeee e 126
T4, 2 INFOIMIALIVE. ..ttt ee e e e ettt e e e e e e eta b et eeaeeessssssabaeaaeesessssssssasaaaeeeessnnssnenaeaeeens 128
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 11 of 130

409

lllustration Index

Figure 1: Simplified View of ebXML Registry ArchiteCture..........ccooviiiiiiiiiiiiiicc e 17
Figure 2: Registry Protocol Request-ResSponse PatterN............uuuvviviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeaens 19
Figure 3: Example Registry Package HierarChy.............oovviiiiiiiiiiiiiiiieessis e e e e e ee e ee e e eeeeeeenaees 32
Figure 4: Example of @ Dir€Ctory LIStING......ccocuiiiieee ittt ettt te e e ettt e e e e s rrr e e e s e e sseebbeaeaeeessensraeaeeens 33
Figure 5: SUbMIit ObJeCtS ProtOCOL......ciii ettt e e e e e e e e e et rr e e e e e e eeessnnnsseaaeaaeeens 35
Figure 6: Update ObJeCtS ProtOCOL.........oiiiiiiiiiiiee ittt ettt e e 38
Figure 7: Approve ODbjJects ProtoCOL.........cooouiiiiiiiiiiiiiie ettt ettt e 39
Figure 8: Deprecate ObjJeCtS PrOtOCOL.... ... i e e s e e e e e e e e e e e e aaeaeaeaaneees 41
Figure 9: Undeprecate ODbJects ProtOCOL... ... e e e e e e e e e e e e e e e e aeaeeeeeaeeeaenes 42
Figure 10: Remove ObjJeCtS PrOtOCOL........uuuuiiiiiiiiieiiiiieieieieieeeeeieteee et eeeeeeeeseseseeseseesesesessesessesesessessessnnnes 44
Figure 11: Ad HOC QUEIY ProtOCOL....cciiiiiiiiiiiee ettt ettt te e e e e ettt e e e e e e esnnnnraeeeeesessnnraeaeeeenns 51
Figure 12: Filter TYpe HIErarChy.......c...iii ittt ettt et e e e irae e s 61
Figure 13: Content Validation SEIVICE.ccooiiiiiiiiiiiie ettt ettt e st ee e s eaabaaeee s 74
Figure 14: Content Cataloging SEIVICE.......cooii it aresesaaaaesesesassaaearenes 75
Figure 15: Content Management Service: Inline Invocation Model..............ceeiiiiieiiiiiiiiiiiicciie e, 77
Figure 16: Content Management Service: Decoupled Invocation Model............cooovvviiiiiiiiiiiiiiieieieeieeieeeenns 78
Figure 17: Cataloging Service ConfigUration..........cccuuiiiiiiieciiiiieee et ee et e e e e ee et aeee e e s esnnnraeaeaeeeas 81
Figure 18: Validate Content ProtoCol..........coouuiiiiiiiiiiiiie ettt et e 83
Figure 19: Catalog Content ProtOCOL......coouiiiiiiiiiiii ittt et e e e s ieee s 85

Figure 20:
Figure 21:
Figure 22:
Figure 23:

Example of CPP cataloging using Canonical XML Cataloging Service.........cccccccvvvveeieeeeeeennnnns 87
Inter-registry Object REfErENCES......cccooeeeee e e e 89
o L1 £V =T L= = 11 o =SSP PRPPRPRRRt 90
Federation Metadata EXamPIE..........ooooiiiiiiiiiieeeeee et eeaeeaaees 91

Figure 24: Object RePICATION. ...ccoiuiiiiiiieee ettt e sttt e st e st esaaeeaee s 94

Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

regrep-rs

ODbJECE REIOCATION. ...ceiiiiiiiiiiiite ettt et e ettt e e sttt e e e e e e e 97
Relocate ObjJECtS PrOtOCOL.........uviiiiiiiiiiiiiieiiiiitiiierereeee e eeerereeeeeeereeeeeserereeeeeeeseeeessesereresrerresrerreare 98
Y ALY | SIS @ Y o] et= | S Yol =Y o -1 (o TN 110
SSO Operation — Unauthenticated HTTP Requestor...........oovvvvviiiiiiiiiiiiiicieiee e 113
SSO Operation - Unauthenticated SOAP ReqUESTOL..........coooeviiiiiiieieeeeeeeeccceeececceeceeeae 115
SSO Operation - Authenticated SOAP ReQUESTON..........iiiiiiiiiiiiiiiiiieee e 116

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 12 of 130

410
411
412

413
414
415
416

417
418

419
420

421

422

423
424

425

426
427
428

429
430
431

432

433
434

435

436
437

438

439
440
441
442
443

444

445

446

447
448

1 Introduction

An ebXML Registry is an information system that securely manages any content type and the
standardized metadata that describes it.

The ebXML Registry provides a set of services that enable sharing of content and metadata between
organizational entities in a federated environment. An ebXML Registry may be deployed within an
application server, a web server or some other service container. The registry MAY be available to clients
as a public, semi-public or private web site.

This document defines the services provided by an ebXML Registry and the protocols used by clients of
the registry to interact with these services.

A separate document, ebXML Registry: Information Model [ebRIM], defines the types of metadata and
content that can be stored in an ebXML Registry.

1.1 Audience

The target audience for this specification is the community of software developers who are:
« Implementers of ebXML Registry Services
« Implementers of ebXML Registry Clients

1.2 Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in IETF
RFC 2119 [RFC2119].

The term “repository item” is used to refer to content (e.g., an XML document or a DTD) that resides in a
repository for storage and safekeeping. Each repository item is described by a RegistryObject instance.
The RegistryObject catalogs the Repositoryltem with metadata.

1.3 Notational Conventions

Throughout the document the following conventions are employed to define the data structures used. The
following text formatting conventions are used to aide readability:

1.3.1 UML Diagrams

Unified Modeling Language [UML] diagrams are used as a way to concisely describe concepts. They are
not intended to convey any specific Implementation or methodology requirements.

1.3.2 Identifier Placeholders

Listings may contain values that reference ebXML Registry objects by their id attribute. These id values
uniquely identify the objects within the ebXML Registry. For convenience and better readability, these key
values are replaced by meaningful textual variables to represent such id values.

For example, the placeholder in the listing below refers to the unique id defined for an example Service
object:

<rim:Service id="${EXAMPLE SERVICE ID}">

1.3.3 Constants

Constant values are printed in the Couri er New font always, regardless of whether they are defined
by this document or a referenced document.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 13 of 130

449

450
451
452

453

454
455
456

457

458

459
460

461

462
463
464
465
466

467

468

469
470
471
472
473

474
475
476
477

478
479

1.3.4

1.3.5

1.4

Bold Text

Bold text is used in listings to highlight those aspects that are most relevant to the issue being
discussed. In the listing below, an example value for the contentLocator slot is shown in italics if
that is what the reader should focus on in the listing:

<rim:Slot name="urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator">

</rim:Slot>

Example Values

These values are represented in jtalic font. In the listing below, an example value for the
contentLocator slot is shown in italics:

<rim:Slot name="urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator">
<rim:ValueList>
<rim:Value>http://example.com/myschema.xsd</rim:Value>
</rim:ValueList>
</rim:Slot>

XML Schema Conventions

This specification uses schema documents conforming to W3C XML Schema [Schema1] and normative
text to describe the syntax and semantics of XML-encoded objects and protocol messages. In cases of
disagreement between the ebXML Registry schema documents and schema listings in this specification,
the schema documents take precedence. Note that in some cases the normative text of this specification
imposes constraints beyond those indicated by the schema documents.

Conventional XML namespace prefixes are used throughout this specification to stand for their
respective namespaces as follows, whether or not a namespace declaration is present in the example.
The use of these namespace prefixes in instance documents is non-normative. However, for consistency
and understandability instance documents SHOULD use these namespace prefixes.

1.4.1

Schemas Defined by ebXML Registry

Prefix H XML Namespace H Comments

rim:

urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0 This is the Registry Information Model
namespace [ebRIM]. The prefix is
generally elided in mentions of Registry
Information Model elements in text.

rs:

urn:oasis:names:tc:ebxml-regrep:xsd:rs:3.0 This is the ebXML Registry namespace
that defines base types for registry
service requests and responses [ebRS].
The prefix is generally elided in mentions
of ebXML Registry protocol-related
elements in text.

query: urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0 This is the ebXML Registry query

namespace that is used in the query
protocols used between clients and the
QueryManager service [ebRS].

regrep-rs

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 14 of 130

Prefix H XML Namespace H Comments

lcm: urn:oasis:names:tc:ebxml-regrep:xsd:lcm:3.0 This is the ebXML Registry Life Cycle
Management namespace that is used in
the life cycle management protocols used
between clients and the
LifeCycleManager service [ebRS].

cms @ urn:oasis:names:tc:ebxml-regrep:xsd:cms:3.0 This is the ebXML Registry Content
Management Services namespace that is
used in the content management
protocols used between registry and
pluggable content managent services

[ebRS].
480
481 1.4.2 Schemas Used By ebXML Registry
482
Prefix “ XML Namespace H Comments
saml: urn:oasis:names:tc:SAML:2.0:assertion This is the SAML V2.0 assertion

namespace [SAMLCore]. The prefix is
generally elided in mentions of SAML
assertion-related elements in text.

samlp: urn:oasis:names:tc:SAML:2.0:protocol This is the SAML V2.0 protocol
namespace [SAMLCore]. The prefix is
generally elided in mentions of XML
protocol-related elements in text.

ecp: urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp This is the SAML V2.0 Enhanced Client
Proxy profile namespace, specified in this
document and in a schema [SAMLECP-

xsd].

ds: http://www.w3.0rg/2000/09/xmldsig# This is the XML Signature namespace
[XMLSig].

xenc: http://www.w3.0rg/2001/04/xmlenc# This is the XML Encryption namespace
[XMLEnNC].

SOAP- http://schemas.xmlsoap.org/soap/envelope This is the SOAP V1.1 namespace

ENV: [SOAP1.1].

paos: urn:liberty:paos:2003-08 This is the Liberty Alliance PAOS (reverse

SOAP) namespace.

xsi: http://www.w3.0rg/2001/XMLSchema-instance This namespace is defined in the W3C
XML Schema specification [Schema1] for
schema-related markup that appears in
XML instances.

wsse: http://docs.oasis-open.org/wss/2004/01/oasis- This namespace is defined by the Web
200401-wss-wssecurity-secext-1.0.xsd Services Security: SOAP Message
Security 1.0 specification [WSS-SMS]. It
is used by registry to secure soap
message communication.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 15 of 130

483

484

485

486

487

488
489
490

491
492

493
494
495

496
497

498

499
500

501

502

Prefix H XML Namespace H Comments

wsu: http://docs.oasis-open.org/wss/2004/01/oasis- This namespace is defined by the Web

200401-wss-wssecurity-utility-1.0.xsd Services Security: SOAP Message
Security 1.0 specification [WSS-SMS]. It

is used by registry to secure soap
message communication.

1.5 Registry Actors

This section describes the various actors who interact with the registry.

Actor Description

Registry Operator An organization that operates an ebXMI Registry and
makes it's services available.

Registry Administrator A privileged user of the registry that is responsible for
performing administrative tasks necessary for the
ongoing operation of the registry. Such a user is
analogous to a “super user” that is authorized to perform

any action.

Registry Guest A user of the registry whose identity is not known to the
registry. Such a user has limited privileges within the
registry.

Registered User A user of the registry whose identity is known to the

registry as an authorized user of the registry.

Submitter A user that submits content and or metadata to the
registry. A Submitter MUST be a Registered User.

Registry Client A software program that interacts with the registry using
registry protocols.

1.6 Registry Use Cases

Once deployed, the ebXML Registry provides generic content and metadata management services and
as such supports an open-ended and broad set of use cases. The following are some common use
cases that are being addressed by ebXML Registry.

» Web Services Registry: publish, management, discovery and reuse of web service discriptions in
WSDL, ebXML CPPA and other forms.

» Controlled Vocabulary Registry: Enables publish, management, discovery and reuse of controlled
vocabularies including taxonomies, code lists, ebXML Core Components, XML Schema and UBL
schema.

» Business Process Registry: Enables publish, management, discovery and reuse of Business Process
specifications such as ebXML BPSS, BPEL and other forms.

» Electronic Medical Records Repository
» Geological Information System (GIS) Repository that stores GIS data from sensors

1.7 Registry Architecture

The following figure provides a simplified view of the architecture of the ebXML Registry.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 16 of 130

503

505

506
507
508

509
510
511

512

513
514
515

516

517

518
519
520

521
522

523
524

Web Browser| | Registry Client | | Registry Client

Client API
(e.g. JAXR API)
Protcol Bindings HTTP| |SOAP SOAP
Service Interfaces QueryManager LifeCycleManager
Anthentication
Authorization
Metadata Registry Content Repository

Figure 1: Simplified View of ebXML Registry Architecture

1.71 Registry Clients

A Registry Client is a software program that interacts with the registry using registry protocols. The
Registry Client MAY be a Graphical User Interface (GUI), software service or agent. The Registry Client
typically accesses the registry using SOAP 1.1 with Attachments [SwA] protocol.

A Registry Client may run on a client machine or may be a web tier service running on a server and may
accessed by a web browser. In either case the Registry Client interacts with the registry using registry
protocols.

1.7.1.1 Client API

A Registry client MAY access a registry interface directly. Alternatively, it MAY use a registry client API
such as the Java API for XML Registries [JAXR] to access the registry. Client APIs such as [JAXR]
provide programming convenience and are typically specific to a programming language.

1.7.2 Registry Service Interfaces

The ebXML Registry consists of the following service interfaces:

« A LifecycleManager interface that provides a collection of operations for end-to-end lifecycle
management of metadata and content within the registry. This includes publishing, update, approval
and deletion of metadata and content.

« A QueryManager interface that provides a collection of operations for the discovery and retrieval of
metadata and content within the registry.

[RS-Interface-WSDL] provides an abstract (protocol neutral) definition of these Registry Service
interfaces in WSDL format.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 17 of 130

525

526
527

528
529
530

531
532

533

534

535
536
537
538

539

540
541
542
543

1.7.3 Service Interface: Protocol Bindings

This specification defines the following concrete protocol binding for the abstract service interfaces of the
ebXML Registry:

+ SOAP Binding that allows a Registry Client to access the registry using SOAP 1.1 with
Attachments [SwA]. [RS-Bindings-WSDL] defines the binding of the abstract Registry Service
interfaces to the SOAP protocol in WSDL format.

« HTTP Binding that allows a Web Browser client to access the registry using HTTP 1.1
protocol.

Additional bindings may be defined in the future as needed by the community.

1.7.4 Authentication and Authorization

A Registry Client SHOULD be authenticated by the registry to determine the identity associated with
them. Typically, this is the identity of the user associated with the Registry Client. Once the registry
determines the identity it MUST perform authorization and access control checks before permitting the
Registry Client's request to be processed.

1.7.5 Metadata Registry and Content Repository

An ebXML Registry is both a registry of metadata and a repository of content. A typical ebXML Registry
implementation uses some form of persistent store such as a database to store its metadata and content.
Architecturally, registry is distinct from the repository. However, all access to the registry as well as
repository is through the operations defined by the Registry Service interfaces.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 18 of 130

544

545
546

547

548
549
550
551

553

554
555

556
557
558
559
560
561

562

563

564

565
566
567
568
569
570
571

2 Registry Protocols

This chapter introduces the registry protocols supported by the registry service interfaces. Specifically it
introduces the generic message exchange patterns that are common to all registry protocols.

2.1 Requests and Responses

Specific registry request and response messages derive from common types defined in XML Schema in
[RR-RS-XSD]. The Registry Client sends an element derived from RegistryRequestType to a registry,
and the registry generates an element adhering to or deriving from RegistryResponseType, as shown
next.

Reqgistry Client Reqistry Service Interface

I
! <rs EegisthFEequestType -

p—— T

<rs RegistrfesponseTyie |_\.|

Figure 2: Registry Protocol Request-Response Pattern

Throughout this section, text mentions of elements and types are indicated with a namespace prefix. The
namespace prefix conventions are defined in the “Introduction” chapter.

Each registry request is atomic and either succeeds or fails in entirety. In the event of success, the
registry sends a RegistryResponse with a status of “Success” back to the client. In the event of failure,
the registry sends a RegistryResponse with a status of “Failure” back to the client. In the event of an
immediate response for an asynchronous request, the registry sends a RegistryResponse with a status
of “Unavailable” back to the client. Failure occurs when one or more Error conditions are raised in the
processing of the submitted objects. Warning messages do not result in failure of the request.

2.1.1 RegistryRequestType

The RegistryRequestType type is used as a common base type for all registry request messages.

2.1.1.1 Syntax:

<complexType name='"RegistryRequestType">
<sequence>
<!-- every request may be extended using Slots. -->
<element maxOccurs="1" minOccurs="0" name="RequestSlotList"
type="rim:SlotListType" />
</sequence>
<attribute name="id" type="anyURI" use="required"/>

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 19 of 130

572
573
574
575
576

577

578
579
580

581
582
583
584

585
586
587
588
589

590

591

592

593

594

595
596

597
598

599
600

601
602

603
604

605
606
607

608

609
610
611
612

613

<!--Comment may be used by requestor to describe the request. Used
in VersionInfo.comment-->
<attribute name='"comment" type="string" use="optional"/>
</complexType>
<element name='"RegistryRequest" type="tns:RegistryRequestType'/>

2.1.1.2 Parameters:

= comment. This parameter allows the requestor to specify a string value that describes
the action being performed by the request. This parameter is used by the “Registry
Managed Version Control” feature of the registry.

= jd: This parameter specifies a request identifier that is used by the corresponding
response to correlate the response with its request. It MAY also be used to correlate a
request with another related request. The value of the id parameter MUST abide by the
same constraints as the value of the id attribute for the <rim:IdentifiableType> type.

= RequestSlotList: This parameter specifies a collection of Slot instances. A
RegistryReugestType MAY include Slots as an extensibility mechanism that provides a
means of adding additional attributes to the request in form of Slots. The use of registry
implementation specific slots MUST be ignored silently by a registry that does not
support such Slots and MAY not be interoperable across registry implementations.

2.1.1.3 Returns:

All RegistryRequests return a response derived from the common RegistryResponseType base type.

21.1.4 Exceptions:

The following exceptions are common to all registry protocol requests:

= AuthorizationException: Indicates that the requestor attempted to perform an
operation for which he or she was not authorized.

= InvalidRequestException: Indicates that the requestor attempted to perform an
operation that was semantically invalid.

= SignatureValidationException: Indicates that a Signature specified for the request
failed to validate.

= TimeoutException: Indicates that the processing time for the request exceeded a
registry specific limit.

= UnsupportedCapabilityException: Indicates that this registry did not support the
capability required to service the request.

In addition to above exceptions there are additional exceptions defined by [WSS-SMS] that a registry
protocol request MUST return when certain errors occur during the processing of the <wsse:Security>
SOAP Header element.

2.1.2 RegistryRequest

RegistryRequest is an element whose base type is RegistryRequestType. It adds no additional elements
or attributes beyond those described in RegistryRequestType. The RegistryRequest element MAY be
used by a registry to support implementation specific registry requests.

2.1.3 RegistryResponseType

The RegistryResponseType type is used as a common base type for all registry responses.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 20 of 130

614

615
616

618
619
620
621
622
623
624
625
626
627

628

629
630
631
632
633
634

635
636

637

638
639
640

641
642
643

644
645

646
647
648
649
650

651
652
653

654

655
656
657

658

659
660

2.1.3.1

Syntax:
<complexType name='"RegistryResponseType">
<sequence>
<!-- every response may be extended using Slots. -->

<element maxOccurs="1" minOccurs="0" name="ResponseSlotList"

type="rim:SlotListType"/>

<element minOccurs="0" ref="tns:RegistryErrorList"/>

</sequence>

<attribute name="status'" type="rim:referenceURI" use="required"/>

<!-- id is the request if for the request for which this is a
response -->

<attribute name='"requestId" type="anyURI" use="optional"/>

</complexType>
<element name="RegistryResponse" type='"tns:RegistryResponseType'/>

2.1.3.2

Parameters:

status: The status attribute is used to indicate the status of the request. The value of the
status attribute MUST be a reference to a ClassificationNode within the canonical
ResponseStatusType ClassificationScheme as described in [ebRIM]. A Registry MUST
support the status types as defined by the canonical ResponseStatusType
ClassificationScheme. The canonical ResponseStatusType ClassificationScheme may
be extended by adding additional ClassificationNodes to it.

The following canonical values are defined for the ResponseStatusType
ClassificationScheme:

* Success - This status specifies that the request was successful.

* Failure - This status specifies that the request encountered a failure. One or more
errors MUST be included in the RegistryErrorList in this case or returned as a SOAP
Fault.

» Unavailable — This status specifies that the response is not yet available. This may
be the case if this RegistryResponseType represents an immediate response to an
asynchronous request where the actual response is not yet available.

requestld: This parameter specifies the id of the request for which this is a response. It
matches value of the id attribute of the corresponding RegistryRequestType.

ResponseSlotList: This parameter specifies a collection of Slot instances. A
RegistryResponseType MAY include Slots as an extensibility mechanism that provides a
means of adding dynamic attributes in form of Slots. The use of registry implementation
specific slots MUST be ignored silently by a Registry Client that does not support such
Slots and MAY not be interoperable across registry implementations.

RegistryErrorList: This parameter specifies an optional collection of RegistryError
elements in the event that there are one or more errors that were encountered while the
registry processed the request for this response. This is described in more detail in 6.9.4.

2.1.4 RegistryResponse

RegistryResponse is an element whose base type is RegistryResponseType. It adds no additional
elements or attributes beyond those described in RegistryResponseType. RegistryResponse is used by
many registry protocols as their response.

2.1.5 RegistryErrorList

A RegistryErrorList specifies an optional collection of RegistryError elements in the event that there are

one or more errors that were encountered while the registry processed a request.

regrep-rs

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 21 of 130

661

662
663

665
666
667
668
669
670
671
672
673

674

675
676
677

678
679
680

681

682

683
684

685

686
687
688
689
690
691
692
693

695
696

698
699

700

701
702
703
704

705
706
707

708
709

2.1.5.1 Syntax:

<element name="RegistryErrorList">
<complexType>
<complexContent>
<restriction base="{http://www.w3.0rg/2001/XMLSchema}anyType">
<sequence>
<element ref="rs:RegistryError" maxOccurs="unbounded'"/>
</sequence>
<attribute name="highestSeverity" type="rim:referenceURI" />
</restriction>
</complexContent>
</complexType>
</element>

2.1.5.2 Parameters:

= highestSeverity: This parameter specifies the ErrorType for the highest severity
RegistryError in the RegistryErrorList. Values for highestSeverity are defined by
ErrorType in .

= RegistryError: A RegistryErrorList has one or more RegistryErrors. A RegistryError
specifies an error or warning message that is encountered while the registry processes a
request. RegistryError is defined in 2.1.6.

2.1.6 RegistryError

A RegistryError specifies an error or warning message that is encountered while the registry processes a
request.

2.1.6.1 Syntax:

<element name="RegistryError'">
<complexType>
<simpleContent>
<extension base='"string'">
<attribute name='"codeContext" type="string" use="required"/>
<attribute name="errorCode" type='"string" use="required"/>
<attribute default="urn:oasis:names:tc:ebxml-
regrep:ErrorSeverityType:Error" name="severity" type='"rim:referenceURI"
/>

<attribute name="location" type='"string" use="optional"/>
</extension>
</simpleContent>
</complexType>
</element>

2.1.6.2 Parameters:

= codeContext: This attribute specifies a string that indicates contextual text that provides
additional detail to the errorCode. For example, if the errorCode is
InvalidRequestException the codeContext MAY provide the reason why the request was
invalid.

= errorCode: This attribute specifies a string that indicates the error that was encountered.
Implementations MUST set this attribute to the Exception or Error as defined by this
specification (e.g. InvalidRequestException).

= severity: This attribute indicates the severity of error that was encountered. The value of
the severity attribute MUST be a reference to a ClassificationNode within the canonical

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 22 of 130

710
711
712
713

714
715

716
717
718

719
720
721
722

723
724
725

ErrorSeverityType ClassificationScheme as described in [ebRIM]. A Registry MUST
support the error severity types as defined by the canonical ErrorSeverityType
ClassificationScheme. The canonical ErrorSeverityType ClassificationScheme may be
extended by adding additional ClassificationNodes to it.

The following canonical values are defined for the ErrorSeverityType
ClassificationScheme:

» Error— An Error is a fatal error encountered by the registry while processing a
request. A registry MUST return a status of Failure in the RegistryResponse for a
request that encountered Errors during its processing.

» Warning — A Warning is a non-fatal error encountered by the registry while
processing a request. A registry MUST return a status of Success in the
RegistryResponse for a request that only encountered Warnings during its
processing and encountered no Errors.

= Jocation: This attribute specifies a string that indicated where in the code the error
occured. Implementations SHOULD show the stack trace and/or, code module and line
number information where the error was encountered in code.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 23 of 130

726

727
728
729

730
731
732

733

734

735
736

737
738
739
740
741
742

743

744

745
746
747
748
749
750

751

752
753
754
755
756
757
758
759

760

761
762
763

764

765
766
767
768
769
770
771
772

773

774

3 SOAP Binding

This chapter defines the SOAP protocol binding for the ebXML Registry service interfaces. The SOAP
binding enables access to the registry over the SOAP 1.1 with Attachments [SwA] protocol. The complete
SOAP Binding is described by the following WSDL description files:

» ebXML Registry Service Interfaces: Abstract Definition [RR-INT-WSDL]
« ebXML Registry Service Interfaces: SOAP Binding [RR-SOAPB-WSDL]
+ ebXML Registry Service Interfaces: SOAP Service [RR-SOAPS-WSDL]

3.1 ebXML Registry Service Interfaces: Abstract Definition

In [RR-INT-WSDL], each registry Service Interface is mapped to an abstract WSDL portType as follows:
« A portType is defined for each Service Interface:

<portType name='"QueryManagerPortType'>

</portType>
<portType name="LifeCycleManagerPortType'">

</portType>

» Within each portType an operation is defined for each protcol supported by the service interafce:

<portType name="QueryManagerPortType'>
<operation name="submitAdhocQuery">
</operation>

</portType>

+ Within each operation the the request and response message for the corresponding protocol are
defined as input and output for the operation:
<portType name='"QueryManagerPortType'">
<operation name='"submitAdhocQuery">
<input message="tns:msgAdhocQueryRequest"/>
<output message="tns:msgAdhocQueryResponse"/>
</operation>
</portType>

» For each message used in an operation a message element is defined that references the element
corresponding to the registry protocol request or response message from the XML Schema for the
registry service interface [RR-LCM-XSD], [RR-QM-XSD]:

<message name="msgAdhocQueryRequest'>
<part element='"query:AdhocQueryRequest"
name="partAdhocQueryRequest" />
</message>
<message name="msgAdhocQueryRespone'>
<part element='"query:AdhocQueryResponse"
name="partAdhocQueryResponse" />
</message>

3.2 ebXML Registry Service Interfaces SOAP Binding
In [RR-SOAPB-WSDL], a SOAP Binding is defined for the registry service interfaces as follows:

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 24 of 130

775
776

777
778

779
780

781
782

783

784
785
786

788
789
790
791
792
793
794
795
796
797
798
799

800

801

802
803

804
805

806
807
808
809
810

811

812

813
814
815
816
817
818
819
820
821
822

823

824

825
826
827

» For each portType corresponding to a registry service interface and defined in [RR-INT-WSDL] a
<binding> element is defined which has name <ServicelnterfaceName>Binding

» The <binding> element references the portType defined in [RR-INT-WSDL] via its type attribute
« The <soap:binding> extension element uses the “document” style

» An operation element is defined for each protocol defined for the service interface. The operation
name relates to the protocol request message.

» The <soap:operation> extension element has <input> and <output> elements that have <soap:body>
elements with use="literal".

<binding name="QueryManagerBinding"
type="interfaces:QueryManagerPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name='"submitAdhocQuery">
<soap:operation soapAction='"urn:oasis:names:tc:ebxml-
regrep:wsdl:registry:bindings:3.0:QueryManagerPortType#submitAdhocQuery"
/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

3.3 ebXML Registry Service Interfaces SOAP Service Template

In [RR-SOAPS-WSDL], a non-normative template is provided for a WSDL Service that uses the SOAP
Binding from the registry service interfaces as follows:

« A single service element defines the concrete ebXML Registry SOAP Service. The template uses the
name “ebXMLRegistrySOAPService”.

« The service element includes a port definitions, where each port corresponds with one of the service
interfaces defined for the registry. Each port includes an HTTP URL for accessing that port specified
by the location attribute of the <soap:address> element. The HTTP URL to the SOAP Service MUST
conform to the pattern <base URL>/soap where <base URL> MUST be the same as the value of the
home attribute of the instance of the Registry class defined by [ebRIM] that represents this registry.

» Each port definition also references a SOAP binding element described in the previous section.

<service name='"ebXMLRegistrySOAPService">
<port binding="bindings:QueryManagerBinding"
name="QueryManagerPort">
<soap:address location="http://your.server.com/soap'/>
</port>
<port binding="bindings:LifeCycleManagerBinding"
name="LifeCycleManagerPort">
<soap:address location="http://your.server.com/soap" />
</port>
</service>

3.4 Mapping of Exception to SOAP Fault

The registry protocols defined in this specification include the specification of Exceptions that a registry
MUST return when certain exceptional conditions are encountered during the processing of the protocol
request message. A registry MUST return Exceptions specified in registry protocol messages as SOAP

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 25 of 130

828
829

830
831

Faults as described in this section. In addition a registry MUST conform to [WSI-BP] when generating the
SOAP Fault. A registry MUST NOT sign a SOAP Fault message it returns.

The following table provides details on how a registry MUST map exceptions to SOAP Faults.

SOAP Fault Description Example
Element

faultcode The faultCode MUST be present and MUST | urn:oasis:names:tc:ebxml-
be the name of the Exception qualified by regrep:rs:exception: ObjectNot
the URN prefix: FoundException
urn:oasis:names:tc:ebxml-
regrep:rs:exception:

faultstring The faultstring MUST be present and Object with id
SHOULD provide some information urn:freebxml:registry:demoDB: Extrinsic
explaining the nature of the exception. Object:zeusDescription not found in

registry.

detail At least one detail element MUST be
present. The detail element SHOULD
include the stack trace and/or, code module
and line number information where the
Exception was encountered in code. If the
Exception has nested Exceptions within it
then the registry SHOULD include the
nested exceptions as nested detail elements
within the top level detail element.

faultactor At least one faultactor MUST be present. http://example.server.com.:8080/oma
The first faultactor MUST be the base URL | r/registry
of the registry.

Table 1: Mapping a Registry Exception to SOAP Fault
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved.

Page 26 of 130

832

833
834

835
836

837
838
839
840

841
842

843
844

845

846

847
848
849
850

851

852
853
854
855

856
857

858

859

4 HTTP Binding

This chapter defines the HTTP protocol binding for the ebXML Registry abstract service interfaces. The
HTTP binding enables access to the registry over the HTTP 1.1 protocol.

The HTTP interface provides multiple options for accessing RegistryObjects and Repositoryltems via the
HTTP protocol. These options are:

* RPC Encoding URL: Allows client access to objects via a URL that is based on encoding a
Remote Procedure Call (RPC) to a registry interface as an HTTP protocol request.

e Submitter Defined URL: Allows client access to objects via Submitter defined URLSs.

» File Path Based URL: Allows clients access to objects via a URL based upon a file path derived
from membership of object in a RegistryPackage membership hierarchy.

Each of the above methods has its advantages and disadvantages and each method may be better
suited for different use cases as illustrated by table below:

HTTP Acceess Method Advantages Disadvantages
RPC Encoding URL e The URL is constant and e The URL is long and not
deterministic human-friendly to
e Submitter need not remember
explicitly assign URL
Submitter Defined URL » Very human-friendly URL » Submitter must explicitly
e Submitter may assign any assign URL
URL * Requires additional
e The URL is constant and resources in the registry
deterministic
File Path Based URL e Submitter need not e The URL is NOT
explicitly assign URL constant and deterministic
* Intuitive URL that is based * Requires placing objects
upon a familiar file / folder as members in
metaphor RegistryPackages

Table 2: Comparison of HTTP Access Methods

4.1 HTTP Interface URL Pattern

The HTTP URLs used by the HTTP Binding MUST conform to the pattern <base URL>/http/<url suffix>
where <base URL> MUST be the same as the value of the home attribute of the instance of the Registry
class defined by [ebRIM] that represents this registry. The <url suffix> depends upon the HTTP Access
Method and various request specific parameters that will be described later in this chapter.

4.2 RPC Encoding URL

The RPC Encoding URL method of the HTTP interface maps the operations defined by the abstract
registry interfaces to the HTTP protocol using an RPC style. It defines how URL parameters are used to
specify the interface, method and invocation parameters needed to invoke an operation on a registry
interface such as the QueryManager interface.

The RPC Encoding URL method also defines how an HTTP response is used to carry the response
generated by the operation specified in the request.

421 Standard URL Parameters
The following table specifies the URL parameters supported by RPC Encoding URLs. A Registry MAY

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 27 of 130

860
861
862

863

864
865
866
867

868

869

870
871

872

873
874

875
876
877

878

879

880
881

882

implement additional URL parameters in addition to these parameters. Note that the URL Parameter
names MUST be processed by the registry in a case-insensitive manner while the parameter values
MUST be processed in a case-sensitive manner.

URL Parameter Required Description Example
interface YES Defines the service interface QueryManager
that is the target of the request.
method YES Defines the method getRegistryObject

(operation)within the interface
that is the target of the request.

param-<key> NO Defines named parameters to |param-id=
be passed into a method call. |urn:freebxml:registry:demoD
Note that some methods B:ExtrinsicObject:zeusDescri
require specific parameters. ption

Table 3: Standard URL Parameters

4.2.2 QueryManager Binding

A registry MUST support a RPC Encoded URL HTTP binding to QueryManager service interface. To
specify the QueryManager interface as its target, the interface parameter of the URL MUST be
“QueryManager.” In addition the following URL parameters are defined by the QueryManager HTTP
Interface.

Method Parameter Return Value HTTP Request Type
getRegistryObject id The RegistryObject that |GET
matches the specified id.
getRepositoryltem id The Repositoryltem that |GET
matches the specified id.
Note that a

Repositoryltem may be
arbitrary content (e.g. a
GIF image).

Table 4: RPC Encoded URL: Query Manager Methods

Note that in the examples that follow, name space declarations are omitted to conserve space. Also note
that some lines may be wrapped due to lack of space.

4.2.2.1 Sample getRegistryObject Request

The following example shows a getRegistryObject request.

GET /http?interface=QueryManager&method=getRegistryObject¶m-
id= urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription
HTTP/1.1

4.2.2.2 Sample getRegistryObject Response

The following example shows an ExtrinsicObject, which is a concrete sub-class of RegistryObject being
returned as a response to the getRegistryObject method invocation.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 28 of 130

883
884
885
886
887
888
889
890
891
892
893

894

895

896
897

898
899
900

901

902

903
904

905

906
907
908
909
910
911
912
913

914

915

916
917
918

919

920
921
922
923
924
925
926

927
928

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 555

<?xml version="1.0"?>

<ExtrinsicObject
id =

"urn:freebxml :registry:demoDB:ExtrinsicObject:zeusDescription"
objectType="${OBJECT TYPE}">

</ExtrinsicObject>

4.2.2.3 Sample getRepositoryltem Request

The following example shows a getRepositoryltem request.

GET /http?interface=QueryManager&method=getRepositoryIltem¶m-
id= urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription
HTTP/1.1

4.2.2.4 Sample getRepositoryltem Response

The following example assumes that the repository item was a Collaboration Protocol Profile as defined
by [ebCPP]. It could return any type of content (e.g. a GIF image).

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 555

<?xml version="1.0"7?>
<CollaborationProtocolProfile>

</CollaborationProtocolProfile>

4.2.3 LifeCycleManager HTTP Interface

The RPC Encoded URL mechanism of the HTTP Binding does not support the LifeCycleManager
interface. The reason is that the LifeCycleManager operations require HTTP POST which is already
supported by the SOAP binding.

4.3 Submitter Defined URL

A Submitter MAY specify zero or more Submitter defined URLSs for a RegistryObject or Repositoryltem.
These URLs MAY then be used by clients to access the object using the GET request of the HTTP
protocol. Submitter defined URLSs serve as an alternative to the RPC Encoding URL defined by the HTTP
binding for the QueryManager interface. The benefit of Submitter defined URLs is that objects are made
accessible via a URL that is meaningful and memorable to the user. The cost of Submitter defined URLs
is that the Submitter needs to specify the Submitter defined URL and that the Submitter defined URL
takes additional storage resources within the registry.

Consider the examples below to see how Submitter defined URLs compare with the URL defined by the
HTTP binding for the QueryManager interface.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 29 of 130

929 Following is a sample URL defined by the HTTP binding for the QueryManager interface to access a
930 RegistryObject that is an ExtrinsicObject describing a GIF image:

931

932

933 http://localhost:8080/ebxmlrr/registry/http/?interface=QueryManager&meth
934 od=getRegistryObject¶m-

935 id=urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription

936

937

938 The same RegistryObject (an ExtrinsicObject) may be accessed via the following Submitter defined URL:
939

940
941 http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus.xml
942
943

944 Following is a sample URL defined by the HTTP binding for the QueryManager interface to access a
945 repository item that is a GIF image:

946

947

948 http://localhost:8080/ebxmlrr/registry/http/?interface=QueryManageré&meth
949 od=getRepositoryltem¶m—

950 id=urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription

951

952

953 The same repository item may be accessed via the following Submitter defined URL:
954

955
956 http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus. jpg
957

958

959 4.3.1 Submitter defined URL Syntax

960 A Submitter MUST specify a Submitter defined URL as a URL suffix that is relative to the base URL of
961 the registry. The URL suffix for a Submitter defined URL MUST be unique across all Submitter defined
962 URLs defined for all objects within a registry.

963 The use of relative URLs is illustrated as follows:

964 + Base URL for Registry: http://localhost:8080/ebxml/registry

965 + Implied Prefix URL for HTTP interface: http://localhost:8080/ebxml/registry/http
966 + Submitter Defined URL suffix: /pictures/nikola/zeus

967 » Complete URL: http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus

98 4.3.2 Assigning URL to a RegistryObject

969 A Submitter MAY assign one or more Submitter defined URLSs to a RegistryObject.

970 The Submitter defined URL(s) MAY be assigned by the Submitter using a canonical slot on the
971 RegistryObject. The Slot is identified by the name:

972

973
974 urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:locator
975

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 30 of 130

http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus
http://localhost:8080/ebxml/registry/http
http://localhost:8080/ebxml/registry

976
977
978
979

980

981

982
983

984

985
986
987

988
989
990
991

992

993
994
995

996

997
998
999
1000
1001

1002
1003
1004
1005

1006

1007
1008
1009
1010
1011
1012

1013

1014
1015

1016

Each value in the collection of values for this Slot specifies a Submitter defined URL suffix for that
RegistryObject. The registry MUST return the RegistryObject when the HTTP client sends an HTTP GET
request whose URL matches any of the URLs specified within the locator Slot (if any) for that
RegistryObject.

4.3.3 Assigning URL to a Repository Item

A Submitter MAY assign one or more Submitter defined URLs to a Repository Item.

The Submitter defined URL(s) may be assigned by the Submitter using a canonical slot on the
ExtrinsicObject for the repository item. The Slot is identified by the name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator

Each value in the collection of values for this Slot specifies a Submitter defined URL suffix for the
Repositoryltem associated with the ExtrinsicObject. The registry MUST return the Repositoryltem when
the HTTP client sends an HTTP GET request whose URL matches any of the URLs specified within the
contentLocator slot (if any) for the ExtrinsicObject for that Repositoryltem.

4.4 File Path Based URL

The File Path Based URL mechanism enables HTTP clients to access RegistryObjects and
Repositoryltems using a URL that is derived from the RegistryPackage membership hierarchy for the
RegistryObject or Repositoryltem.

4.4.1 File Folder Metaphor

The RegistryPackage class as defined by [ebRIM] enables objects to be structurally organized by a
RegistryPackage membership hierarchy. As such, a RegistryPackage serves a role similar to that of a
Folder within the File and Folder metaphor that is common within filesystems in most operating systems.
Similarly, the members of a RegistryPackage serve a role similar to the files within a folder in the File and
Folder metaphor.

In this file-folder metaphor, a Submitter creates a RegistryPackage to create the functional equivalent of
a folder and creates a RegistryObject to create the functional equivalent of a file. The Submitter adds a
RegistryObjects as a member of a RegistryPackage to create the functional equivalent of adding a file to
a folder.

4.4.2 File Path of a RegistryObject

Each RegistryObject has an implicit file path. The file path of a RegistryObject is a path structure similar
to the Unix file path structure. The file path is composed of file path segments. Analogous to the Unix file
path, the last segment within the file path represents the RegistryObject, while preceding segments
represent the RegistryPackage(s) within the membership hierarchy of the RegistryObject. Each segment
consists of the name of the RegistryPackage or the RegistryObject. Because the name attribute is of
type InternationalString the path segment matches the name of an object within a specific locale.

4.4.2.1 File Path Example

Consider the example where a registry has a RegistryPackage hierarchy as illustrated below using the
name of the objects in locale “en_US”:

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 31 of 130

1017

1018
1019
1020

1021

1022
1023

1024

1025
1026
1027

1028
1029
1030
1031
1032
1033
1034

1035

1036
1037

1038
1039
1040
1041
1042
1043

1044
1045
1046
1047
1048

Ea userData
=1 Sally

Figure 3: Example Registry Package Hierarchy

Now let us assume that the RegistryPackage named “2004” has an ExtrinsicObject named “baby.gif” for a
repository item that is a photograph in the GIF format. In this example the file paths for various objects in
locale “en_US” are shown in table below:

Object Name File Path
userData /userData
Sally /userData/Sally
pictures /userData/Sally/pictures
2004 /userData/Sally/pictures/2004
baby.gif /userData/Sally/pictures/2004/baby.gif

Table 5: File Path Examples

Note that above example assumes that the RegistryPackage named userData is a root level package
(not contained within another RegistryPackage).

4.4.3 Matching URL To Objects

A registry client MAY access RegistryObjects and Repositoryltems over the HTTP GET request using
URL patterns that are based upon the File Path for the target objects. This section describes how a
registry resolves File Path URLs specified by an HTTP client.

The registry MUST process each path segment from the beginning of the path to the end and for each
path segment match the segment to the value attribute of a LocalizedString in the name attribute of a
RegistryObject. For all but the last path segment, the matched RegistryObject MUST be a
RegistryPackage. The last path segment MAY match any RegistryObject including a RegistryPackage. If
any path segment fails to be matched then the URL is not resolvable by the File Path based URL
method. When matching any segment other than the first segment the registry MUST also ensure that
the matched RegistryObject is a member of the RegistryPackage that matches the previous segment.

4.4.4 URL Matches a Single Object

When a File Path based URL matches a single object the there are two possible responses.

* Ifthe URL pattern does not end in a '/' character or the last segment does not match a
RegistryPackage then the Registry MUST send as response an XML document that is the
XML representation of the RegistryObject that matches the last segment. If the last
segment matches an ExtrinsicObject then if the URL specifies the HTTP GET parameter
with name 'getRepositoryltem' and value of 'true' then the registry MUST return as
response the repository item associated with the ExtrinsicObject.

» Ifthe URL pattern ends in a /' character and the last segment matches a RegistryPackage
then the Registry MUST send as response an HTML document that is the directory listing

(section 4.4.6) of all RegistryObjects that are members of the RegistryPackage that
matches the last segment.

regrep-rs
Copyright © OASIS Open 20852007. All Rights Reserved.

May-2-2005Feb 22, 2007
Page 32 of 130

1049

1050
1051

1052
1053

1054

1055
1056
1057

1058

1059

1060
1061

1062
1063
1064
1065
1066

1067
1068

1069

1070

1071

1072
1073

4.4.5 URL Matches Multiple Object

A registry MUST show a partial Directory Listing of a Registry Package when a File Path
based URL matches multiple objects.
A File Path based URL may match multiple objects if:

* Multiple objects with the same name exist in the same RegistryPackage

* The segment contains wildcard characters such as '%' or '?' to match the names of multiple
objects within the same RegistryPackage. Note that wildcard characters must be URL encoded
as defined by the HTTP protocol. For example the '%' character is encoded as '%25'.

4.4.6 Directory Listing

A registry MUST return a directory listing as a response under certain circumstances as describes
earlier. The directory listing MUST show a list of objects within a specific RegistryPackage.

A registry SHOULD structure a directory listing such that each item in the listing provides information
about a RegistryObject within the RegistryPackage. A registry MAY format its directory listing page in a
registry specific manner. However, it is suggested that a registry SHOULD format it as an HTML page
that minimally includes the objectType, name and description attributes for each RegistryObject in the
directory listing.

Figure 4 shows a non-normative example of a directory listing that matches all root level objects that
have a name that begins with ‘Sun’ (path /Sun%25).

:'gEiIe Edit Miew Go EBookmarks Tools Window Help

. & . - & .
Ei?l:-k Fnﬁrd R;%ad s%%’p 7 hitpsflocalhost B0G0/amariregistry/hitp/SuUn% 25 -

© 4kHome | WpBookmarks (4 ebXML 4 News fhome [4elsmim Demo pfHealth cfJava cfJaxR fsun fJ2EE =

Index of /Sun %

ObjectType Hame Description

Goto Parent Directory

Externalldentifier Sun Microsystems rmll

Organization Sun Microsystems Tnc. Makes Jawa. Prowvider of free Jawva software
RegistryPackage Suns Jawva Package Suns package of Jawa related products and sewvice
RegistryPackage Suns hardware package — Suns package for hardware related products and sewvice

Freeb XML Regisry Server varsion 3.0
lij%P T A EE R —i=| ==

|E1n

Figure 4: Example of a Directory Listing

4.4.7 Access Control In RegistryPackage Hierarchy

The ability to control who can add files and sub-folders to a folder is important in a file system. The same
is true for the File Path Based URL mechanism.

regrep-rs May-2,2005Feb 22, 2007
Copyright © OASIS Open 26052007. All Rights Reserved. Page 33 of 130

1074
1075
1076
1077

1078

1079
1080

1081
1082

1083
1084
1085
1086
1087
1088
1089

1090

1091
1092
1093

1094

1095
1096

1097
1098
1099
1100
1101

A Submitter MAY assign a custom Access Control Policy to a Registry Package to create the functional
equivalent of assigning access control to a folder in the file-folder metaphor. The custom Access Control
Policy SHOULD use the “reference” action to control who can add RegistryObjects as members of the
folder as described in [ebRIM].

4.5 URL Resolution Algorithm

Since the HTTP Binding supports multiple mechanisms to resolve an HTTP URL a registry SHOULD
implement an algorithm to determine the correct HTTP Binding mechanism to resolve a URL.

This section gives a non-normative URL resolution algorithm that a registry SHOULD use to determine
which of the various HTTP Binding mechanisms to use to resolve an HTTP URL.

Upon receiving an HTTP GET request a registry SHOULD first check if the URL is an RPC Encoded
URL. This MAY be done by checking if the interface URL parameter is specified in the URL. If specified
the registry SHOULD resolve the URL using the RPC Encoded URL method as defined by section 4.2. If
the interface URL parameter is not specified then the registry SHOULD use the Submitter specified URL
method to check if the URL is resolvable. If the URL is still unresolvable then the registry SHOULD check
if the URL is resolvable using the File Path based URL method. If the URL is still unresolvable then the
registry should return an HTTP 404 (NotFound) error as defined by the HTTP protocol.

4.6 Security Consideration

A registry MUST enforce all Access Control Policies including restriction on the READ action when
processing a request to the HTTP binding of a service interface. This implies that a Registry MUST not
resolve a URL to a RegistryObject or Repositoryltem if the client is not authorized to read that object.

4.7 Exception Handling

If a service interface method generates an Exception it MUST be reported in a RegistryErrorList,
and sent back to the client within the HTTP response for the HTTP request.

When errors occur, the HTTP status code and message SHOULD correspond to the error(s) being
reported in the RegistryErrorList. For example, if the RegistryErrorList reports that an object
wasn't found, therefore cannot be returned, an appropriate error code SHOULD be 404, with a message
of "ObjectNotFoundException". A detailed list of HTTP status codes can be found in [RFC2616]. The
mapping between registry exceptions and HTTP status codes is currently unspecified.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 34 of 130

1102

1103
1104
1105

1106

1107

1108
1109

1111

1112

1113
1114

1115

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

5 Lifecycle Management Protocols

This section defines the protocols supported by Lifecycle Management service interface of the Registry.
The Lifecycle Management protocols provide the functionality required by RegistryClients to manage the

lifecycle of RegistryObjects and Repositoryltems within the registry.

The XML schema for the Lifecycle Management protocols is described in [RR-LCM-XSD].

5.1 Submit Objects Protocol

This SubmitObjects allows a RegistryClient to submit one or more RegistryObjects and/or repository

items.

client
FegistryClient

[<lermeSubmitObjectsReqguest =

lcm
LifeCyoleManager

e

<re REegistryFEesponse > ll]

Figure 5: Submit Objects Protocol

5.1.1 SubmitObjectsRequest

1

The SubmitObjectsRequest is used by a client to submit RegistryObjects and/or repository items to the

registry.

5.1.1.1 Syntax:

<element name="SubmitObjectsRequest">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:RegistryObjectList"/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

regrep-rs
Copyright © OASIS Open 20852007. All Rights Reserved.

May-2,2005Feb 22, 2007

Page 35 of 130

1127

1128
1129
1130
1131
1132

1133

1134

1135

1136
1137

1138
1139

1140
1141

1142
1143

1144

1145
1146

1147
1148

1149
1150

1151
1152
1153

1154
1155
1156
1157
1158

1159

1160
1161
1162

1163
1164
1165
1166
1167
1168
1169

1170
1171
1172

5.1.1.2 Parameters:

= RegistryObjectList: This parameter specifies a collection of RegistryObject instances
that are being submitted to the registry. The RegistryObjects in the list may be brand new
objects being submitted to the registry or they may be current objects already existing in
the registry. In case of existing objects the registry MUST treat them in the same manner
as UpdateObjectsRequest and simply update the existing objects.

5.1.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4for details.

5.1.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

= UnsignedRepositoryltemException: Indicates that the requestor attempted to submit a
Repositoryltem that was not signed.

= QuotaExceededException: Indicates that the requestor attempted to submit more
content than the quota allowed for them by the registry.

5.1.2 Unique ID Generation
A Submitter MUST supply the id attribute for submitted objects. If the id is not specified then the registry
MUST return an InvalidRequestException.

If the id and lid match the id and lid of an existing RegistryObject within the home registry, then the
registry MUST treat it as an Update action upon the existing RegistryObject.

If the id matches the id of an existing RegistryObject within the home registry but the lid does not match

If the Submitter supplies the id and it is a valid URN then the registry MUST honor the Submitter-
supplied id value and use it as the value of the id attribute of the object in the registry. If the id is not a
valid URN then the registry MUST treat it as a temporary id and replace it, and all references to it within
the request, with a registry generated universally unique id. A registry generated universally unigue id
value MUST conform to the format of a URN that specifies a DCE 128 bit UUID as specified in [UUID]:

regrep-rs May-2,2005Feb 22, 2007
Copyright © OASIS Open 26052007. All Rights Reserved. Page 36 of 130

1173 |

1174

1175
1176
1177
1178
1179
1180
1181
1182
1183

1184
1185
1186
1187

1188

1189
1190

1191

1192
1193
1194

1195

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

1212

1213
1214

5.1.3 ID Attribute And Object References

The id attribute of an object MAY be used by other objects to reference that object. Within a
SubmitObjectsRequest, the id attribute MAY be used to refer to an object within the same
SubmitObjectsRequest as well as to refer to an object within the registry. An object in the
SubmitObjectsRequest that needs to be referred to within the request document MAY be assigned an id
by the submitter so that it can be referenced within the request. The submitter MAY give the object a
valid URN, in which case the id is permanently assigned to the object within the registry. Alternatively,
the submitter MAY assign an arbitrary id that is not a valid URN as long as the id is a unique anyURI
value within the request document. In this case the id serves as a linkage mechanism within the request
document but MUST be replaced with a registry generated id upon submission.

When an object in a SubmitObjectsRequest needs to reference an object that is already in the registry,
the request MAY contain an ObjectRef whose id attribute is the id of the object in the registry. This id is
by definition a valid URN. An ObjectRef MAY be viewed as a proxy within the request for an object that is
in the registry.

5.1.4 AuditTrail
The registry MUST create a single AuditableEvent object with eventType Created for all the
RegistryObjects created by a SubmitObjectsRequest.

5.1.5 Sample SubmitObjectsRequest

The following example shows a simple SubmitObjectsRequest that submits a single Organization object
to the registry. It does not show the complete SOAP Message with the message header and additional
payloads in the message for the repository items.

<lcm:SubmitObjectsRequest>
<rim:RegistryObjectList>
<rim:0Organization 1id="${LOGICAL ID}"
id="${ID}"
primaryContact="${CONTACT USER ID}">
<rim:Name>
<rim:LocalizedString value="Sun Microsystems Inc." xml:lang="en-
us"/>
</rim:Name>
<rim:Address city="Burlington" country="USA" postalCode="01867"
stateOrProvince="MA" street="Network Dr." streetNumber="1"/>
<rim:TelephoneNumber areaCode="781" countryCode="1" number="123-
456" phoneType="office"/>
</rim:0rganization>
</rim:RegistryObjectList>
</SubmitObjectsRequest>

5.2 The Update Objects Protocol

The UpdateObjectsRequest protocol allows a Registry Client to update one or more existing
RegistryObjects and/or repository items in the registry.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 37 of 130

1216

1217

1218
1219

1220

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1232

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244

client lcm
FegistryClient LifeCwcleManager

5.2.1

| <lcm:UpdateQhjectsReguest = |

I 1

<rs EegisthFEesponse s I_\I

Figure 6: Update Objects Protocol

UpdateObjectsRequest

The UpdateObjectsRequest is used by a client to update RegistryObjects and/or repository items that
already exist within the registry.

5.2.1.1 Syntax:
<element name="UpdateObjectsRequest'">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:RegistryObjectList"/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>
5.2.1.2 Parameters:
= RegistryObjectList: This parameter specifies a collection of RegistryObject instances
that are being updated within the registry. All immediate RegistryObject children of the
RegistryObjectList MUST be current RegistryObjects already in the registry.
RegistryObjects MUST include all required attributes, even those the user does not
intend to change. A missing attribute MUST be interpreted as a request to set that
attribute to NULL or in case it has a default value, the default value will be assumed. If
this collection contains an immediate child RegistryObject that does not already exists in
the registry, then the registry MUST return an InvalidRequestException. If the user
wishes to submit a mix of new and updated objects then he or she SHOULD use a
SubmitObjectsRequest.
If an ExtrinsicObject is being updated and no Repositoryltem is provided in the
UpdateObjectsRequest then the registry MUST maintain any previously existing
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 38 of 130

1245
1246
1247
1248

1249

1250

1251

1252

1253
1254

1255
1256

1257
1258

1259

1260

1261

1262
1263

1264

1265
1266

1268

1269

Repositoryltem associated with the original ExtrinsicObject with the updated
ExtrinsicObject. If the client wishes to remove the Repositoryltem from an existing
ExtrinsicObject they MUST use a RemoveObjectsRequest with
deletionScope=DeleteRepositoryltemOnly.

5.2.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.2.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

= UnsignedRepositoryltemException: Indicates that the requestor attempted to submit a
Repositoryltem that was not signed.

= QuotaExceededException: Indicates that the requestor attempted to submit more
content than the quota allowed for them by the registry.

5.2.2 AuditTrail

The registry MUST create a single AuditableEvent object with eventType Updated for all RegistryObjects
updated via an UpdateObjectsRequest.

5.3 The Approve Objects Protocol

The Approve Obijects protocol allows a client to approve one or more previously submitted
RegistryObject objects using the LifeCycleManager service interface.

client lcm
FegistryClient LifeCyoleManager

[<lcm:ApprovedbjectsEeguast » |

e 1

<reEegistryEesponse > ll]

Figure 7: Approve Objects Protocol

5.3.1 ApproveObjectsRequest

The ApproveObjectsRequest is used by a client to approve one or more existing RegistryObject

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 39 of 130

1270

1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

1285

1286
1287
1288

1289
1290
1291
1292

1293

1294

1295
1296
1297

1298
1299

1300

1301

1302
1303

1304

1305
1306
1307
1308

1309

instances in the registry.

5.3.1.1 Syntax:

<element name="ApproveObjectsRequest">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
<element ref="rim:0bjectRefList" minOccurs="0" maxOccurs="1"

/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

5.3.1.2 Parameters:

= AdhocQuery: This parameter specifies a query. A registry MUST approve all objects
that match the specified query in addition to any other objects identified by other
parameters.

= ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST approve all objects that are
referenced by this parameter in addition to any other objects identified by other
parameters.

5.3.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.3.14 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= ObjectNotFoundException: Indicates that the requestor requested an object within the
request that was not found.

5.3.2 Audit Trail

The registry MUST create a single AuditableEvent object with eventType Approved for all RegistryObject
instance approved via an ApproveObjectsRequest.

5.4 The Deprecate Objects Protocol

The Deprecate Object protocol allows a client to deprecate one or more previously submitted
RegistryObject instances using the LifeCycleManager service interface. Once a RegistryObject is
deprecated, no new references (e.g. new Associations, Classifications and ExternalLinks) to that object
can be submitted. However, existing references to a deprecated object continue to function normally.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 40 of 130

1310

1311
1312

1313

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326

1327

1328
1329
1330

1331
1332
1333
1334

1335

1336

client lcm
FegistryClient LifeCwcleManager

| <lcm:Deprecate0bjectsREequest |

O 1

<rs EegisthFEesponse s I_\I

Figure 8: Deprecate Objects Protocol

5.4.1 DeprecateObjectsRequest

\ The DeprecateObjectsRequest is used by a client to deprecate one or more existing RegistryObject
instances in the registry.

5.4.1.1 Syntax:

<element name='"DeprecateObjectsRequest">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
<element ref="rim:0bjectRefList" minOccurs="0" maxOccurs="1"

/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

5.4.1.2 Parameters:

= AdhocQuery: This parameter specifies a query. A registry MUST deprecate all objects
that match the specified query in addition to any other objects identified by other
parameters.

= ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST deprecate all objects that are
referenced by this parameter in addition to any other objects identified by other
parameters.

5.4.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 41 of 130

1337

1338
1339

1340
1341

1342

1343
1344

1345

1346
1347
1348
1349

1351

1352
1353
1354

1355

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

5.41.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

5.4.2 Audit Trail

The registry MUST create a single AuditableEvent object with eventType Deprecated for all
RegistryObject deprecated via a DeprecateObjectsRequest.

5.5 The Undeprecate Objects Protocol

The Undeprecate Objects protocol of the LifeCycleManager service interface allows a client to undo the
deprecation of one or more previously deprecated RegistryObject instances. When a RegistryObject is
undeprecated, it goes back to the Submitted status and new references (e.g. new Associations,
Classifications and ExternalLinks) to that object can now again be submitted.

client lcm
FegistryClient LifeCwcleManager

| <lcm:UndeprecateCbjectsRequest = |

O 1

<rs EegisthFEesponse s l_\l

Figure 9: Undeprecate Objects Protocol

5.5.1 UndeprecateObjectsRequest

The UndeprecateObjectsRequest is used by a client to undeprecate one or more existing RegistryObject
instances in the registry. The registry MUST silently ignore any attempts to undeprecate a RegistryObject
that is not deprecated.

5.5.1.1 Syntax:

<element name='"UndeprecateObjectsRequest">
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
<element ref="rim:0bjectRefList" minOccurs="0" maxOccurs="1"

/>
</sequence>
</extension>

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 42 of 130

1366
1367
1368
1369

1370

1371
1372
1373

1374
1375
1376
1377
1378

1379

1380

1381
1382

1383

1384

1385

1386
1387

1388

1389
1390

</complexContent>
</complexType>
</element>
</element>

5.5.1.2 Parameters:

= AdhocQuery: This parameter specifies a query. A registry MUST undeprecate all
objects that match the specified query in addition to any other objects identified by other
parameters.

= ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST undeprecate all objects that
are referenced by this parameter in addition to any other objects identified by other
parameters.
5.5.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.5.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

5.5.2 AuditTrail

The Registry Service MUST create a single AuditableEvent object with eventType Undeprecated for all
RegistryObjects undeprecated via an UndeprecateObjectsRequest.

5.6 The Remove Objects Protocol

The Remove Obijects protocol allows a client to remove one or more RegistryObject instances and/or
repository items using the LifeCycleManager service interface.

client lcm
FegistryClient LifeCwcleManager

[<lcrm:RemowveOhjectsReguest > |

s 1

<rsEegistryFEesponse - Il]

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 43 of 130

1392

1393

1394
1395

1396

1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412

1413

1414
1415
1416
1417
1418
1419
1420

1421
1422

1423
1424
1425
1426
1427

1428
1429
1430
1431
1432

1433
1434

1435
1436
1437
1438

Figure 10: Remove Objects Protocol

For details on the schema for the business documents shown in this process refer to .

5.6.1

RemoveObjectsRequest

The RemoveObjectsRequest is used by a client to remove one or more existing RegistryObject and/or
repository items from the registry.

5.6.1.1

5.6.1.2

regrep-rs

Syntax:
<element name="RemoveObjectsRequest'>
<complexType>
<complexContent>
<extension base='"rs:RegistryRequestType">
<sequence>
<element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
<element ref="rim:0bjectRefList" minOccurs="0" maxOccurs="1"
/>

</sequence>
<attribute name='"deletionScope"
default="urn:oasis:names:tc:ebxml-regrep:DeletionScopeType:DeleteAll"
type="rim:referenceURI" use="optional'"/>
</extension>
</complexContent>
</complexType>
</element>

Parameters:

= deletionScope: This parameter indicates the scope of impact of the
RemoveObjectsRequest. The value of the deletionScope attribute MUST be a reference
to a ClassificationNode within the canonical DeletionScopeType ClassificationScheme as
described in appendix A of [ebRIM]. A Registry MUST support the deletionScope types
as defined by the canonical DeletionScopeType ClassificationScheme. The canonical
DeletionScopeType ClassificationScheme may easily be extended by adding additional
ClassificationNodes to it.

The following canonical ClassificationNodes are defined for the DeletionScopeType
ClassificationScheme:

DeleteRepositoryltemOnly: This deletionScope specifies that the registry
MUST delete the Repositoryltem for the specified ExtrinsicObjects but MUST
NOT delete the specified ExtrinsicObjects. This is useful in keeping references to
the ExtrinsicObjects valid. A registry MUST set the status of the ExtrinsicObject
instance to Withdrawn in this case.

DeleteAll: This deletionScope specifies that the request MUST delete both the
RegistryObject and the Repositoryltem (if any) for the specified objects. A
RegistryObject can be removed using a RemoveObjectsRequest with
deletionScope DeleteAll only if all references (e.g. Associations, Classifications,
ExternalLinks) to that RegistryObject have been removed.

= AdhocQuery: This parameter specifies a query. A registry MUST remove all objects that
match the specified query in addition to any other objects identified by other parameters.

= ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST remove all objects that are
referenced by this parameter in addition to any other objects identified by other
parameters.

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 44 of 130

1439

1440

1441

1442
1443

1444
1445

1446
1447
1448
1449

1450

1451
1452
1453

1454

1455
1456

1457
1458
1459

1460
1461

1462
1463
1464
1465
1466
1467

1468
1469

1470

1471
1472

1473

1474
1475
1476

1477

1478
1479

5.6.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.6.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= UnresolvedReferenceException: Indicates that the requestor referenced an object
within the request that was not resolved during the processing of the request.

= ReferencesExistException: Indicates that the requestor attempted to remove a
RegistryObject while references to it still exist. Note that it is valid to remove a
RegistryObject and all RegistryObjects that refer to it within the same request. In such
cases the ReferencesExistException MUST not be thrown.

5.7 Registry Managed Version Control

This section describes the version control features of the ebXML Registry. This feature is based upon
[DeltaV]. The ebXML Registry provides a simplified facade that provides a small subset of [DeltaV]
functionality.

5.7.1 Version Controlled Resources

All repository items in an ebXML Registry are implicitly version-controlled resources as defined by
section 2.2.1 of [DeltaV]. No explicit action is required to make them a version-controlled resource.

In addition RegistryObject instances are also implicitly version-controlled resources. However, a registry
may limit version-controlled resources to a sub-set of RegistryObject classes based upon registry
specific policies.

Minimally, a registry implementing the version control feature SHOULD make the following types as
version-controlled resources:

= ClassificationNode

= (lassificationScheme
= Organization

= ExtrinsicObject

= RegistryPackage

= Service

The above list is chosen to exclude all composed types and include most of remaining RegistryObject
types for which there are known use cases requiring versioning.

5.7.2 Versioning and Object Identification

Each version of a RegistryObject is a unique object and as such has its own unique value for its id
attribute as defined by [ebRIM].

5.7.3 Logical ID

All versions of a RegistryObject are logically the same object and are referred to as the logical
RegistryObject. A logical RegistryObject is a tree structure where nodes are specific versions of the
RegistryObject.

A specific version of a logical RegistryObject is referred to as a RegistryObject instance.

A RegistryObject instance MUST have a Logical ID (LID) to identify its membership in a particular logical
RegistryObject. Note that this is in contrast with the id attribute that MUST be unique for each version

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 45 of 130

1480
1481

1482
1483
1484
1485
1486

1487

1488
1489
1490

1491

1492
1493
1494
1495

1496

1497
1498

1499
1500
1501

1502
1503

1504
1505
1506

1507

1508
1509

1510
1511

1512
1513
1514
1515
1516

1517

of the same logical RegistryObject. A client may refer to the logical RegistryObject in a version
independent manner using its LID.

A RegistryObject is assigned a LID using the 1id attribute of the RegistryObject class. If the submitter
assigns the lid attribute, she must guarantee that it is a globally unique URN. A registry MUST honor a
valid submitter-supplied LID. If the submitter does not specify a LID then the registry MUST assign a LID
and the value of the LID attribute MUST be identical to the value of the id attribute of the first (originally
created) version of the logical RegistryObject.

5.7.4 Version Identification

An ebXML Registry supports independent versioning of both RegistryObject metadata as well as
repository item content. It is therefore necessary to keep distinct version information for a RegistryObject
instance and its repository item if it happens to be an ExtrinsicObject instance.

5.7.4.1 Version Identification for a RegistryObject

A RegistryObject MUST have a versionInfo attribute whose type is the Versioninfo class defined by
ebRIM. The versioninfo attributes identifies the version information for that RegistryObject instance. A
registry MUST not allow two versions of the same RegistryObject to have the same
versionInfo.versionName attribute value.

5.7.4.2 Version Identification for a Repositoryltem

When a RegistryObiject is an ExtrinsicObject with an associated repository item, the version identification
for the repository item is distinct from the version identification for the ExtrinsicObject.

An ExtrinsicObject that has an associated repository item MUST have a contentVersionInfo attribute
whose type is the VersionInfo class defined by ebRIM. The contentVersioninfo attributes identifies the
version information for that repository item instance.

An ExtrinsicObject that does not have an associated repository item MUST NOT have a
contentVersioninfo attribute defined.

A registry MUST allow two versions of the same ExtrinsicObject to have the same
contentVersioninfo.versionName attribute value because multiple ExtrinsicObject versions MAY share the
same Repositoryltem version.

5.7.5 Versioning of ExtrinsicObject and Repository Items

An ExtrinsicObject and its associated repository item may be updated independently and therefore
versioned independently.

A registry MUST maintain separate version trees for an ExtrinsicObject and its associated repository
item as described earlier.

Table 6 shows all the combinations for versioning an ExtrinsicObject and its repository item. After
eliminating invalid or impossible combinations as well as those combinations where no action is needed,
the only combinations that require versioning are showed in gray background rows. Of these there are
only two unique cases (referred to as case A and B). Note that it is not possible to version a repository
item without versioning its ExtrinsicObject.

ExtrinsicObject Repositoryltem ExtrinsicObject Repositoryltem Comment
Exists Exists Updated Updated
No No Do nothing
No Yes Not possible
regrep-rs May2-2605Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 46 of 130

1518

1519

1520
1521
1522

1523

1524
1525
1526
1527
1528

1529

1530

1531
1532
1533
1534
1535

1536
1537
1538
1539
1540

Yes No
No No Do nothing
No Yes Not possible
Yes No Version
ExtrinsicObject
(case A)
Yes Yes Not possible
Yes Yes
No No Do nothing
No Yes Not possible
Yes No Version
ExtrinsicObject
(case A)
Yes Yes Version
ExtrinsicObject
and
Repositoryltem
(case B)

Table 6: Versioning of ExtrinsicObject and Repository Item

5.7.5.1 ExtrinsicObject and Shared Repositoryltem

Because an ExtrinsicObject and its repository item are versioned independently (case B) it is possible for
multiple versions of the ExtrinsicObject to share the same version of the repository item. In such cases
the contentVersioninfo attributes MUST be the same across multiple version of the ExtrinsicObject.

5.7.6 Versioning and Composed Objects

When a registry creates a new version of a RegistryObject it MUST create copies of all composed'
objects as new objects that are composed within the new version. This is because each version is a
unique object and composed objects by definition are not shareable across multiple objects. Specifically,
each new copy of a composed object MUST have a new id since it is a different object than the original
composed object in the previous version.

A registry MUST not version composed objects.

5.7.7 Versioning and References

An object reference from a RegistryObject references a specific version of the referenced RegistryObject.
When a registry creates a new version of a referenced RegistryObject it MUST NOT move refrences
from other objects from the previous version to the new version of the referenced object. Clients that wish
to always reference the latest versions of an object MAY use the Event Notification feature to update
references when new versions are created and thus always reference the latest version.

A special case is when a SubmitObjectsRequest or an UpdateObjectRequest contains an object that is
being versioned by the registry and the request contains other objects that reference the object being
versioned. In such case, the registry MUST update all references within the submitted objects to the
object being versioned such that those objects now reference the new version of the object being created
by the request.

1 Composed object types are identified in figure 1 in [ebRIM] figure 1 as classes with composition or
“solid diamond” relationship with RegistryObject type.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 47 of 130

1541

1542
1543
1544

1545
1546

1547
1548

1549
1550

1551

1552
1553
1554
1555

1556
1557
1558

1559
1560
1561
1562

1563
1564

1565

1566
1567
1568
1569

1570

1571
1572

1573

1574
1575
1576

1577
1578
1579
1580

1581

1582
1583

5.7.8 Versioning and Audit Trail

The canonical EventType ClassificationScheme used by the Audit Trail feature defines an Updated event
type and then defines a Versioned event type as a child of the Updated event type ClassificationNode.
The semantic are that a Versioned event type is specialization of the Updated event type.

A registry MUST use the Updated event type in the AuditableEvent when it updates a RegistryObject
without creating a new version.

A registry MUST use the Versioned event type in the AuditableEvent when it creates a new version of a
logical RegistryObiject.

A registry MUST NOT use the Created event type in the AuditableEvent when it creates a new version of
a logical RegistryObiject.

5.7.9 Inter-versions Association

Within any single branch within the version tree for an object any given version implicitly supersedes the
version immediately prior to it. Sometimes it may be necessary to explicitly indicate which version
supersedes another version for the same object. This is especially true when two versions are siblings
branch roots of the version tree for the same object.

A client MAY specify an Association between any two versions of an object within the objects version tree
using the canonical associationType “Supersedes” to indicate that the sourceObject supersedes the
target targetObject within the Association.

A client MUST NOT specify an Association between two version of an object using the canonical
associationType “Supersedes” if the sourceObject is an earlier version within the same branch in the
version tree than the targetObject as this violates the implicit “Supersedes” association between the two
version.

Note that this section is functionally equivalent to the predecessor-set successor-set elements of the
Version Properties as defined by [DeltaV].

5.7.10 Client Initiated Version Removal

An ebXML Registry MAY allow clients to remove specified versions of a RegistryObject. A client MAY
delete older version of an object using the RemoveObjectsRequest by specifying the version by its
unique id. Removing an ExtrinsicObject instance MUST remove its repository item if no other version
references that repository item.

5.7.11 Registry Initiated Version Removal

The registry MAY prune older versions based upon registry specific administrative policies in order to
manage storage resources.

5.7.12 Locking and Concurrent Modifications

This specification does not define a workspace feature with explicit checkin and checkout capabilities as
defined by [DeltaV]. An ebXML Registry MAY support such features in an implementation specific
mannet.

This specification does not prescribe a locking or branching model. An implementation may choose to
support an optimistic (non-locking) model. Alternatively or in addition, an implementation may support a
locking model that supports explicit checkout and checkin capability. A future technical note or
specification may address some of these capabilities.

5.7.13 Version Creation

The registry manages creation of new version of a RegistryObject or a repository item automatically. A
registry that supports versioning MUST implicitly create a new version for a repository item if the

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 48 of 130

1584
1585

1586
1587
1588

1589

1590
1591
1592
1593

1594
1595

1597

1598
1599
1600
1601

1602
1603

1605

1606
1607
1608
1609
1610

repository item is updated via a SubmitObjectsRequest or UpdateObjectsRequest. In such cases it
MUST also create a new version of its ExtrinsicObject.

If the client only wishes to update and version the ExtrisnicObject it may do so using an
UpdateObjectsRequest without providing a repository item. In such cases the registry MUST assign the
repository item version associated with the previous version of the ExtrinsicObject.

5.7.14 Versioning Override

A client MAY specify a dontVersion hint on a per RegistryObject basis when doing a submit or update of
a RegistryObject. A registry SHOULD not create a new version for that RegistryObject when the
dontVersion hint has value of “true”. The dontVersion hint MAY be specified as a canonical Slot with the
following name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:dontVersion

The value of the dontVersion Slot, if specified, MUST be either “true” or “false”.

A client MAY specify a dontVersionContent hint on a per ExtrinsicObject basis when doing a submit or
update of an ExtrinsicObject with a repository item. A registry SHOULD not create a new version for that
repository item when the dontVersionContent hint has value of “true”. The dontVersionContent hint MAY
be specified as a canonical Slot with the following name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:dontVersionContent

The value of the dontVersionContent Slot, if specified, MUST be either “true” or “false”.

A client MAY also specify the dontVersion and dontVersionContent Slots on the RegistryRequest using
the <rs:RequstSlotList> element. A registry MUST treat these Slots when specified on the request as
equivalent to being specified on every RegistryObject within the request. The value of these Slots as
specified on the request take precedence over value of these Slots as specified on RegistryObjects
within the request.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 49 of 130

e 6 Query Management Protocols

1612 This section defines the protocols supported by QueryManager service interface of the Registry. The
1613 Query Management protocols provide the functionality required by RegistryClients to query the registry
1614 and discover RegistryObjects and Repositoryltems.

1615 The XML schema for the Query Management protocols is described in [RR-QUERY-XSD].

1616 6.1 Ad Hoc Query Protocol

1617 The Ad hoc Query protocol of the QueryManager service interface allows a client to query the registry
1618 and retrieve RegistryObjects and/or Repositoryltems that match the specified query.

1619 A client submits an ad hoc query to the QueryManager by sending an AdhocQueryRequest. The
1620 AdhocQueryRequest contains a sub-element that specifies a query in one of the query syntaxes
1621 supported by the registry.

1622 The QueryManager sends an AdhocQueryResponse back to the client as response. The
1623 AdhocQueryResponse returns a collection of objects that match the query. The collection is potentially
1624 heterogeneous depending upon the query expression and request options.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 50 of 130

client query
FegistryClient Querdlanager
| <guery AdhocQuerfequest > |

O 1

<guensadhocluerysesponse » I_\I

Figure 11: Ad Hoc Query Protocol

1625 6.1.1 AdhocQueryRequest

1626 The AdhocQueryRequest is used to submit a query to the registry.

1627 6.1.1.1 Syntax:

1628 <element name='"AdhocQueryRequest'">

1629 <complexType>

1630 <complexContent>

1631 <extension base='"rs:RegistryRequestType">

1632 <sequence>

1633 <element maxOccurs="1" minOccurs="1"

1634 ref="tns:ResponseOption"/>

1635 <element ref="rim:AdhocQuery" />

1636 </sequence>

1637 <attribute default="false" name="federated"

1638 type="boolean" use="optional"/>

1639 <attribute name="federation" type="anyURI'" use="optional"/>
1640 <attribute default="0" name="startIndex" type="integer'/>
1641 <attribute default="-1" name="maxResults" type="integer'"/>
1642 </extension>

1643 </complexContent>

1644 </complexType>

1645 </element>

1646 6.1.1.2 Parameters:

1647 = AdhocQuery: This parameter specifies the actual query. It is decsribed in detail in

1648 section 6.1.3.

1649 = federated: This optional parameter specifies that the registry must process this query as

1650 a federated query. By default its value is false. This value MUST be false when a registry

1651 routes a federated query to another registry in order to avoid an infinite loop in federated

1652 guery processing.

1653 = federation: This optional parameter specifies the id of the target Federation for a

1654 federated query in case the registry is a member of multiple federations. In the absence

1655 of this parameter a registry must route the federated query to all federations of which it is
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 51 of 130

1656
1657

1658
1659
1660
1661
1662

1663
1664
1665

1666
1667
1668
1669

1670

1671

1672

1673
1674

1675
1676

1677

1678

1679

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693

1694

1695
1696

1697
1698
1699

1700
1701

a member. This value MUST be unspecified when a registry routes a federated query to
another registry in order to avoid an infinite loop in federated query processing.

= maxResults: This optional parameter specifies a limit on the maximum number of
results the client wishes the query to return. If unspecified, the registry SHOULD return
either all the results, or in case the result set size exceeds a registry specific limit, the
registry SHOULD return a sub-set of results that are within the bounds of the registry
specific limit. See section 6.2.1 for an illustrative example.

= ResponseOption: This required parameter allows the client to control the format and
content of the AdhocQueryResponse generated by the registry in response to this
request. See section 6.1.4 for details.

= startindex: This optional integer value is used to indicate which result must be returned
as the first result when iterating over a large result set. The default value is 0, which
returns the result set starting with index 0 (first result). See section 6.2.1 for an illustrative
example.

6.1.1.3 Returns:

This request returns an AdhocQueryResponse. See section 6.1.2 for details.

6.1.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

= InvalidQueryException: signifies that the query syntax or semantics was invalid. Client
must fix the query syntax or semantic error and re-submit the query.

6.1.2 AdhocQueryResponse

The AdhocQueryResponse is sent by the registry as a response to an AdhocQueryRequest.

6.1.2.1 Syntax:

<element name="AdhocQueryResponse'">
<complexType>
<complexContent>
<extension base='"rs:RegistryResponseType'">
<sequence>
<element ref="rim:RegistryObjectList" />
</sequence>
<attribute default="0" name="startIndex" type="integer'/>
<attribute name="totalResultCount" type="integer"
use="optional"/>
</extension>
</complexContent>
</complexType>
</element>

6.1.2.2 Parameters:

= RegistryObjectList: This is the element that contains the RegistryObject instances that
matched the specified query.

= startindex: This optional integer value is used to indicate the index for the first result in
the result set returned by the query, within the complete result set matching the query. By
default, this value is 0. See section 6.2.1 for an illustrative example.

= totalResultCount: This optional parameter specifies the size of the complete result set
matching the query within the registry. When this value is unspecified, the client should

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 52 of 130

1702
1703

1704

1705
1706

1707

1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719

1720

1721

1722
1723
1724

1725

1726
1727

1728

1729

1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744

1745

1746

1747
1748
1749

1750

assume it is the size of the result set contained within the result. See section 6.2.1 for an
illustrative example.

6.1.3 AdhocQuery

A client specifies a <rim:AdhocQuery> element within an AdhocQueryRequest to specify the actual
query being submitted.

6.1.3.1 Syntax:

<complexType abstract="true" name="AdhocQueryType'>
<complexContent>
<extension base="tns:RegistryObjectType'">
<sequence>
<element ref="tns:QueryExpression"
minOccurs="0" maxOccurs="1" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name='"AdhocQuery" type="tns:AdhocQueryType"
substitutionGroup="tns:RegistryObject" />

6.1.3.2 Parameters:

= queryExpression: This element contains the actual query expression. The schema for
queryExpression is extensible and can support any query syntax supported by the
registry.

6.1.4 ReponseOption

A client specifies a ResponseOption structure within an AdhocQueryRequest to indicate the format of the
results within the corresponding AdhocQueryResponse.

6.1.4.1 Syntax:

<complexType name='"ResponseOptionType'>
<attribute default="RegistryObject" name="returnType">
<simpleType>
<restriction base="NCName">
<enumeration value="ObjectRef"/>
<enumeration value="RegistryObject'"/>
<enumeration value="LeafClass'"/>
<enumeration value="LeafClassWithRepositoryItem"/>
</restriction>
</simpleType>
</attribute>
<attribute default="false" name="returnComposedObjects"
type="boolean"/>
</complexType>
<element name='"ResponseOption" type="tns:ResponseOptionType'/>

6.1.4.2 Parameters:

= returnComposedObjects: This optional parameter specifies whether the
RegistryObjects returned should include composed objects as defined by Figure 1 in
[ebRIM]. The default is to return all composed objects.

= returnType: This optional enumeration parameter specifies the type of RegistryObject to

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 53 of 130

1751

1752
1753
1754

1755
1756

1757
1758
1759

1760
1761
1762
1763

1764
1765

1766
1767
1768

1769

1770

1771
1772
1773
1774
1775
1776

1777
1778
1779
1780
1781

1782
1783

1784

1785
1786
1787
1788

1789

return within the response. Values for returnType are as follows:

» ObjectRef - This option specifies that the AdhocQueryResponse MUST
contain a collection of <rim:ObjectRef> elements. The purpose of this option
is to return references to registry objects rather than the actual objects.

» RegistryObject - This option specifies that the AdhocQueryResponse MUST
contain a collection of <rim:RegistryObject> elements.

« LeafClass - This option specifies that the AdhocQueryResponse MUST
contain a collection of elements that correspond to leaf classes as defined in
[RR-RIM-XSD].

» LeafClassWithRepositoryltem - This option is same as LeafClass option
with the additional requirement that the response include the
Repositoryltems, if any, for every <rim:ExtrinsicObject> element in the
response.

If “returnType” specified does not match a result returned by the query, then the registry
must use the closest matching semantically valid returnType that matches the result.

To illustrate, consider a case where OrganizationQuery is asked to return
LeafClassWithRepositoryltem. As this is not possible, QueryManager will assume
LeafClass option instead.

6.2 Iterative Query Support

The AdhocQueryRequest and AdhocQueryResponse support the ability to iterate over a large result set
matching a logical query by allowing multiple AdhocQueryRequest requests to be submitted such that
each query requests a different subset of results within the result set. This feature enables the registry to
handle queries that match a very large result set, in a scalable manner. The iterative query feature is
accessed via the startindex and maxResults parameters of the AdhocQueryRequest and the startindex
and totalResultCount parameters of the AdhocQueryResponse as described earlier.

The iterative queries feature is not a true Cursor capability as found in databases. The registry is not
required to maintain transactional consistency or state between iterations of a query. Thus it is possible
for new objects to be added or existing objects to be removed from the complete result set in between
iterations. As a consequence it is possible to have a result set element be skipped or duplicated between
iterations.

Note that while it is not required, an implementations MAY implement a transactionally consistent
iterative query feature.

6.2.1 Query lteration Example

Consider the case where there are 1007 Organizations in a registry. The user wishes to submit a query
that matches all 1007 Organizations. The user wishes to do the query iteratively such that Organizations
are retrieved in chunks of 100. The following table illustrates the parameters of the AdhocQueryRequest
and those of the AdhocQueryResponses for each iterative query in this example.

| AdhocQueryRequest Parameters | AdhocQueryResponse Parameters |

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 54 of 130

1790

1791

1792
1793
1794
1795
1796

1797
1798

1799
1800

1801

1802

1803
1804

1805

1806
1807
1808
1809

1810
1811
1812

1813

1814
1815

1816
1817
1818
1819
1820
1821
1822
1823
1824

startindex maxResults startindex totalResultCount # of Results

0 100 0 1007 100
100 100 100 1007 100
200 100 200 1007 100
300 100 300 1007 100
400 100 400 1007 100
500 100 500 1007 100
600 100 600 1007 100
700 100 700 1007 100
800 100 800 1007 100
900 100 900 1007 100
1000 100 1000 1007 7

6.3 Stored Query Support

The AdhocQuery protocol allow clients to submit queries that may be as general or as specific as the use
case demands. As the queries get more specific they also get more complex. In these situations it is
desirable to hide the complexity of the query from the client using parameterized queries stored in the
registry. When using parameterized stored queries the client is only required to specify the identity of the
query and the parameters for the query rather than the query expression itself.

Parameterized stored queries are useful to Registry Administrators because they provide a system wide
mechanism for the users of the registry to share a set of commonly used queries.

Parameterized stored queries are useful to vertical standards because the standard can define domain
specific parameterized queries and require that they be stored within the registry.

An ebXML Registry MUST support parameterized stored queries as defined by this section.

6.3.1 Submitting a Stored Query

A stored query is submitted using the standard SubmitObjectsRequest protocol where the object
submitted is an AdhocQueryType instance.

6.3.1.1 Declaring Query Parameters

When submitting a stored query, the submitter MAY declare zero or more parameters for that query. A
parameter MUST be declared using a parameter name that begins with the ‘$’ character followed
immediately by a letter and then followed by any combination of letters and numbers. The following BNF
defines how a parameter name MUST be declared.

QueryParameter := 'S' [a-zA-Z] ([a-zA-Z] | [0-9])*

A query parameter MAY be used as a placeholder for any part of the stored query.
The following example illustrates how a parameterized stored query may be submitted:

<SubmitObjectsRequest>
<rim:RegistryObjectList>
<rim:AdhocQuery id="${QUERY ID}">
<rim:QueryExpression quer?Language:"S{SQL_QUERY_LANG_ID}">
SELECT * from S$tableName ro, Name nm, Description d

WHERE
objectType = ''SobjectType''
AND (nm.parent = ro.id AND UPPER (nm.value) LIKE UPPER
(_''Sname''))
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 55 of 130

1825
1826
1827
1828
1829
1830
1831
1832
1833
1834

1835
1836

1837
1838

1839

1840
1841
1842
1843

1844
1845
1846

1847

1848

1849

1850
1851

1852
1853

1854
1855

1856

1857
1858
1859
1860
1861

1862
1863

1864
1865

1866

AND (d.parent = ro.id AND UPPER (d.value) LIKE UPPER
(''Sdescription''))
AND (ro.id IN (SELECT classifiedObject FROM Classification
WHERE classificationNode IN (SELECT id
FROM ClassificationNode WHERE path LIKE
''SclassificationPathl%'')))
</rim:QueryExpression>
</rim:AdhocQuery>
</rim:RegistryObjectList>
</SubmitObjectsRequest>

Listing 1: Example of Stored Query Submission

The above query takes parameters $objectType, $name, $description and $classificationPath1 and find
all objects for that match specified objectType, name, description and classification.

6.3.1.2 Canonical Context Parameters

A query MAY contain one or more context parameters as defined in this section. Context parameters are
special query parameters whose value does not need to be supplied by the client. Instead the value for a
context parameter is supplied by the registry based upon the context within which the client request is
being processed.

When processing a query, a registry MUST replace all context parameters present in the query with the
context sensitive value for the parameter. A registry MUST ignore any context parameter values supplied
by the client.

Context Parameter Replacement Value
$currentUser Must be replaced with the id attribute of the user
associated with the query.
$currentTime Must be replaced with the currentTime. The time
format is same as the format defined for the
timestamp attribute of AuditableEvent class.

6.3.2 Invoking a Stored Query

A stored query is invoked using the AdhocQueryRequest with the following constraints:

* The <rim:AdhocQuery> element MUST not contain a <rim:queryExpression> element.

* The <rim:AdhocQuery> element's id attribute value MUST match the id attribute value of the stored
query.

+ The <rim:AdhocQuery> element MAY have a Slot for each non-context parameter defined for the
stored query being invoked. These Slots provide the value for the query parameters.

6.3.2.1 Specifying Query Invocation Parameters

A stored query MAY be defined with zero or more parameters. A client may specify zero or more of the
parameters defined for the stored query when submitting the AdhocQueryRequest for the stored query. It
is important to note that the client MAY specify fewer parameters than those declared for the stored
query. A registry MUST prune any predicates of the stored query that contain parameters that were not
supplied by the client during invocation of the stored query.

In essence, the client may narrow or widen the specificity of the search by supplying more or less
parameters.

A client specifies a query invocation parameter by using a Slot whose name matches the parameter
name and whose value MUST be a single value that matches the specified value for the parameter.

A registry MUST ignore any parameters specified by the client for a stored query that do not match the

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 56 of 130

1867
1868

1869
1870
1871

1872

1873
1874

1875

1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917

1918

1919
1920

1921

1922
1923
1924

parameters defined by the stored query.
The following listing shows an example of how the stored query shown earlier is invoked. It shows:

+ The value for the $name parameter being supplied

* The value of other parameters defined by the query not being supplied. This indicates that the client
does not wish to use those parameters as serarch criterea.

<AdhocQueryRequest xmlns='"urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
xmlns:lcm="urn:oasis:names:tc:ebxml-regrep:xsd:1lcm:3.0"
xmlns:query="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
xmlns:rs="urn:oasis:names:tc:ebxml-regrep:xsd:rs:3.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:oasis:names:tc:ebxml-regrep:xsd:querv:3.0
http://ocasis-open.org/committees/regrep/documents/3.0/schema/query.xsd">
<rs:RequestSlotList>
<rim:Slot name="urn:oasis:names:tc:ebxml-
regrep:rs:AdhocQueryRequest:queryId'">
<rim:ValueList>
<rim:Value>urn:freebxml:registry:query:BusinessQuery</rim:Value>
</rim:ValueList>
</rim:Slot>
<rim:Slot name='"Sname'>
<rim:ValueList>
<rim:Value>%ebXML% </rim:Value>
</rim:ValueList>
</rim:Slot>
</rs:RequestSlotList>
<querv:ResponseOption returnComposedObjects="true"
returnType="LeafClassWithRepositoryItem" />
<rim:AdhocQuery id="temporaryId">
<rim:QueryExpression gquerylandguage="urn:oasis:names:tc:ebxml-
regrep:QuerylLanguage:SQL-92">
<!-- No need for an actual query since it is fetched from registry
using the quervyId -->
</rim:QueryExpression>
</rim:AdhocQuery>

—<ArimAdheoeguery>
<AAdheegueryReguest></AdhocQueryRequest>

Listing 2: Example of Stored Query Invocation

6.3.3 Response to Stored Query Invocation

A registry MUST send a standard AdhocQueryResponse when a client invokes a stored query using an
AdhocQueryRequest.

6.3.4 Access Control on a Stored Query

A stored query is a RegistryObject. Like all RegistryObjects, access to the stored query is governed by
the Access Control Policy defined the stored query. By default a stored query is assigned the default
Access Control Policy that allows any client to read and invoke that query and only the owner of the

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 57 of 130

1925 query and the Registry Administrator role to update or delete the query. The owner of the query may
1926 define a custom Access Control Policy for the query that restricts the visibility of the query, and ability to
1927 invoke it, to specific users, roles or groups. Thus the owner of the query or the Registry Administrator
1928 may control who gets to invoke which stored queries.

1929 6.3.5 Canonical Query: Get Client’s User Object

1930 A registry MUST support a canonical stored query with
1931 id="urn:oasis:names:tc:ebxml-regrep:query:GetCallersUser".

1932 This query MUST return the User object associated with the client invoking the stored query. The client
1933 MUST not provide any parameters for this query. The stored query SHOULD use the canonical context
1934 parameter $currentUser.

1935 The following is a non-normative example of a stored SQL query that MAY be used by a registry for this
1936 canonical stored query:

1937

1938 <rim:AdhocQuery id="urn:oasis:names:tc:ebxml-

1939 regrep:query:GetCallersUser">

1940 <rim:QueryExpression

1941 queryLanguage="urn:oasis:names:tc:ebxml-regrep:QueryLanguage:SQL-
1942 92">

1943 SELECT u.* FROM User u WHERE u.id = ScurrentUser;

1944 </rim:QueryExpression>

1945 </rim:AdhocQuery>

1946 Note that a registry MAY use an equivalent stored filter query instead of a stored SQL query.

1947 6.4 SQL Query Syntax

1948 An ebXML Registry MAY support SQL as a supported query syntax within the <rim:queryExpression>
1949 element of AdhocQueryRequest. This section normatively defines the SQL syntax that an ebXML

1950 Registry MAY support. Note that the support for SQL syntax within a registry does not imply a

1951 requirement that the registry must use a relational database in its implementation.

1952 The registry SQL syntax is a proper subset of the “SELECT” statement of Intermediate level SQL as
1953 defined by ISO/IEC 9075:1992, Database Language SQL [SQL].

1954 The terms below enclosed in angle brackets are defined in [SQL] or in [SQL/PSM]. The SQL query
1955 syntax conforms to the <query specification> with the following additional restrictions:

1956 1. A <derived column> MAY NOT have an <as clause>.

1957 2. A <table expression> does not contain the optional <group by clause> and <having clause>
1958 clauses.

1959 3. A <table reference> can only consist of <table name> and <correlation name>.

1960 4. A <table reference> does not have the optional AS between <table name> and <correlation
1961 name>.

1962 5. Restricted use of sub-queries is allowed by the syntax as follows. The <in predicate> allows for the
1963 right hand side of the <in predicate> to be limited to a restricted <query specification> as defined
1964 above.

1965 As defined by [SQL], a registry MUST process table names and attribute names in a case insensitive
1966 manner.

1967 6.4.1 Relational Schema for SQL Queries

1968 The normative Relational Schema definition that is the target of registry SQL queries can be found at the
1969 following location on the web:

1970 http://www.oasis-open.org/committees/regrep/documents/3.0/sqgl/database.sql

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 58 of 130

http://www.oasis-open.org/committees/regrep/documents/2.1/sql/database.sql

1971

1972
1973
1974
1975

1973

1974
1975
1976

1975
1976

1976
1977
1978
1979

1977
1978

1978

1979
1980

1980
1981
1982

1981

1982
1983
1984
1985
1986
1987

1988

1989

1990

1991
1992
1993

1992
1993
1994

1993
1994

1994
1995
1996

1995
1996

6.4.2 SQL Query Results

The result of an SQL query resolves to a collection of objects within the registry. It never resolves to
partial attributes. The objects related to the result set may be returned as an ObjectRef, RegistryObject
or leaf class depending upon the returnType attribute of the responseOption parameter specified by the
client on the AdHocQueryRequest. The entire result set is returned as an <rim:RegistryObjectList>.

6.5 Filter Query Syntax

This section normatively defines an XML syntax for querying an ebXML Registry called Filter Query
syntax. An ebXML Registry MUST support the Filter Query syntax as a supported query syntax within
the <rim:queryExpression> element of AdhocQueryRequest.

The Filter Query syntax is defined in [RR-QUERY-XSD] and is derived from a mapping from [ebRIM] to
XML Schema following certain mapping patterns.

The Filter Query operational model views the network of RegistryObjects in the registry as a virtual XML
document and a query traverses a specified part of the tree and prunes or filters objects from the virtual

document using filter expressions and ultimately returns a collection of objects that are left after filtering

out all objects that do not match the filters specified in the query.

Unlike SQL query syntax, the filter query syntax does not support joins across classes. This constrains
the expressive capabilities of the query and may also be somehat less efficient in processing.

6.5.1 Filter Query Structure

The <rim:queryExpression> element of AdhocQueryRequest MUST contain a Query element derived
from the <query:RegistryObjectQueryType> type.

A Query element MAY contain a <query:PrimaryFilter> element and MAY contain additional Filter,
Branch and Query elements within it as shown in the asbtract example below. The normative schema is
defined by [RR-QUERY-XSD].

<${QueryElement}>
<PrimaryFilter ... />
<${OtherFilterElement} ... />
<${BranchElement} .../>
<${QueryElement} ... />

</${QueryElement}>

The role of Query, Filter and Branch elements will be defined next.

6.5.2 Query Elements

A Query element is the top level element in the Filter Query syntax to query the registry. The [RR-
QUERY-XSD] XML Schema defines a Query element for the RegistryObject class and all its descendant
classes as defined by [ebRIM] using the following pattern:

» For each class in model descendant from RegistryObject class define a complexType with name
<class>QueryType. For example there is an OrganizationQueryType complexType defined for the
Organization class in [ebRIM].

» The QueryType of a descendant of RegistryObject class MUST extend the QueryType for its super
class. For example the OrganizationQueryType extends the RegistryObjectQueryType.

« For RegistryObject class and each of its descendants define an element with name <class>Query
and with type <class>QueryType. For example the OrganizationQuery element is defined with type
OrganizationQueryType.

The class associated with a Query element is referred to as the Query domain class.
The following example shows the Query syntax where the Query domain class is the Organization class

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 59 of 130

1997
1998

1999
2000
2001
2002
2003
2004
2005
2006

2007

2008
2009

2009

2010
2011
2012
2013

2011
2012

2012
2013
2014
2015

2013
2014
2015
2016
2017

2014
2015

2016
2017

2017
2018
2019
2020

2018
2019

2020
2021

2021

2022
2023

2023

2024
2025
2026
2027
2028

2029
2030

2031

defined by [ebRIM]:

A Que

<complexType name="OrganizationQueryType'">
<complexContent>
<extension base="tns:RegistryObjectQueryType'">
...Relevant Filters, Queries and Branches are defined here...
</extension>
</complexContent>
</complexType>
<element name="OrganizationQuery'" type='"tns:OrganizationQueryType'" />

ry element MAY have Filter, Branch or nested Query Elements. These are described in

subsequent sections.

6.5.3
A Que

Filter Elements

ry element MAY contain one or more Filter sub-elements. A Filter element is used to filter or select

a subset of instances of a specific [ebRIM] class. The class that a Filter filters is referred to as the Filter
domain class. A Filter element specifies a restricted predicate clause over the attributes of the Filter
domain class.

[RR-Q

UERY-XSD] XML Schema defines zero or more Filter elements within a Query element definition

using the following pattern:

« PrimaryfFilter: A Filter element is defined within the RegistryObjectQueryType with name
PrimaryfFilter. This Filter is used to filter the instances of the Query domain class based upon the
value of its primitive attributes. The cardinality of the Filter element is zero or one. The PrimaryFilter

ele

ment is inherited by all descendant QueryTypes of RegistryObjectQueryType.

« Additional Filters: Additional Filters in a Query element used to filter the instances of the Query
domain class based upon whether the candidate domain class instance has a referenced object that
satisfies the additional filter.

Additional filter elements are defined for those attributes of the Query domain class that satisfy all of

the

The fo
Filters

regrep-r

following criterea:
The attribute's domain is not a primitive type (e.g. string, float, dateTime, int etc.).
The attribute's domain class is not RegistryObject or its descendant.

The attribute's domain class does not have any reference attributes (use Branch or sub-Query if
attribute's domain class has reference attributes).

The attribute for which the Filter is defined is referred to as the Filter domain attribute. The domain
class of the Filter domain attribute is the Filter domain class for such Filters. This type of Filter is
used to filter the instances of the Query domain class based upon the attribute values within the
Filter domain class.

The name of the Filter element is <Filter Domain Attribute Name>Filter.
The type of the Filter element is the FilterType complex type that is decsribed in 6.5.3.1.

The cardinality of the Filter element matches the cardinality of the Filter domain attribute in the
Query domain class.

llowing example shows the how [RR-QUERY-XSD] XML Schema uses the above pattern to define
for the OrganizationQueryType for the Organization class defined by [ebRIM].

<complexType name="OrganizationQueryType">
<complexContent>
<extension base="tns:RegistryObjectQueryType">
<sequence>

<element maxOccurs="unbounded" minOccurs="0"
name="AddressFilter" type="tns:FilterType"/>

<element maxOccurs="unbounded" minOccurs="0"
name="TelephoneNumberFilter" type="tns:FilterType"/>

S May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 60 of 130

2032
2033
2034
2035
2036
2037
2038

2039

2040
2041
2042

2041
2042

2043

2044

2045

2046

2047

2047

2048
2049
2050

2049

2050
2051

</
</ex
</comp

<element maxOccurs="unbounded" minOccurs="0"

name="EmailAddresseFilter" type="tns:FilterType"/>
...Branches and sub-Queries go here...

sequence>
tension>
lexContent>

</complexType>

The following UML class diagram describing the Filter class structure as defined in [RR-QUERY-XSD]
XML Schema. Note that the classes whose name ends in “Type” map to complexTypes and other Filter

classes map to elements in the [RR-QUERY-XSD] XML Schema.

FilterType

+negate:boolean

Meftfause
rightClause

SimpleFilterType

CompoundFilter

+targetAttribute: string
+ Comparator:string

+rightFilter:FilterTywie
+|eftFilter: FilterType
+logicaldperator: string

S——_

EooleanFilter

DateTimeFilter

StringFilter

IntegerFilter

FloatFilter

+walue:boolean

+wvalue: datetime

+walue: string

+wvalue:integer

+walue:float

6.5.3.1

Figure 12: Filter Type Hierarchy

FilterType

The FilterType is an abstract complexType that is the root type in the inheritence hierarchy for all Filter

types.

6.5.3.1.1

Parameters:

= negate: This parameter specifies that the boolean value that the Filter evaluates to
MUST be negated to complete the evaluation of the filter. It is functionally equivalent to
the NOT operator in SQL syntax.

6.5.3.2

SimpleFilterType

The SimpleFilter is the abstract base type for several concrete Filter types defined for primitive type such
as boolean, float, integer and string.

regrep-rs

Copyright © OASIS Open 20852007. All Rights Reserved.

May-2-2005Feb 22, 2007
Page 61 of 130

2051

2052
2053
2054
2055

2053
2054
2055

2054
2055
2056
2057
2058
2059
2060

2061
2062
2062

2063

2064

2065
2066
2067

2067
2068

2068
2069

2070

2071

2072

2073
2074
2075

2075
2076

2076
2077

2078

2079

2080

6.5.3.2.1 Parameters:

= domainAttribute: This parameter specifies the attribute name of a primitive attribute
within the Filter domain class. A registry MUST return an InvalidQueryException if this
parameter's value does not match the name of primitive attribute within the Filter domain
class. A registry MUST perform the attribute name match in a case insensitive manner.

= comparator: This parameter specifies the comparison operator for comparing the value
of the attribute with the value supplied by the filter. The following comparators are
defined:

* LE: abbreviation for LessThanOrEqual

* LT: abbreviation for LessThan

* GE: abbreviation for GreaterThanOrEqual

* GT: abbreviation for GreaterThan

* EQ: abbreviation for Equal

* NE: abbreviation for NotEqual

* Like: Same as LIKE operator in SQL-92. MUST only be used in StringFilter.

* NotLike: Same as NOT LIKE operator in SQL-92. MUST only be used in
StringFilter.

6.5.3.3 BooleanFilter

The BooleanFilter MUST only be used for matching primitive attributes whose domain is of type boolean.

6.5.3.3.1 Parameters:
= value: This parameter specifies the value that MUST be compared with the attribute
value being tested by the Filter. It MUST be a boolean value.

The following example shows the use of a BooleanFilter to match the isinternal attribute of the
ClassificationScheme class defined by [ebRIM]:

<BooleanFilter
domainAtribute="isInternal" comparator="EQ" value="true"/>

6.5.3.4 FloatFilter

The FloatFilter MUST only be used for matching primitive attributes whose domain is of type float.

6.5.3.4.1 Parameters:

= value: This parameter specifies the value that MUST be compared with the attribute
value being tested by the Filter. It MUST be a float value.

The following example shows the use of a FloatFilter to match fictitious amount float attribute since
[ebRIM] currently has no float attributes defined:

<FloatFilter
domainAtribute="amount" comparator="GT" value="9.99"/>

6.5.3.5 IntegerFilter

The IntegerFilter MUST only be used for matching primitive attributes whose domain is of type integer.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 62 of 130

2081
2082
2083

2083
2084

2084
2085

2086

2087

2088
2089

2089
2090
2091

2091
2092
2093

2092
2093
2094

2095

2096

2097

2098

2099
2100

2100
2101

2101
2102
2103

2104

2105

2106
2107

2107

2108
2109

2110
2111

2111

6.5.3.5.1 Parameters:

= value: This parameter specifies the value that MUST be compared with the attribute
value being tested by the Filter. It MUST be an integer value.

The following example shows the use of a BooleanFilter to match a fictitious count integer attribute since
[ebRIM] currently has no integer attributes defined:

<IntegerFilter
domainAtribute="amount" comparator="LT" value="100"/>

6.5.3.6 DateTimeFilter

The DateTimeFilter MUST only be used for matching primitive attributes whose domain is of type
datetime.

6.5.3.6.1 Parameters:

= value: This parameter specifies the value that MUST be compared with the attribute
value being tested by the Filter. It MUST be a datetime value.

The following example shows the use of a DateTimeFilter to match a the timestamp attribute of the
Auditable class defined by [ebRIM] where the timestamp value is greater than (later than) the specified
datetime value:

<DateTimeFilter
domainAtribute="timestamp"
comparator="GT" value="1997-07-16T19:20+01:00"/>

6.5.3.7 StringFilter

The StringFilter MUST only be used for matching primitive attributes whose domain is of type string.

6.5.3.7.1 Parameters:
= value: This parameter specifies the value that MUST be compared with the attribute
value being tested by the Filter. It MUST be a string value.

The following example shows the use of a StringFilter to match a the firstName attribute of the Person
class defined by [ebRIM] where the firstName value matches the pattern specified by the value:

<StringFilter
domainAtribute="firstName"
comparator="Like" value="Farid%"/>

6.5.3.8 CompoundFilter

The CompoundFilter MAY be used to specify a boolean conjunction (AND) or disjunction (OR) between
two Filters. It allows a query to express a combination of predicate clauses within a Filter Query.

6.5.3.8.1 Parameters:

= LeftFilter: This parameter specifies the first of two Filters for the CompoundFilter.
= RightFilter: This parameter specifies the second of two Filters for the CompoundFilter.

= JogicalOperator: This parameter specifies the logical operator. The value of this
parameter MUST be “AND” or “OR”

The following example shows the use of a BooleanFilter to match the isinternal attribute of the

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 63 of 130

2112

2113
2114
2115
2116
2117
2118

2119

2120
2121
2122
2123

2121
2122

2122
2123

2123

2124
2125

2125
2126
2127

2126

2127
2128

2128
2129

2129
2130

2130

2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145

2146

2147
2148
2149
2150
2151
2152

2148
2149

ClassificationScheme class defined by [ebRIM]:

<CompoundFilter logicalOperator="AND">
<LeftFilter domainAttribute="targetObject" comparator="EQ"
value="${REGISTRY OBJECT ID}" type="StringFilter"/>
<RightFilter domainAttribute="associationType" comparator="EQ"
value="${HAS MEMBER ASSOC TYPE NODE ID}" type="StringFilter"/>
</CompoundFilter> B B B B

6.5.4 Nested Query Elements

A Query element MAY contain one or more nested Query sub-elements. The purpose of the nested
Query element is to allow traversal of the branches within the network of relationships defined by the
information model and prune or filter those branches that do not meet the predicates specified in the
corresponding Branch element.

The [RR-QUERY-XSD] XML Schema defines zero or more nested Query elements within a Query
element definition using the following pattern:

» A nested Query element is defined for each attribute of the Query domain class that satisfy all of the
following criterea:

« The attribute's domain class is a descendant type of the RegistryObjectType.

« The attribute's domain class contains reference attributes that link the domain class to some third
class via the reference.

The attribute for which the nested Query is defined is referred to as the Nested Query domain
attribute. The domain class of the nested Query domain attribute is the Query domain class for the
nested Query element.

» The name of the nested Query element is <Nested Query Domain Attribute Name>Query.

» The type of the nested Query element matches the QueryType for the domain class for the Query
domain attribute.

« The cardinality of the nested Query element matches the cardinality of the nested Query domain
attribute in the Query domain class.

The following example shows the how [RR-QUERY-XSD] XML Schema uses the above pattern to define
nested Query elements for the OrganizationQueryType for the Organization class defined by [ebRIM].

<complexType name='"OrganizationQueryType">
<complexContent>
<extension base="tns:RegistryObjectQueryType">
<sequence>
...Filters and Branches go here ...
<element maxOccurs="1" minOccurs="0"
name="ParentQuery" type="tns:0OrganizationQueryType'"/>
<element maxOccurs="unbounded" minOccurs="0"
name="ChildOrganizationQuery" type="tns:0rganizationQueryType'"/>
<element maxOccurs="1" minOccurs="0"
name="PrimaryContactQuery" type="tns:PersonQueryType'"/>
</sequence>
</extension>
</complexContent>
</complexType>

6.5.5 Branch Elements

A Query element MAY contain one or more Branch sub-elements. A Branch element is similar to the
nested Query element as it too can have sub-elements that are Filter, Branch and subQuery elements.
However, it is different from Query elements because its type is not a descendant type of
RegistryObjectQueryType. The purpose of the branch element is to allow traversal of the branches within
the network of relationships defined by the information model and prune or filter those branches that do
not meet the predicates specified in the corresponding Branch element.

The [RR-QUERY-XSD] XML Schema defines zero or more Branch elements within a Query element
definition using the following pattern:

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 64 of 130

2173

2174
2175
2176

2175

2176
2177

2177

2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192

2193

« A Branch element is defined for each attribute of the Query domain class that satisfies all of the
following criterea:

« The attribute's domain is not a primitive type (e.g. String, float, dateTime, int etc.).

« The attribute's domain class contains reference attributes that link the domain class to some third
class via the reference.

The attribute for which the Branch is defined is referred to as the Branch domain attribute. The
domain class of the Branch domain attribute is the Branch domain class for the Branch element.

» The name of the Branch element is <Branch Domain Attribute Name>Branch.

+ The cardinality of the Branch element matches the cardinality of the Branch domain attribute in the
Query domain class.

The following example shows how the [RR-QUERY-XSD] XML Schema uses the above pattern to define
Branches for the RegistryObjectQueryType for the RegistryObject class defined by [ebRIM].

<complexType name='"RegistryObjectQueryType'>
<complexContent>
<extension base="tns:FilterQueryType">
<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="SlotBranch'" type="tns:SlotBranchType" />
<element maxOccurs="1" minOccurs="0" name=''NameBranch"
type="tns:InternationalStringBranchType"/>
<element maxOccurs="1" minOccurs="0" name="DescriptionBranch"
type="tns:InternationalStringBranchType'" />
. Relevant Filters, queries go here...
</sequence>
</extension>
</complexContent>
</complexType>

6.6 Query Examples

This section provides examples in both SQL and Filter Query syntax for some common query use cases.
Each example gives the SQL syntax for the query followed by blank line followed by the equivalent Filter
Query syntax for it.

6.6.1 Name and Description Queries

The following queries matches all RegistryObject instances whose name contains the word ‘Acme’ and
whose description contains the word “bicycle”.

SELECT ro.* from RegistryObject ro, Name nm, Description d WHERE
nm.value LIKE '%Acme%' AND

d.value LIKE '%bicycle%' AND

(ro.id = nm.parent AND ro.id = d.parent);

<RegistryObjectQuery>
<NameBranch>
<LocalizedStringFilter comparator="Like" domainAttribute="value"
value="%Acme%" xsi:type="StringFilterType'"/>
</NameBranch>
<DescriptionBranch>
<LocalizedStringFilter comparator="Like" domainAttribute="value"
value="%bicycle%" xsi:type="StringFilterType'"/>
</DescriptionBranch>
</RegistryObjectQuery>

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 65 of 130

2194

2195

2196

2197
2198

2198

2199
2200
2201

2202

2203

2204
2205

2205

2206
2207
2208
2209
2210
2211

2212

2213

2214
2215
2216
2217

2215

2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242

2243

6.6.2 Classification Queries

This section describes various classification related queries.

6.6.2.1 Retrieving ClassificationSchemes

The following query retrieves the collection of all ClassificationSchemes. Note that the above query may
also specify additional Filters, Querys and Branches as search criterea if desired.

SELECT scheme.* FROM ClassificationScheme scheme;

<ClassificationSchemeQuery/>

6.6.2.2 Retrieving Children of Specified ClassificationNode

The following query retrieves the children of a ClassificationNode given the “id” attribute of the parent
ClassificationNode:

SELECT cn.* FROM ClassificationNode cn WHERE parent = ${PARENT_ ID};

<ClassificationNodeQuery>
<PrimaryFilter comparator="Like" domainAttribute="parent"
value="S${PARENT ID}" xsi:type="StringFilterType"/>
</ClassificationNodeQuery>

6.6.2.3 Retrieving Objects Classified By a ClassificationNode

The following query retrieves the collection of ExtrinsicObjects that are classified by the Automotive
Industry and the Japan Geography. Note that the query does not match ExtrinsicObjects classified by
descendant ClassificationNodes of the Automotive Industry and the Japan Geography. That would
require a slightly more complex query.

SELECT eo.* FROM ExtrinsicObject eo WHERE
id IN (SELECT classifiedObject FROM Classification

WHERE
classificationNode IN (SELECT id FROM ClassificationNode
WHERE path = ‘/${GEOGRAPHY_SCHEME_ID}/Asia/Japan’))

AND
id IN (SELECT classifiedObject FROM Classification

WHERE
classificationNode IN (SELECT id FROM ClassificationNode
WHERE path = ‘/S{INDUSTRY_SCHEME_ID}/Automotive’))

<ExtrinsicObjectQuery>
<ClassificationQuery>
<ClassificationNodeQuery>
<PrimaryFilter comparator="EQ" domainAttribute="path"
Value=“/$(GEOGRAPHY_SCHEME_ID}/Asia/Japan"
xsi:type="StringFilterType'"/>
</ClassificationNodeQuery>
</ClassificationQuery>
<ClassificationQuery>
<ClassificationNodeQuery>
<PrimaryFilter comparator="EQ" domainAttribute="path"
value="/${INDUSTRY_SCHEME ID}/Automotive"
xsi:type="StringFilterType"/>
</ClassificationNodeQuery>
</ClassificationQuery>
</ExtrinsicObjectQuery>

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 66 of 130

2244 6.6.2.4 Retrieving Classifications that Classify an Object

2245 The following query retrieves the collection of Classifications that classify a object with id matching ${ID}:
2246

2247 SELECT c.* FROM Classification c

2248 WHERE c.classifiedObject = ${ID};

2249

2250 <ClassificationQuery>

2251 <PrimaryFilter comparator="EQ" domainAttribute="classifiedObject"
2252 value="${ID}" xsi:type="StringFilterType"/>

2253 </ClassificationQuery>

2254

2255 6.6.3 Association Queries

2256 This section describes various Association related queries.

2257 6.6.3.1 Retrieving All Associations With Specified Object As Source

2258 The following query retrieves the collection of Associations that have the object with id matching
2259 ${SOURCE_ID} as their source:

2259

2260 SELECT a.* FROM Association a WHERE sourceObject = ${SOURCE_ID}
2261

2262 <AssociationQuery>

2263 <PrimaryFilter comparator="EQ" domainAttribute="sourceObject"
2264 value="${SOURCE_ID}" xsi:type="StringFilterType"/>

2265 </AssociationQuery>

2266

2267 6.6.3.2 Retrieving All Associations With Specified Object As Target

2268 The following query retrieves the collection of Associations that have the object with id matching
2260 ${TARGET_ID} as their target:

2269

2270 SELECT a.* FROM Association a WHERE targetObject = ${TARGET_ID}
2271

2272 <AssociationQuery>

2273 <PrimaryFilter comparator="EQ" domainAttribute="targetObject"
2274 value="${TARGET_ ID}" xsi:type="StringFilterType"/>

2275 </AssociationQuery>

2276

2277 6.6.3.3 Retrieving Associated Objects Based On Association Type
2278

2279 Select Associations whose associationType attribute value matches the value specified by the
2280 ${ASSOC_TYPE_ID}. The ${ASSOC_TYPE_ID} value MUST reference a ClassificationNode that is a
2281 descendant of the canonical AssociationType ClassificationScheme.

2280

2281 SELECT a.* FROM Association a WHERE

2282 associationType = S{ASSOC_TYPE_ID}

2283

2284 <AssociationQuery>

2285 <PrimaryFilter comparator="EQ" domainAttribute="associationType"
2286 value="${ASSOC_TYPE_ID}" xsi:type="StringFilterType"/>

2287 </AssociationQuery>

2288

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 67 of 130

2289

2290

2291
2292

2292

2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

2310

6.6.3.4 Complex Association Query

The various forms of Association queries may be combined into complex predicates. The following query
selects Associations that match specified specific sourceObject, targetObject and associationType:

SELECT a.* FROM Association a WHERE
sourceObject = ${SOURCE ID} AND
targetObject = ${TARGET ID} AND
associationType = ${ASSOC TYPE ID};

<AssociationQuery>
<PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType'>
<LeftFilter comparator="EQ" domainAttribute="sourceObject"
xsi:type="StringFilterType" value="${SOURCE ID}"/>
<RightFilter logicalOperator="AND" xsi:type="CompoundFilterType">
<LeftFilter comparator="EQ" domainAttribute="targetObject"
xsi:type="StringFilterType" value="${TARGET ID}"/>
<RightFilter comparator="EQ'" domainAttribute="associationType"
xsi:type="StringFilterType" value="${ASSOC TYPE ID}"/>
</RightFilter>
</PrimaryFilter>
</AssociationQuery>

6.6.4 Package Queries

The following query retrieves all Packages that have as member the RegistryObject specified by
${REGISTRY_OBJECT_ID}:

SELECT p.* FROM Package p, Association a WHERE
a.sourceObject = p.id AND
a.targetObject = ${REGISTRY OBJECT ID} AND
a.associationType = ${HAS MEMBER ASSOC TYPE NODE ID};

<RegistryPackageQuery>
<SourceAssociationQuery>
<PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
<LeftFilter comparator="EQ" domainAttribute="targetObject"
value="$S{REGISTRY OBJECT ID}"
xsi:type="StringFilterType"/>
<RightFilter comparator="EQ" domainAttribute="associationType"
value="${HAS MEMBER ASSOC TYPE NODE ID}"
xsi:type="StringFilterType"/>
</PrimaryFilter>
</SourceAssociationQuery>
</RegistryPackageQuery>

Note that the ${HAS_MEMBER_ASSOC_TYPE_NODE_ID} is a placeholder for the value of the id
attribute of the canonical HasMember AssociationType ClassificationNode.

6.6.5 ExternalLink Queries

The following query retrieves all ExternalLinks that serve as ExternalLink for the RegistryObject specified
by ${REGISTRY_OBJECT_ID}:

SELECT el.* From ExternallLink el, Association a WHERE
a.sourceObject = el.id AND
a.targetObject = ${REGISTRY_OBJECT_ID} AND
a.associationType = ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID};

<ExternallinkQuery>

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 68 of 130

2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

2353

2354
2355

2355
2356

2356

2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373

2374

2375

2376
2377

2377

2378
2379
2380
2381
2382
2383
2384
2385
2386
2387

2388

<SourceAssociationQuery>

<PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
<LeftFilter comparator="EQ" domainAttribute="targetObject"

value="${REGISTRY OBJECT ID}"
xsi:type="StringFilterType"/>

<RightFilter comparator="EQ" domainAttribute="associationType"

value="${EXTERNALLY LINKS ASSOC TYPE NODE ID}"
xsi:type="StringFilterType"/>
</PrimaryFilter>
</SourceAssociationQuery>
</ExternalLinkQuery>

Note that the ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID} is a placeholder for the value of the id

attribute of the canonical ExternallyLinks AssociationType ClassificationNode.

The following query retrieves all ExtrinsicObjects that are linked to an ExternalLink specified by

${EXTERNAL_LINK_ID}:

SELECT eo.* From ExtrinsicObject eo, Association a WHERE
a.sourceObject = ${EXTERNAL LINK ID} AND
a.targetObject = eo.id AND

a.associationType = ${EXTERNALLY LINKS ASSOC TYPE NODE ID};

<ExtrinsicObjectQuery>
<TargetAssociationQuery>

<PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
<LeftFilter comparator="EQ" domainAttribute="sourceObject"

Value:”S{EXTERNAL_LINK_ID}”
xsi:type="StringFilterType"/>

<RightFilter comparator="EQ" domainAttribute="associationType"

value="${EXTERNALLY LINKS ASSOC TYPE NODE ID}"
xsi:type="StringFilterType"/>
</PrimaryFilter>
</TargetAssociationQuery>
</ExtrinsicObjectQuery>

6.6.6 AuditTrail Queries

The following query retrieves all the AuditableEvents for the RegistryObject specified by

${REGISTRY_OBJECT_ID}:

SELECT ae.* FROM AuditableEvent ae, AffectedObject ao WHERE
ao.eventId = ae.id AND
ao.id = ${REGISTRY_OBJECT_ID}

<AuditableEventQuery>
<AffectedObjectQuery>
<PrimaryFilter comparator="EQ'" domainAttribute="id"

value="${REGISTRY OBJECT ID}" xsi:type="StringFilterType"/>

</AffectedObjectQuery>
</AuditableEventQuery>

regrep-rs
Copyright © OASIS Open 20852007. All Rights Reserved.

May-2-2005Feb 22, 2007
Page 69 of 130

2389

2390

2391
2392
2393
2394

2392
2393
2394
2395

2393

2394

2395

2396
2397

2397

2398
2399
2400

2399

2400
2401
2402

2401

2402
2403

2403

2404
2405
2406
2407

2405

2406
2407
2408
2409
2410

7 Event Notification Protocols

This chapter defines the Event Notification feature of the OASIS ebXML Registry.

Event Notification feature allows OASIS ebXML Registries to notify its users and / or other registries
about events of interest. It allows users to stay informed about registry events without being forced to
periodically poll the registry. It also allows a registry to propagate internal changes to other registries
whose content might be affected by those changes.

ebXML registries support content-based Notification where interested parties express their interest in
form of a query. This is different from subject—based (sometimes referred to as topic-based) notification,
where information is categorized by subjects and interested parties express their interests in those
predefined subjects.

7.1 Use Cases

The following use cases illustrate different ways in which ebXML registries notify users or other registries.

7.1.1 CPP Has Changed

A user wishes to know when the CPP [ebCPP] of a partner is updated or superseded by another CPP.
When that happens he may wish to create a CPA [ebCPP] based upon the new CPP.

7.1.2 New Service is Offered

A user wishes to know when a new plumbing service is offered in her town and be notified every 10 days.
When that happens, she might try to learn more about that service and compare it with her current
plumbing service provider’s offering.

7.1.3 Monitor Download of Content

User wishes to know whenever his CPP [ebCPP] is downloaded in order to evaluate on an ongoing basis
the success of his recent advertising campaign. He might also want to analyze who the interested parties
are.

7.1.4 Monitor Price Changes

User wishes to know when the price of a product that she is interested in buying drops below a certain
amount. If she buys it she would also like to be notified when the product has been shipped to her.

7.1.5 Keep Replicas Consistent With Source Object

In order to improve performance and availability of accessing some registry objects, a local registry MAY
make replicas of certain objects that are hosted by another registry. The registry would like to be notified
when the source object for a replica is updated so that it can synchronize the replica with the latest state
of the source object.

7.2 Registry Events

Activities within a registry result in meaningful events. Typically, registry events are generated when a
registry processes client requests. In addition, certain registry events may be caused by administrative
actions performed by a registry operator. [ebRIM] defines the AuditableEvent class, instances of which
represent registry events. When such an event occurs, an AuditableEvent instance is generated by the
registry.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 70 of 130

2407

2408
2409
2410
2411

2409
2410
2411

2410

2411

2412
2413
2414

2413

2414
2415
2416
2417
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2428
2429
2429
2430
2431
2432
2430
2431

2432

2433
2434
2435

2434

2435
2436

2436
2437

2437

2438
2439

2439
2440

7.3 Subscribing to Events

A user MAY create a subscription with a registry if he or she wishes to receive notification for a specific
type of event. A user creates a subscription by submitting a Subscription instance to a registry using the
SubmitObjectsRequest. If a Subscription is submitted to a registry that does not support event
notification then the registry MUST return an UnsupportedCapabilityException.

The listing below shows a sample Subscription using a pre-defined SQL query as its selector that will
result in an email notification to the user whenever a Service is created that is classified as a “Plumbing’
service and located in “A Little Town.”

3

The SQL query within the selector in plain English says the following:

Find all Services that are Created AND classified by ClassificationNode
where ClassificationNode's Path ends with string "Plumbing", AND classified by ClassificationNode
where ClassificationNode's Code contains string "A Little Town.”

<rim:Subscription id="${SUBSCRIPTION ID}" selector="${QUERY ID}">
<l--
The selector is a reference to a query object that has the
following query defined
SELECT * FROM Service s, AuditableEvent e, AffectectedObject ao,
Classification c1, Classification c2
ClassificationNode cnl, ClassificationNode cn2 WHERE
e.eventType = 'Created' AND ao.id = s.id AND ao.parent=e.id AND
cl.classifiedObject = s.id AND cl.classificationNode = cnl.id AND
cnl.path LIKE '%Plumbing' AND
c2.classifiedObject = s.id AND c2.classificationNode = cn2.id AND
cn2.path LIKE '%A Little Town%'
-=>
<!-- Next endPoint is an email address -->
<rim:NotifyAction notificationOption="urn:oasis:names:tc:ebxml-
regrep:NotificationOptionType:0Objects"
endPoint="mailto:farrukh.najmi@sun.com"/>
<!-- Next endPoint is a service via reference to its ServiceBinding
object -->
<rim:NotifyAction notificationOption="urn:oasis:names:tc:ebxml-
regrep:NotificationOptionType:0ObjectRefs"
endPoint="urn: freebxml:registry:demoDB:serviceBinding:EpidemicAlertListe
nerServiceBinding" />
</rim:Subscription>

7.3.1 Event Selection

In order to only be notified of specific events of interest, the user MUST specify a reference to a stored
AdHocQuery object via the selector attribute within the Subscription instance. The query determines
whether an event qualifies for that Subscription or not. For details on query syntax see chapter 6.

7.3.2 Notification Action

When creating a Subscription, a user MAY also specify Actions within the subscription that specify what
the registry must do when an event matching the Subscription (subscription event) transpires.

A user MAY omit specifying an Action within a Subscription if he does not wish to be notified by the
registry. A user MAY periodically poll the registry and pull the pending Notifications.

[ebRIM] defines two standard ways that a NotifyAction may be used:

* Email NotifyAction that allows delivery of event notifications via email to a human user or to an
email end point for a software component or agent.

» Service NotifyAction that allows delivery of event notifications via a programmatic interface by
invoking a specified listener web service.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 71 of 130

2440
2441
2442
2443
2444

2441

2442
2443
2444
2445
2446
2447

2443

2444
2445
2446

2445

2446
2447
2448
2449
2450

2447
2448

2448

2449
2450
2451
2452

2450

2451
2452
2453

2452

2453

2454
2455
2456
2457
2458
2459

2455
2456

If the registry supports event notification, at some time after the successful processing of each request, it
MUST check all registered and active Subscriptions and see if any Subscriptions match the event. If a
match is found then the registry performs the Notification Actions required for the Subscription. A registry
MAY periodically perform such checks and corresponding notification actions in a batch mode based
upon registry specific policies.

7.3.3 Subscription Authorization

A registry operator or content owner MAY use custom Access Control Policies to decide which users are
authorized to create a subscription and to what events. A Registry MUST return an
AuthorizationException in the event that an unauthorized user submits a Subscription to a registry. Itis
up to registry implementations whether to honour the existing subscription if an access control policy
governing subscriptions becomes more restrictive after subscription have already been created based on
the older policy.

7.3.4 Subscription Quotas

A registry MAY use registry specific policies to decide an upper limit on the number of Subscriptions a
user is allowed to create. A Registry MUST return a QuotaExceededException in the event that an
authorized user submits more Subscriptions than allowed by their registry specific quota.

7.3.5 Subscription Expiration

Each subscription defines a startTime and and endTime attribute which determines the period within
which a Subscription is active. Outside the bounds of the active period, a Subsription MAY exist in an
expired state within the registry. A registry MAY remove an expired Subscription at any time. In such
cases the identity of a RegistryOperator user MUST be used for the request in order to have sufficient
authorization to remove a user’s Subscription.

A Registry MUST NOT consider expired Subscriptions when delivering notifications for an event to its
Subscriptions. An expired Subscription MAY be renewed by submitting a new Subscription.

7.3.6 Subscription Rejection

A Registry MAY reject a Subscription if it is too costly to support. For instance a Subscription that wishes
to be notified of any change in any object may be too costly for most registries. A Registry MUST return a
SubscriptionTooCostlyException in the event that an Authorized User submits a Subscription that is too
costly for the registry to process.

7.4 Unsubscribing from Events

A user MAY terminate a Subscription with a registry if he or she no longer wishes to be notified of events
related to that Subscription. A user terminates a Subscription by deleting the corresponding Subscription
object using the RemoveObjectsRequest to the registry.

Removal of a Subscription object follows the same rules as removal of any other object.

7.5 Notification of Events

A registry performs the Actions for a Subscription in order to actually deliver the events information to the
subscriber. However, regardless of the specific delivery Action, the registry MUST communicate the
Subscription events. The Subscription events are delivered within a Notification instance as described by
[ebRIM]. In case of Service NotifyAction, the Notification is delivered to a handler service conformant to
the RegistryClient interface. In case of an Email NotifyAction the notification is delivered an email
address.

The listing below shows a sample Notification matching the subscription example in section 7.3:

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 72 of 130

2457
2458
2459
2460
2461
2462
2463
2464
2464
2465
2465
2466
2467

2468

2469
2470
2471
2472

2470

2471
2472
2473
2474
2475
2476

2472

2473
2474
2475
2476
2477

<rim:Notification subscription="${SUBSCRIPTION ID}">
<rim:RegistryObjectList> -
<rim:Service id="£f3373a7b-4958-4e55-8820-d03al191fb76a">
<rim:Name>
<rim:LocalizedString value="A Little Town Plumbing"/>
</rim:Name>
<rim:Classification id="a3373a7b-4958-4e55-8820-d03al191fb76a"
classifiedObject="£3373a7b-4958-4e55-8820-d03a191fb76a"/>
<rim:Classification id="b3373a7b-4958-4e55-8820-d03a191fb76a"
classifiedObject="£f3373a7b-4958-4e55-8820-d03a191fb76a" />
</rim:Service>
</rim:RegistryObjectList>
</rim:Notification>

A Notification MAY contain actual RegistryObjects or ObjectRefs to RegistryObjects within the
<rim:RegistryObjectList>. A client MAY specify the whether they wish to receive RegistryObjects or
ObjectRefs to RegistryObjects using the notificationOption attribute of the Action within the Subscription.
The registry MAY override this notificationOption based upon registry specific operational policies.

7.6 Retrieval of Events

The registry provides asynchronous PUSH style delivery of Notifications via notify Actions as described
earlier. However, a client MAY also use a PULL style to retrieve any pending events for their
Subscriptions. Pulling of events is done using the AdHocQuery protocol and querying the Notification
class. A registry SHOULD buffer undelivered notifications for some period to allow clients to PULL those
notifications. The period that a registry SHOULD buffer undelivered notifications MAY be defined using
registry specific policies.

7.7 Pruning of Events

A registry MAY periodically prune AuditableEvents in order to manage its resources. It is up to the
registry when such pruning occurs. It is up to the registry to determine when undelivered events are
purged. A registry SHOULD perform such pruning by removing the older information in its Audit Trail
content. However, it MUST not remove the original Create Event at the beginning of the audit trail since
the Create Event establishes the owner of the RegistryObject.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 73 of 130

2474

2475
2476
2477
2478

2476
2477
2478
2479

2477

2478
2479

2479
2480

2481
2482
2483
2484

2482

2483

2484

2485

2486
2487
2488
2487

2488
2489
2490
2489

2490

8 Content Management Services

This chapter describes the Content Management services of the ebXML Registry. Examples of Content
Management Services include, but are not limited to, content validation and content cataloging. Content
Management Services result in improved quality and integrity of registry content and metadata as well as
improved ability for clients to discover that content and metadata.

The Content Management Services facility of the registry is based upon a pluggable architecture that
allows clients to publish and discover new Content Management Services as Service objects that
conform to a normative web service interface specified in this chapter. Clients MAY configure a Content
Management Service that is specialized for managing a specific type of content.

8.1 Content Validation

The Content Validation feature provides the ability to enforce domain specific validation rules upon
submitted content and metadata in a content specific manner.

|nvocation Control File

Original
Content Content
m—- Validation =P Success | Failure

Service

Figure 13: Content Validation Service

Content +
Metadata

A registry uses one or more Content Validation Services to automatically validate the RegistryObjects
and repository items when they are submitted to the registry. A registry MUST reject a submission
request in its entirety if it contains invalid data. In such cases a ValidationException MUST be returned to
the client.

Content Validation feature improves the quality of data in the registry.

8.1.1 Content Validation: Use Cases

The following use cases illustrate the Content Validation feature:

8.1.1.1 Validation of HL7 Conformance Profiles

The Healthcare Standards organization HL7 uses content validation to enforce consistency rules and
semantic checks whenever an HL7 member submits an HL7 Conformance Profile. HL7 is also planning
to use the feature to improve the quality of other types of HL7 artifacts.

8.1.1.2 Validation of Business Processes

Content validation may be used to enforce consistency rules and semantic checks whenever a Business
Process is submitted to the registry. This feature may be used by organizations such as UN/CEFACT,
OAGIi, and RosettaNet.

8.1.1.3 Validation of UBL Business Documents

Content validation may be used by the UBL technical committee to enforce consistency rules and

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 74 of 130

2491

2492

2493
2494

2494
2495

2496
2497
2498
2499
2500

2497

2498

2499

2500

2501
2502

2502

2503
2504

2504

2505
2506
2507

2506

2507
2508
2509
2510
2511

semantic checks whenever a UBL business document is submitted to the registry.

8.2 Content Cataloging

The Content Cataloging feature provides the ability to selectively convert submitted RegistryObject and
repository items into metadata defined by [ebRIM], in a content specific manner.

| nvocation Control File

Origina Cataloged
Content Content Content

Content + : Catal oging . Content +
Metadata . Metadata
Service
Figure 14: Content Cataloging Service

A registry uses one or more Content Cataloging Services to automatically catalog RegistryObjects and
repository items. Cataloging creates and/or updates RegistryObject metadata such as ExtrinsicObject or
Classification instances. The cataloged metadata enables clients to discover the repository item based
upon content from the repository item, using standard query capabilities of the registry. This is referred to
as Content-based Discovery.

The main benefit of the Content Cataloging feature is to enable Content-based Discovery.

8.2.1 Content-based Discovery: Use Cases

There are many scenarios where content-based discovery is necessary.

8.2.1.1 Find All CPPs Where Role is “Buyer”

A company that sells a product using the RosettaNet PIP3A4 Purchase Order process wants to find
CPPs for other companies where the Role element of the CPP is that of “Buyer”.

8.2.1.2 Find All XML Schema’s That Use Specified Namespace

A client may wish to discover all XML Schema documents in the registry that use an XML namespace
containing the word “oasis”.

8.2.1.3 Find All WSDL Descriptions with a SOAP Binding

An ebXML registry client is attempting to discover all repository items that are WSDL descriptions that
have a SOAP binding defined. Note that SOAP binding related information is content within the WSDL
document and not metadata.

8.3 Abstract Content Management Service

This section describes in abstract terms how the registry supports pluggable, user-defined Content
Management Services. A Content Management Service is invoked in response to content being
submitted to the registry via the standard Submit/UpdateObjectsRequest method. The Service invocation
is on a per request basis where one request may result in many invocations, one for each RegistryObject
for which a Content Management Service is configured within the registry.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 75 of 130

2508
2509

2510
2511
2512

2511
2512
2513

2512

2513

2514
2515
2516
2517

2515
2516
2516

2517
2518
2519
2520
2521
2522

2523
2524
2525
2526

2527
2528
2529

2530
2531

2532

2533
2534

2535
2536
2537

The registry may perform such invocation in one of two ways.

8.3.1

Inline Invocation Model: Content Management Service may be invoked inline with the
processing of the Submit/UpdateObjectsRequest and prior to committing the content. This is
referred to as Inline Invocation Model.

Decoupled Invocation Model: Content Management Service may be invoked decoupled from
the processing of the Submit/UpdateObjectsRequest and some time after committing the
content. This is referred to as Decoupled Invocation Model.

Inline Invocation Model

In an inline invocation model a registry MUST invoke a Content Management Service inline with
Submit/UpdateObjectsRequest processing and prior to committing the Submit/UpdateObjectsRequest.
All metadata and content from the original Submit/UpdateObjectsRequest request or from the Content
Management Service invocation MUST be committed as an atomic transaction.

Figure 15 shows an abstract Content Management Service and how it is used by an ebXML Registry
using an inline invocation model. The steps are as follows:

regrep-rs

Copyright © OASIS Open 20852007. All Rights Reserved.

A client submits a Content Management Service S1 to an ebXML Registry. The client
typically belongs to an organization responsible for defining a specific type of content.
For example the client may belong to RosettaNet.org and submit a Content Validation
Service for validating RosettaNet PIPs. The client uses the standard
Submit/UpdateObjectsRequest interface to submit the Service. This is a one-time step to
configure this Content Management Service in the registry.

Once the Content Management Service has been submitted, a potentially different client
may submit content to the registry that is of the same object type for which the Content
Management Service has been submitted. The client uses the standard
Submit/UpdateObjectsRequest interface to submit the content.

The registry determines there is a Content Management Service S1 configured for the
object type for the content submitted. It invokes S1 using a
ContentManagementServiceRequest and passes it the content.

The Content Management Service S1 processes the content and sends back a
ContentManagementServiceResponse.

The registry then commits the content to the registry if there are no errors encountered.
The registry returns a RegistryResponse to the client for the
Submit/UpdateObjectsRequest in step 2.

May-2-2005Feb 22, 2007
Page 76 of 130

2538
2539

2540

2541
2542
2543
2544

2542
2543
2544

2543
2544

2544

2545

2546
2547
2547
2548
2548
2549
2549
2550
2551
2550
2551

1. SubmitObjectRequest | Service

Contmt+ Il B B B B B = ==
Metadata I

. SubmitObjectRequest
jectReq < |

SCIEQACICI MG RegisryResponse~— EOXML Registry

3. Content Gortao s 4. Content 5. commit
Management Metadata Management

Service Invocation Service

Control
Request File Response

Persistent
Store

Figure 15: Content Management Service: Inline Invocation Model

8.3.2 Decoupled Invocation Model

In a decoupled invocation model a registry MUST invoke a Content Management Service independent of
or decoupled from the Submit/UpdateObjectsRequest processing. Any errors encountered during
Content Management Service invocation MUST NOT have any impact on the original
Submit/UpdateObjectsRequest processing.

All metadata and content from the original Submit/UpdateObjectsRequest request MUST be committed
as an atomic transaction that is decoupled from the metadata and content that may be generated by the
Content Management Service invocation.

Figure 16 shows an abstract Content Management Service and how it is used by an ebXML Registry
using a decoupled invocation model. The steps are as follows:

1. Same as in inline invocation model (Content Management Service is submitted).
Same as in inline invocation model (client submits content using
Submit/UpdateObjectsRequest).

3. The registry processes the Submit/UpdateObjectsRequest and commits it to persistent
store.

4. The registry returns a RegistryResponse to the client for the
Submit/UpdateObjectsRequest in step 2.

5. The registry determines there is a Content Management Service S1 configured for the
object type for the content submitted. It invokes S1 using a
ContentManagementServiceRequest and passes it the content.

6. The Content Management Service S1 processes the content and sends back a
ContentManagementServiceResponse.

regrep-rs May-2,2005Feb 22, 2007
Copyright © OASIS Open 26052007. All Rights Reserved. Page 77 of 130

2551
2552
2553
2554
2555
2552

2553
2554

2555

2556
2557
2558

2557

2558
2559

2559

2560
2561
2562
2563
2564
2565
2565
2566
2566
2567
2568
2569

2570

7. 1If the ContentManagementServiceResponse includes any generated or modified content it
is committed to the persistent store as separate transaction. If there are any errors
encountered during decoupled invocation of a Content Management Service then these
errors are logged by the registry in a registry specific manner and MUST NOT be
reported back to the client.

1. SubmitObjectRequest Service

Contmt+ Il B = B B B B =
Metadata I
. SubmitObjectRequest
mitObjectRequ <!
3. commit
7. cqmmit

Service Invocation Service

Control
Request File Response

Persistent
Store

>.Content - i 6. Content
Management Metadata Management

Figure 16: Content Management Service: Decoupled Invocation Model

8.4 Content Management Service Protocol

This section describe the abstract Content Management Service protocol that is the base- protocol for
other concrete protocols such as Validate Content protocol and Catalog Content protocol. The concrete
protocols will be defined later in this document.

8.4.1 ContentManagementServiceRequestType

The ContentManagementServiceRequestType MUST be the abstract base type for all requests sent from
a registry to a Content Management Service.

8.4.1.1 Syntax:

<complexType name='"ContentManagementServiceRequestType'">
<complexContent>
<extension base='"rs:RegistryRequestType'">
<sequence>
<element name="OriginalContent"
type="rim:RegistryObjectListType" />
<element name="InvocationControlFile"
type="rim:ExtrinsicObjectType" maxOccurs="unbounded" minOccurs="0"/>
</sequence>
</extension>
</complexContent>
</complexType>

regrep-rs May-2,2005Feb 22, 2007
Copyright © OASIS Open 26052007. All Rights Reserved. Page 78 of 130

2571

2572
2573

2573
2574
2575
2576
2577

2574
2575
2576
2577
2578
2579

2575

2576

2577

2578

2579

2580
2581

2581
2582

2582
2583

2583

2584

2585
2586
2587
2588
2589

2586

2587

2588
2589
2590
2591
2592
2593
2594
2595

2596

2597

2598

8.4.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

= InvocationControlFile: This parameter specifies the ExtrinsicObject for a repository item
that the caller wishes to specify as the Invocation Control File. This specification does not
specify the format of this file. There MUST be a corresponding repository item as an
attachment to this request. The corresponding repository item SHOULD follow the same
rules as attachments in Submit/UpdateObjectsRequest.

= QOriginalContent: This parameter specifies the RegistryObjects that will be processed by
the content management service. In case of ExtrinsicObject instances within the
OriginalContent there MAY be repository items present as attachments to the
ContentManagementServiceRequest. This specification does not specify the format of
such repository items. The repository items SHOULD follow the same rules as
attachments in Submit/UpdateObjectsRequest.

8.4.1.3 Returns:

This request returns a ContentManagementServiceResponse. See section 8.4.2 for details.

8.4.1.4 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

= MissingRepositoryltemException: signifies that the caller did not provide a repository
item as an attachment to this request when the Service requires it.

= InvocationControlFileException: signifies that the InvocationControlFile(s) provided by
the caller do not match the InvocationControlFile(s) expected by the Service.

= UnsupportedContentException: signifies that this Service does not support the content
provided by the caller.

8.4.2 ContentManagementServiceResponseType

The ContentManagementServiceResponseType is sent by a Content Management Service as a
response to a ContentManagementServiceRequestType. The
ContentManagementServiceResponseType is the abstract base type for all responses sent to a registry
from a Content Management Service. It extends the RegistryResponseType and does not define any
new parameters.

8.4.2.1 Syntax:

<complexType name='"ContentManagementServiceResponseType">
<complexContent>
<extension base='"rs:RegistryResponseType'>
<sequence>
</sequence>
</extension>
</complexContent>
</complexType>

8.4.2.2 Parameters:

No new parameters are defined other than those inherited from RegistryResponseType.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 79 of 130

2599

2600

2601
2602

2602

2603
2604
2605
2606
2607
2608
2609
2610
2611

2604
2605
2606

2605
2606
2607
2608

2606
2607

2607
2608

2608
2609

2610
2611

2611
2612
2613
2614
2615
2616
2617

2612

8.5

Publishing / Configuration of a Content Management Service

Any Submitter MAY submit an arbitrary Content Management Service to an ebXML Registry. The
Content Management Service MUST be published using the standard LifeCycleManager interface.

The Submitter MUST use the standard Submit/UpdateObjectsRequest to publish:

(0]

regrep-rs

A Service instance for the Content Management Service. In Figure 17 this is exemplified by the
defaultXMLCatalogingService in the upper-left corner. The Service instance MUST have an
Association with a ClassificationNode in the canonical ObjectType ClassificationScheme as
defined by [ebRIM]. The Service MUST be the sourceObject while a ClassificationNode MUST
be the targetObject. This association binds the Service to that specific ObjectType. The
associationType for this Association instance MUST be “ContentManagementServiceFor.” The
Service MUST be classified by the canonical ContentManagementService ClassificationScheme
as defined by [ebRIM]. For example it may be classified as a “ContentValidationService” or a
“ContentCatalogingService.”

The Service instance MAY be classified by a ClassificationNode under the canonical
InvocationModel ClassificationScheme as defined by [ebRIM], to determine whether it uses the
Inline Invocation model or the Decoupled Invocation model.

The Service instance MAY be classified by a ClassificationNode under the canonical
ErrorHandlingModel ClassificationScheme as defined by [ebRIM], to determine whether the
Service should fail on first error or simply log the error as a warning and continue. See section
8.6.4 for details.

A ServiceBinding instance contained within the Service instance that MUST provide the
accessURI to the Cataloging Service.

An optional ExternalLink instance on the ServiceBinding that is resolvable to a web page
describing:

= The format of the supported content to be Cataloged
= The format of the supported Invocation Control File

Note that no SpecificationLink is required since this specification [ebRS] is implicit for Content
Cataloging Services.

One or more Invocation Control File(s) consisting of an ExtrinsicObject and a repository item
pair. The ExtrinsicObject for the Invocation Control File MUST have a required Association with
associationType value that references a descendant ClassificationNode of the canonical
ClassificationNode “InvocationControlFileFor.” This is exemplified by the
cppCatalogingServiceXSLT and the oagBODCatalogingServiceXSLT objects in Figure 17 (left
side of picture). The Invocation Control File MUST be the sourceObject while a
ClassificationNode in the canonical ObjectType ClassificationScheme MUST be the targetObject.

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 80 of 130

catalogerClassification:Classification N catalogingSenviceMode
classificationdode., -)
[code = "ContentZatalogingService"]

classified Ohject

objectTypes:ClassificationScheme

defaultXML CatalogingSernvice:Service xmiCataloginyServiceDoc:Externall ink
documentation
sourcelbject parent arent
catalogingSenviceAssoc:Association xmiObjectType:ClassificationMode imageObjectType:ClassificationNode
[associationType=ContentManagementServiceF ar]
targetObject
arent arent
cppCatalogingServiceXSLT:ExtrinsicObject
cppObject Type:ClassificationNode 0aygBODObjectType:ClassificationMode
\SourceObject —=
targetlpject
MabjectType targetQiject arent
invocationControlFile:Association
[agsociationType=InvocationZontrolFileFor]
AckDelive, ceiptObjectType:ClassificationNode
oagBODCatalogingServiceXSL T:ExtrinsicObject
\: bjectType
\sourceObject
chpDocument:ExtrinsicObject AckDelive ceiptDocument:ExtrinsicObject
invocationControlFile2:Association
[associationType=InvacationContralFileF ar]
2613
2614 Figure 17: Cataloging Service Configuration

2615 Figure 17 shows an example of the configuration of the Canonical XML Cataloging Service associated
2616 with the objectType for XML content. This Cataloging Service may be used with any XML content that
2617 has its objectType attribute hold a reference to the xmlObjectType ClassificationNode or one of its
2618 descendants.

2616 The figure also shows two different Invocation Control Files, cppCatalogingServiceXSLT and
2617 oagBODCatalogingServiceXSLT that may be used to catalog ebXML CPP and OAG Business Object
2618 Documents (BOD) respectively.

2617 8.5.1 Multiple Content Management Services and Invocation Control
2618 Files

2618 This specification allows clients to submit multiple Content Management Services of the same type (e.g.
2619 validation, cataloging) and multiple Invocation Control Files for the same objectType. Content

2620 Management Services of the same type of service for the same ObjectType are referred to as peer

2621 Content Management Services.

2619

2620 When there are multiple Content Management Services and Invocation Control Files for the same

2621 ObjectType there MUST be an unambiguous association between a Content Management Service and
2622 its Invocation Control File(s). This MUST be defined by an Association instance with associationType
2623 value that references a ClassificationNode that is a descendant of the canonical ClassificationNode
2624 “InvocationControlFileFor” where the ExtrinsicObject for each Invocation Control File is the sourceObject

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 81 of 130

2621

2622
2623

2623

2624

2625

2626
2627
2628

2627

2628

2629
2630
2631
2632
2633

2630
2631
2632

2631
2632
2633
2634
2635

2632
2633
2634
2635

2633
2634
2635

2634

2635
2636
2637
2638
2639
2640

2636

2637

2638

2638

2639

and the Service is the targetObject.

The order of invocation of peer Content Management Services is undefined and MAY be determined in a
registry specific manner.

8.6 Invocation of a Content Management Service

This section describes how a registry invokes a Content Management Service.

8.6.1 Resolution Algorithm For Service and Invocation Control File

When a registry receives a submission of a RegistryObject, it MUST use the following algorithm to
determine or resolve the Content Management Services and Invocation Control Files to be used for
dynamic content management for the RegistryObject:

1. Get the objectType attribute of the RegistryObject.

2. Query to see if the ClassificationNode referenced by the objectType is the targetObject of an Association
with associationType of ContentManagementServiceFor. If the desired Association is not found for this
ClassificationNode then repeat this step with its parent ClassificationNode. Repeat until the desired
Association is found or until the parent is the ClassificationScheme. If desired Association(s) is found then
repeat following steps for each such Association instance.

3. Check if the sourceObject of the desired Association is a Service instance. If not, log an
InvalidConfigurationException. If it is a Service instance, then use this Service as the Content
Management service for the RegistryObject.

4. Query to see if the objectType ClassificationNode is the targetObject of one or more Associations whose
associationType value references a ClassificationNode that is a descendant of the canonical
ClassificationNode InvocationControlFileFor. If desired Association is not found for this
ClassificationNode then repeat this step with its parent ClassificationNode. Repeat until the desired
Association is found or until the parent is the ClassificationScheme.

5. If desired Association(s) is found then check if the sourceObject of the desired Association is an
ExtrinsicObject instance. If not, log an InvalidConfigurationException. If sourceObject is an
ExtrinsicObject instance, then use its repository item as an Invocation Control File. If there are multiple
InvocationControlFiles then all of them MUST be provided when invoking the Service.

The above algorithm allows for objectType hierarchy to be used to configure Content Management
Services and Invocation Control Files with varying degrees of specificity or specialization with respect to
the type of content.

8.6.2 AuditTrail and Cataloged Content

The Cataloged Content generated as a result of the invocation of a Content Management Service has an
audit trail consistent with RegistryObject instances that are submitted by Registry Clients. However, since
a Registry Client does not submit Cataloged Content, the user attribute of the AuditableEvent instances
for such Cataloged Content references the Service object for the Content Management Service that
generated the Cataloged Content. This allows an efficient way to distinguish Cataloged Content from
content submitted by Registry Clients.

8.6.3 Referential Integrity

A registry MUST maintain referential integrity between the RegistryObjects and repository items
invocation of a Content Management Service.

8.6.4 Error Handling

If the Content Management Service is classified by the “FailOnError” ClassificationNode under canonical

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 82 of 130

2640
2641
2642

2641
2642
2643
2644
2645
2646
2647

2642

2643
2644
2645

2644
2645
2646

2645
2646

2646
2647

2648

2649
2650
2651
2652

2650

2651
2652
2653
2654
2655

ErrorHandlingModel ClassificationScheme as defined by [ebRIM], then the registry MUST stop further
processing of the Submit/UpdateObjectsRequest and return status of “Failure” upon first error returned
by a Content Management Service Invocation.

If the Content Management Service is classified by the “LogErrorAndContinue” ClassificationNode under
ErrorHandlingModel then the registry MUST continue to process the Submit/UpdateObjectsRequest and
not let any Content Management Service invocation error affect the storing of the RegistryObjects and
repository items that were submitted. Such errors SHOULD be logged as Warnings within the
RegistryResponse returned to the client. In this case a registry MUST return a normal response with
status of “Success” if the submitted content and metadata is stored successfully even when there are
errors encountered during dynamic invocation of one or more Content Management Services.

8.7 Validate Content Protocol

The interface of a Content Validation Service MUST implement a single method called validateContent.
The validateContent method accepts a ValidateContentRequest as parameter and returns a
ValidateContentResponse as its response if there are no errors.

The OriginalContent element within a ValidateContentRequest MUST contain exactly one RegistryObject
that needs to be cataloged. The resulting ValidateContentResponse contains the status attribute that
communicates whether the RegistryObject (and its content) are valid or not.

The Validate Content protocol does not specify the implementation details of any specific Content
Validation Service.

reqgistns1 validator
ContentalidationService

I
I
validateContent®falidate ContentReguestivalidate ContentResponse |

] b

Figure 18: Validate Content Protocol

8.7.1 ValidateContentRequest

The ValidateContentRequest is used to pass content to a Content Validation Service so that it can
validate the specified RegistryObject and any associated content. The RegistryObject typically is an
ExternalLink (in the case of external content) or an ExtrinsicObject. The ValidateContentRequest extends
the base type ContentManagementServiceRequestType.

8.7.1.1 Syntax:

<element name="ValidateContentRequest'>

<complexType>
<complexContent>
<extension base="cms:ContentManagementServiceRequestType">
<sequence>
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 83 of 130

2656
2657
2658
2659
2660

2661

2662

2663
2664

2664
2665

2665
2666
2667
2668
2669
2670

2666

2667

2668

2669

2670

2671
2672
2673

2672

2673

2674
2675

2675

2676

2677
2678
2679
2680
2681
2682
2683
2684
2685
2686

2687

2688

2689
2690

</sequence>
</extension>
</complexContent>
</complexType>
</element>

8.7.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

= InvocationControlFile: Inherited from base type. This parameter may not be present. If
present its format is defined by the Content Validation Service.

= QOriginalContent: Inherited from base type. This parameter MUST contain exactly one
RegistryObject (e.g. ExternalLink, ExtrinsicObject) and potentially an associated content.
This specification does not specify the format of the content. If it is an ExtrinsicObject
then there MAY be a corresponding repository item as an attachment to this request that
is the content. The corresponding repository item SHOULD follow the same rules as
attachments in Submit/UpdateObjectsRequest.

8.7.1.3 Returns:

This request returns a ValidateContentResponse. See section 8.7.2 for details.

8.7.1.4 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

= InvalidContentException: signifies that the specified content was found to be invalid. The
exception SHOULD include enough detail for the client to be able to determine how to
make the content valid.

8.7.2 ValidateContentResponse

The ValidateContentResponse is sent by the Content Validation Service as a response to a
ValidateContentRequest.

8.7.2.1 Syntax:

<element name="ValidateContentResponse'>
<complexType>
<complexContent>
<extension base="cms:ContentManagementServiceResponseType">
<sequence>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

8.7.2.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 84 of 130

2690
2691

2691

2692
2693
2693
2694
2695
2696
2697
2694

2695

2696
2697
2698

2697
2698
2699

2698
2699

2699
2700

2701

2702
2703
2704
2705

2703

2704

= status: Inherited attribute. This enumerated value is used to indicate the status of the
request. Values for status are as follows:

« Success - This status specifies that the content specified in the
ValidateContentRequest was valid.

« Failure - This status specifies that the request failed. If the error returned is
an InvalidContentException then the content specified in the
ValidateContentRequest was invalid. If there was some other failure
encountered during the processing of the request then a different error
MAY be returned.

8.8 Catalog Content Protocol

The interface of the Content Cataloging Service MUST implement a single method called
catalogContent. The catalogContent method accepts a CatalogContentRequest as parameter and
returns a CatalogContentResponse as its response if there are no errors.

The CatalogContentRequest MAY contain repository items that need to be cataloged. The resulting
CatalogContentResponse contains the metadata and possibly content that gets generated or updated by
the Content Cataloging Service as a result of cataloging the specified repository items.

The Catalog Content protocol does not specify the implementation details of any specific Content
Cataloging Service.

reqgistns1 cataloger
ContentCataloginnService

I
I
catalogContent{CatalogContentRequest: CatalogContentResponse |

J g

Figure 19: Catalog Content Protocol

8.8.1 CatalogContentRequest

The CatalogContentRequest is used to pass content to a Content Cataloging Service so that it can
create catalog metadata for the specified RegistryObject and any associated content. The RegistryObject
typically is an ExternalLink (in case of external content) or an ExtrinsicObject. The
CatalogContentRequest extends the base type ContentManagementServiceRequestType.

8.8.1.1 Syntax:

<element name="CatalogContentRequest'">

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 85 of 130

2705
2706
2707
2708
2709
2710
2711
2712
2713

2714
2715

2716

2717
2718

2718
2719

2719
2720
2721
2722
2723
2724

2720

2721

2722

2723

2724

2725
2726

2726

2727

2728
2729

2729

2730

2731
2732
2733
2734
2735
2736
2737
2737
2738
2739
2740
2741

2742

<complexType>
<complexContent>
<extension base="cms:ContentManagementServiceRequestType">
<sequence>
</sequence>
</extension>
</complexContent>
</complexType>
</element>

8.8.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

= InvocationControlFile: Inherited from base type. If present its format is defined by the
Content Cataloging Service.

= OQOriginalContent: Inherited from base type. This parameter MUST contain exactly one
RegistryObject (e.g. ExternalLink, ExtrinsicObject) and potentially an associated content.
This specification does not specify the format of the content. If it is an ExtrinsicObject
then there MAY be a corresponding repository item as an attachment to this request that
is the content. The corresponding repository item SHOULD follow the same rules as
attachments in Submit/UpdateObjectsRequest.

8.8.1.3 Returns:

This request returns a CatalogContentResponse. See section 8.8.2 for details.

8.8.14 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

= CatalogingException: signifies that an exception was encountered in the Cataloging
algorithm for the service.

8.8.2 CatalogContentResponse

The CatalogContentResponse is sent by the Content Cataloging Service as a response to a
CatalogContentRequest.

8.8.2.1 Syntax:

<element name="CatalogContentResponse'>
<complexType>
<complexContent>
<extension base="cms:ContentManagementServiceResponseType">
<sequence>
<element name='"CatalogedContent"
type="rim:RegistryObjectListType" />

</sequence>
</extension>
</complexContent>
</complexType>
</element>
regrep-rs May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 86 of 130

2743

2744
2745

2745
2746
2747
2748
2749
2750

2746
2747

2748

2749
2750
2751
2750
2751
2752

2752
2753

2753
2754
2755
2756

2754
2755

2756

8.8.2.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

= CatalogedContent: This parameter specifies a collection of RegistryObject instances
that were created or updated as a result of dynamic content cataloging by a content
cataloging service. The Content Cataloging Service may add metadata such as
Classifications, Externalldentifiers, name, description etc. to the CatalogedContent
element. There MAY be an accompanying repository item as an attachment to this
response message if the original repository item was modified by the request.

8.9 Illlustrative Example: Canonical XML Cataloging Service

Figure 20 shows a UML instance diagram to illustrate how a Content Cataloging Service is used. This
Content Cataloging Service is the normative Canonical XML Cataloging Service described in section
8.10.

In the center we see a Content Cataloging Service name defaultXMLCataloger Service.

On the left we see a CPP repository item and its ExtrinsicObject inputExtObjForCPP being input
as Original Content to the defaultXMLCataloging Service.

o Ontop we see an XSLT style sheet repository item and its ExtrinsicObject that is configured as
an Invocation Control File for the defaultXMLCataloger Service.

o On the right we see the outputExtObjForCPP, which is the modified ExtrinsicObject for the CPP.
We also see a Classification roleClassification, which classifies the CPP by the Role element
within the CPP. These are the Cataloged Content generated as a result of the Cataloging Service
cataloging the CPP.

- |cppCatalogingServiceXSLT:ExtrinsicObject CPP XSLT repository item
|
: —

: Invocation Control File
|
|

777777777777777777777 . CatalogedContent

| \w’ '
| . I L L . X
1 inputExtObiFor CPP:ExtrinsicObject | ' |defaultkML CatalogingService:Senvice | outputExtOhiFor CPP:ExtrinsicObject !
? B -3 @
| | | ;
T | ‘ ! tlassifiedObject
| | : |
1 I | : ‘
! Y | T |
| CPP document repository item : .| roleClassification:Classification 3

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 87 of 130

2757

2758
2759

2759
2760
2761
2762
2763
2764

2765
2766
2767
2768

2766
2767

2767
2768
2769
2770
2771
2772

2768
2769

2769

2770

2771
2772
2773

8.10

Canonical XML Content Cataloging Service

An ebXML Registry MUST provide the canonical XML Content Cataloging Service natively as a built-in
service with the following constraints:

There is exactly one Service instance for the Canonical XML Content Cataloging Service
The Service is an XSLT engine

The Service may be invoked with exactly one Invocation Control File

The Original Content for the Service MUST be XML document(s)

The Cataloged Content for the Service MUST be XML document(s)

The Invocation Control File MUST be an XSLT style sheet

Each invocation of the Service MAY be with different Invocation Control File (XSLT style sheet)
depending upon the objectType of the RegistryObject being cataloged. Each objectType
SHOULD have its own unique XSLT style sheet. For example, ebXML CPP documents SHOULD
have a specialized ebXML CPP Invocation Control XSLT style sheet.

The Service MUST have at least one input XML document that is a RegistryObject. Typically this
is an ExtrinsicObject or an ExternallLink.

The Service MAY have at most one additional input XML document that is the content
represented by the RegistryObject (e.g. a CPP document or an HL7 Conformance Profile). The
optional second input MUST be referenced within the XSLT Style sheet by a using the
“document” function with the document name specified by variable “repositoryltem” as in
“document($repositoryltem).” A registry MUST define the variable “repositoryltem” when
invoking the Canonical XML Cataloging Service.

The canonical XML Content Cataloging Service MUST apply the XSLT style sheet to the input
XML instance document(s) in an XSLT transformation to generate the Cataloged Output.

The Canonical XML Content Cataloging Service is a required normative feature of an ebXML Registry.

8.10.1

Publishing of Canonical XML Content Cataloging Service

An ebXML Registry MUST provide the canonical XML Content Cataloging Service natively as a built-in

service.

This built-in service MUST be published to the registry as part of the intrinsic bootstrapping of

required canonical data within the registry.

regrep-rs

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 88 of 130

2772

2773
2774

2774

2775
2776

2776

2777
2778

2778
2779

2779
2780

2781

2782

2783
2784
2785
2786

2784

2785
2786
2787

2786
2787

2787

2788

2788

2789
2790

9 Cooperating Registries Support

This chapter describes the capabilities and protocols that enable multiple ebXML registries to cooperate
with each other to meet advanced use cases.

9.1 Cooperating Registries Use Cases

The following is a list of use cases that illustrate different ways that ebXML registries cooperate with each
other.

9.1.1 Inter-registry Object References

A Submitting Organization wishes to submit a RegistryObject to a registry such that the submitted object
references a RegistryObject in another registry.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in
another registry.

Registry-1 Registry-2

Organization-A Organization-B

Figure 21: Inter-registry Object References

9.1.2 Federated Queries

A client wishes to issue a single query against multiple registries and get back a single response that
contains results based on all the data contained in all the registries. From the client’s perspective it is
issuing its query against a single logical registry that has the union of all data within all the physical
registries.

9.1.3 Local Caching of Data from Another Registry

A destination registry wishes to cache some or all the data of another source registry that is willing to
share its data. The shared dataset is copied from the source registry to the destination registry and is
visible to queries on the destination registry even when the source registry is not available.

Local caching of data may be desirable in order to improve performance and availability of accessing that
object.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in
another registry, and the first registry caches the second RegistryObject locally.

9.1.4 Object Relocation

A Submitting Organization wishes to relocate its RegistryObjects and/or repository items from the
registry where it was submitted to another registry.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 89 of 130

2790

2791
2792
2793

2792
2793

2794
2795
2796

2795
2796
2797

2796

2797

2798
2799
2800
2801

2799
2800
2801

2802
2803
2804

2803

9.2 Registry Federations

A registry federation is a group of registries that have voluntarily agreed to form a loosely coupled union.
Such a federation may be based on common business interests and specialties that the registries may
share. Registry federations appear as a single logical registry to registry clients.

Registry-1

b

Organization-A

Registry-2

) i)

Organization-B . Organization-B .

Individual Registries Registry Federation
Figure 22: Registry Federations

Registry federations are based on a peer-to-peer (P2P) model where all participating registries are
equal. Each participating registry is called a registry peer. There is no distinction between the registry
operator that created a federation and those registry operators that joined that Federation later.

Any registry operator MAY form a registry federation at any time. When a federation is created it MUST
have exactly one registry peer which is the registry operated by the registry operator that created the
federation.

Any registry MAY choose to voluntarily join or leave a federation at any time.

9.2.1 Federation Metadata

The Registry Information model defines the Registry and Federation classes. Instances of these classes
and the associations between these instances describe a federation and its members. Such instance
data is referred to as Federation Metadata. The Registry and Federation classes are described in detail
in [ebRIM].

The Federation information model is summarized here as follows:
o A Federation instance represents a registry federation.
o A Registry instance represents a registry that is a member of the Federation.

o An Association instance with associationType of HasFederationMember represents membership
of the registry in the federation. This Association links the Registry instance and the Federation
instance.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 90 of 130

federation

sourceQhject |sourceObject

req1-fed1:Association regZ-fed1:Association
[associationType=HasFederationdMember] [associationType=HasFederationMemher]
targetOhject targetOhject
registry-1 registry?
2804
2805 Figure 23: Federation Metadata Example

2806 9.2.2 Local Vs. Federated Queries

2807 A federation appears to registry clients as a single unified logical registry. An AdhocQueryRequest sent
2808 by a client to a federation member MAY be local or federated. A new boolean attribute named federated
2809 is added to AdhocQueryRequest to indicate whether the query is federated or not.

2808 9.2.2.1 Local Queries

2809 When the federated attribute of AdhocQueryRequest has the value of false then the query is a local
2810 query. In the absence of a federated attribute the default value of federated attribute is false.

2810 A local AdhocQueryRequest is only processed by the registry that receives the request. A local
2811 AdhocQueryRequest does not operate on data that belongs to other registries.

2811 9.2.2.2 Federated Queries

2812 When the federated attribute of AdhocQueryRequest has the value of true then the query is a federated
2813 query.

2813 A federation member MUST route a federated query received by it to all other federation member

2814 registries on a best attempt basis. If a member is not reachable for any reason then it MAY be skipped.

2814 When a registry routes a federated query to other federation members it MUST set the federated
2815 attribute value to false and the federation attribute value to null to avoid infinite loops.

2815 A federated query operates on data that belongs to all members of the federation.

2816 When a client submits a federated query to a registry such that the query specifies no federation and no
2817 federations exist in the registry, then the registry MUST treat it as a local query.

2817 When a client submits a federated query that invokes a parameterized stored query, the registry MUST
2818 resolve the parameterized stored query into its non-stored formed and MUST replace all variables with
2819 user-supplied parameters on registry supplied contextual parameters before routing it to a federation
2820 member.

2818 When a client submits a federated iterative query, the registry MUST use the startindex attribute value of
2819 the original request as the startindex attribute value of the routed request sent to each federation

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 91 of 130

2819
2820
2821
2822

2820

2821
2822
2823

2822
2823
2824

2823

2824

2825
2826

2826
2827
2828

2827

2828
2829

2829
2830
2831

2830
2831

2831

2832

2833
2834
2835
2836
2837

2834
2835
2836
2837

2835

2836
2837
2838

member. The response to the original request MUST be the union of the results from each routed query.
In such cases the registry MUST return a totalResultCount attribute value on the federated query
response to be equal to the maximum of all totalResultCount attribute values returned by each federation
member.

9.2.2.3 Membership in Multiple Federations

A registry MAY be a member of multiple federations. In such cases if the federated attribute of
AdhocQueryRequest has the value of true then the registry MUST route the federated query to all
federations that it is a member of.

Alternatively, the client MAY specify the id of a specific federation that the registry is a member of, as the
value of the federation parameter. The type of the federation parameter is anyURI and identifies the “id”
attribute of the desired Federation.

In such cases the registry MUST route the federated query to the specified federation only.

9.2.3 Federated Lifecycle Management Operations

Details on how to create and delete federations and how to join and leave a federation are described in
9.2.8.

All lifecycle operations SHOULD be performed on a RegistryObject within its home registry using the
operations defined by the LifeCycleManager interface. Unlike query requests, lifecycle management
requests do not support any federated capabilities.

9.2.4 Federations and Local Caching of Remote Data

A federation member is not required to maintain a local cache of replicas of RegistryObjects and
repository items that belong to other members of the federation.

A registry MAY choose to locally cache some or all data from any other registry whether that registry is a
federation member or not. Data caching is orthogonal to registry federation and is described in section
9.3.

Since by default there is minimal replication in the members of a federation, the federation architecture
scales well with respect to memory and disk utilization at each registry.

Data replication is often necessary for performance, scalability and fault-tolerance reasons.

9.2.5 Caching of Federation Metadata

A special case for local caching is the caching of the Federation and Registry instances and related
Associations that define a federation and its members. Such data is referred to as federation metadata. A
federation member is required to locally cache the federation metadata, from the federation home for
each federation that it is a member of. The reason for this requirement is consistent with a Peer-to-Peer
(P2P) model and ensures fault-tolerance in case the Federation home registry is unavailable.

The federation member MUST keep the cached federation metadata synchronized with the master copy
in the Federation home, within the time period specified by the replicationSyncLatency attribute of the
Federation. Synchronization of cached Federation metadata may be done via synchronous polling or
asynchronous event notification using the event notification feature of the registry.

9.2.6 Time Synchronization Between Registry Peers

Federation members are not required to synchronize their system clocks with each other. However, each
Federation member SHOULD keep its clock synchronized with an atomic clock server within the latency
described by the replicationSyncLatency attribute of the Federation.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 92 of 130

2837

2838
2839
2840
2841
2842
2843
2844

2839

2840
2841
2842
2843
2844

2841

2842

2843
2844
2845
2846

2844
2845
2846
2847

2845

2846

2847

2848
2849

2849
2850

2851

2852

2853

2854
2855
2856

2855

2856

2857
2858

9.2.7 Federations and Security

Federated operations abide by the same security rules as standard operations against a single registry.
However, federation operations often require registry-to-registry communication. Such communication is
governed by the same security rules as a Registry Client to registry communication. The only difference
is that the requesting registry plays the role of Registry Client. Such registry-to-registry communication
SHOULD be conducted over a secure channel such as HTTP/S. Federation members SHOULD be part
of the same SAML Federation if member registries implement the Registry SAML Profile described in
chapter 11.

9.2.8 Federation Lifecycle Management Protocols

This section describes the various operations that manage the lifecycle of a federation and its
membership. Federation lifecycle operations are done using standard LifeCycleManager interface of the
registry in a stylized manner. Federation lifecycle operations are privileged operations. A registry
SHOULD restrict Federation lifecycle operations to registry User’s that have the RegistryAdministrator
role.

9.2.8.1 Joining a Federation

The following rules govern how a registry joins a federation:

* Each registry SHOULD have exactly one Registry instance within that registry for which itis a
home. The Registry instance is owned by the RegistryOperator and may be placed in the registry
using any operator specific means. The Registry instance SHOULD never change its home
registry.

* Aregistry MAY request to join an existing federation by submitting an instance of an Extramural
Association that associates the Federation instance as sourceObiject, to its Registry instance as
targetObject, using an associationType of HasFederationMember. The home registry for the
Association and the Federation objects MUST be the same.

9.2.8.2 Creating a Federation

The following rules govern how a federation is created:

* A Federation is created by submitting a Federation instance to a registry using
SubmitObjectsRequest.

* The registry where the Federation is submitted is referred to as the federation home.
* The federation home may or may not be a member of that Federation.

» A federation home MAY contain multiple Federation instances.

9.2.8.3 Leaving a Federation

The following rules govern how a registry leaves a federation:

A registry MAY leave a federation at any time by removing its HasFederationMember Association
instance that links it with the Federation instance. This is done using the standard
RemoveObjectsRequest.

9.2.8.4 Dissolving a Federation

The following rules govern how a federation is dissolved:

» A federation is dissolved by sending a RemoveObjectsRequest to its home registry and removing
its Federation instance.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 93 of 130

2858
2859

2859
2860
2861
2862

2860

2861

2862
2863
2864
2865

2863
2864
2865

2864

2865
2866

2867

2868

2869
2870

2870
2871
2872

2871
2872

2872
2873

9.3

The removal of a Federation instance is controlled by the same Access Control Policies that
govern any RegistryObject.

The removal of a Federation instance is controlled by the same lifecycle management rules that
govern any RegistryObject. Typically, this means that a federation MUST NOT be dissolved while
it has federation members. It MAY however be deprecated at any time. Once a Federation is
deprecated no new members can join it.

Object Replication

RegistryObjects within a registry MAY be replicated in another registry. A replicated copy of a remote
object is referred to as its replica. The remote object MAY be an original object or it MAY be a replica. A
replica from an original is referred to as a first-generation replica. A replica of a replica is referred to as a
second-generation replica (and so on).

The registry that replicates a remote object locally is referred to as the destination registry for the
replication. The registry that contains the remote object being replicated is referred to as the source
registry for the replication.

Registry-1 Registry-1

b b

Organization-A Organizétion-A
Registry-2 ' Registry-2
Feplica of

Organization-B Organization-B

Organization-A

9.3.1

Before Replication After Replication
Figure 24: Object Replication

Use Cases for Object Replication

A registry MAY create a local replica of a remote object for a variety of reasons. A few sample use cases

follow:

(0]

regrep-rs

Improve access time and fault tolerance by locally caching remote objects. For example, a
registry MAY automatically create a local replica when a remote ObjectRef is submitted to the
registry.

Improve scalability by distributing access to hotly contested objects, such as NAICS scheme,
across multiple replicas.

Enable cooperating registry features such as hierarchical registry topology and local caching of
federation metadata.

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 94 of 130

2873

2874
2875
2876

2875
2876
2877

2876

2877
2878

2878

2879
2880
2881

2880

2881
2882
2883
2884
2885

2882
2883

2883
2884

2884
2885
2886
2887

2885
2886
2887

2886
2887

2887

2888
2889

2889
2890

2890
2891

2891

2892

2893

9.3.2 Queries And Replicas

A registry MUST support client queries to consider a local replica of remote object as if it were a local
object. Local replicas are considered within the extent of the data set of a registry as far as local queries
are concerned.

When a client submits a local query that retrieves a remote object by its id attribute, if the registry
contains a local replica of that object then the registry SHOULD return the state defined by the local
replica.

9.3.3 Lifecycle Operations And Replicas

LifeCycle operations on an original object MUST be performed at the home registry for that object.
LifeCycle operations on replicas of an original object should result in an InvalidRequestException.

9.3.4 Object Replication and Federated Registries

Object replication capability is orthogonal to the registry federation capability. Objects MAY be replicated
from any registry to any other registry without any requirement that the registries belong to the same
federation.

9.3.5 Creating a Local Replica

Any Submitting Organization can create a replica by using the standard SubmitObjectsRequest. If a
registry receives a SubmitObjectsRequest that has a RegistryObjectList containing a remote ObjectRef,
then it MUST create a replica for that remote ObjectRef. In such cases the User that submitted the
ObjectRef (via a SubmitObjectsRequest) owns the replica while the original RegistryObject is owned by
its original owner.

In addition to Submitting Organizations, a registry itself MAY create a replica under specific situations in
a registry specific manner.

Creating a local replica requires the destination registry to read the state of the remote object from the
source registry and then create a local replica of the remote object.

A registry SHOULD use standard QueryManager interface to read the state of a remote object (whether
it is an original or a replica). No new APIs are needed to read the state of a remote object. Since query
functionality does not need prior registration, no prior registration or contract is needed for a registry to
read the state of a remote object.

Once the state of the remote object has been read, a registry MAY use registry specific means to create
a local replica of the remote object. Such registry specific means MAY include the use of the
LifeCycleManager interface.

A replica of a RegistryObject may be distinguished from an original since a replica MUST have its home
attribute point to the remote registry where the original for the replica resides.

9.3.6 Transactional Replication

Transactional replication enables a registry to replicate events in another registry in a transactionally
consistent manner. This is typically the case when entire registries are replicated to another registry.

This specification defines a more loosely coupled replication model as an alternative to transactional
replication for the following reasons:

* Transactional replication requires a tight coupling between registries participating in the
replication

* Transactional replication is not a typical use case for registries

» Loosely coupled replication as defined by this specification typically suffices for most use cases

* Transaction replication is very complex and error prone

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 95 of 130

2894

2895

2896

2897
2898
2899

2898

2899

2900
2901
2902
2903

2901

2902
2903
2904
2905
2906

2903

2904
2905
2906

2905

2906
2907
2908

2907

2908
2909
2910

2909
2910

2910
2911

Registry implementations are not required to implement transactional replication.

9.3.7 Keeping Replicas Current

A registry MUST keep its replicas current within the latency specified by the value of the
replicationSyncLatency attribute defined by the registry. This includes removal of the replica when its
original is removed from its home registry.

Replicas MAY be kept current using the event notification feature of the registry or via periodic polling.

9.3.8 Lifecycle Management of Local Replicas

Local Replicas are read-only objects. Lifecycle management actions are not permitted on local replicas
with the exception of the Delete action which is used to remove the replica. All other lifecycle
management actions MUST be performed on the original RegistryObject in the home registry for the
object.

9.3.9 Tracking Location of a Replica

A local replica of a remote RegistryObject instance MUST have exactly one ObjectRef instance within
the local registry. The home attribute of the ObjectRef associated with the replica tracks its home
location. A RegistryObject MUST have exactly one home. The home for a RegistryObject MAY change
via Object Relocation as described in section 9.4. It is optional for a registry to track location changes for
replicas within it.

9.3.10 Remote Object References to a Replica

It is possible to have a remote ObjectRef to a RegistryObject that is a replica of another RegistryObject.
In such cases the home attribute of the ObjectRef contains the base URI to the home registry for the
replica.

9.3.11 Removing a Local Replica

A client can remove a replica by using the RemoveObjectsRequest. If a registry receives a
RemoveObjectsRequest that has an ObjectRefList containing a remote ObjectRef, then it MUST remove
the local replica for that remote ObjectRef assuming that the client was authorized to remove the replica.

9.4 Object Relocation Protocol

Every RegistryObject has a home registry and a User within the home registry that is the Submitter or
owner of that object. Initially, the home registry is the where the object is originally submitted. Initially, the
owner is the User that submitted the object.

A RegistryObject MAY be relocated from one home registry to another home registry using the Object
Relocation protocol.

Within the Object Relocation protocol, the new home registry is referred to as the destination registry
while the previous home registry is called the source registry.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 96 of 130

2911
2912

2913
2914
2915
2916

2914
2915
2916

2915

2916
2917

2917
2918

2918
2919
2920
2921
2922

2919
2920

2920
2921

2921
2922
2923

2922
2923

2924

sourceRegistry sourceRegistry
ﬁl _______________________ -
Organization-A Uﬁ:l % Iﬁ- 1
destinationRegistry de étinationRegistry
'. E ______________________ e
User-2 Organization-A User-2
Before After

Figure 25: Object Relocation

The User at the source registry who owns the objects being relocated is referred to as the
ownerAtSource. The User at the destination registry, who is the new owner of the objects, is referred to
as the ownerAtDestination. While the ownerAtSource and the ownerAtDestination may often be the
same, the Object Relocation protocol treats them as two distinct identities.

A special case usage of the Object Relocation protocol is to transfer ownership of RegistryObjects from
one User to another within the same registry. In such cases the protocol is the same except for the fact
that the source and destination registries are the same.

Following are some notable points regarding object relocation:

regrep-rs

Object relocation does not require that the source and destination registries be in the same
federation or that either registry have a prior contract with the other.

Object relocation MUST preserve object id. While the home registry for a RegistryObject MAY
change due to object relocation, its id never changes.

ObjectRelocation MUST preserve referential integrity of RegistryObjects. Relocated objects that
have references to an object that did not get relocated MUST preserve their reference. Similarly
objects that have references to a relocated object MUST also preserve their reference. Thus,
relocating an object may result in making the value of a reference attribute go from being a local
reference to being a remote reference or vice versa.

AcceptObjectsRequest does not include ObjectRefList. It only includes an opaque transactonld
identifying the relocateObjects transaction.

The requests defined by the Relocate Objects protocol MUST be sent to the source or
destination registry only.

When an object is relocated an AuditableEvent of type “Relocated” MUST be recorded by the
sourceRegistry. Relocated events MUST have the source and destination registry’s base URIs
recorded as two Slots on the Relocated event. The names of these Slots are:

o urn:oasis:nanes:tc:ebxm -regrep:rs:events:sourceRegistry
o urn:oasis:nanes:tc:ebxm -regrep:rs:events: destinationRegistry

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 97 of 130

2925
2926

2927
2928
2929

2928

2929
2930
2931
2932
2933
2934

2930
2931
2932
2933
2934

2931
2932
2933
2934
2935

2932
2933
2934

2933
2934
2935
2936

2934
2935
2936
2937

ownerAtSource sourcel CM sourceQm srcRenistny istener destinationl CM owner AtDestinationl istener
Lser

LifeCycleManager GQueryManager RegistryClient LifeCycleManager RegistryClient

|
relocateObjectSE_elhcateObjectsRequest)lRegistryResponse |

—————

onResponsedMatification) vgid

| |
relocatedbjects(RelocateObjectsReguest: RenistyResponse
f

submiﬂdhoc@ue{y(dhoc@uewRequest}IAdhocQueryResponse

Al

L |

|
|
|
|
f ==
| | L
| accdptObjectstbcceptObjectsRdguest: RegistvRespanse
' [

|

| | [Fl |
| | submitObjects(SubmitObjpctsRequestiRegistvResponse

| onResponse{Motification)void |
oveOhbjectsRequest:RegistyResponse J"" |
|
|
|
|
|
|
|
|
|

ey
‘h_‘=
|
|
|
|
I

remaove Ohjectsf

Figure 26: Relocate Objects Protocol

Figure 26 illustrates the Relocate Objects Protocol. The participants in the protocol are the
ownerAtSource and ownerAtDestination User instances as well as the LifeCycleManager interfaces of
the sourceRegistry and destinationRegistry.

The steps in the protocol are described next:

1.

regrep-rs
Copyright © OASIS Open 20852007. All Rights Reserved. Page 98 of 130

The protocol is initiated by the ownerAtSource sending a RelocateObjectsRequest message to
the LifeCycleManager interface of the sourceRegistry. The sourceRegistry MUST make sure that
the ownerAtSource is authorized to perform this request. The id of this RelocateObjectsRequest
is used as the transaction identifier for this instance of the protocol. This
RelocateObjectsRequest message MUST contain an ad hoc query that specifies the objects that
are to be relocated.

Next, the sourceRegistry MUST relay the same RelocateObjectsRequest message to the
LifeCycleManager interface of the destinationRegistry. This message enlists the
detsinationRegistry to participate in relocation protocol. The destinationRegistry MUST store the
request information until the protocol is completed or until a registry specific period after which
the protocol times out.

The destinationRegistry MUST relay the RelocateObjectsRequest message to the
ownerAtDestination. This notification MAY be done using the event notification feature of the
registry as described in chapter 7. The notification MAY be done by invoking a listener Service for
the ownerAtDestination or by sending an email to the ownerAtDestination. This concludes the
first phase of the Object Relocation protocol.

The ownerAtDestination at a later time MAY send an AcceptObjectsRequest message to the
destinationRegistry. This request MUST identify the object relocation transaction via the
correlationld. The value of this attribute MUST be the id of the original RelocateObjectsRequest.

The destinationRegistry sends an AdhocQueryRequest message to the sourceRegistry. The
source registry returns the objects being relocated as an AdhocQueryResponse. In the event of
a large number of objects this may involve multiple AdhocQueryRequest/responses as described
by the iterative query feature described in section 6.2.

The destinationRegistry submits the relocated data to itself assigning the identity of the
ownerAtDestination as the owner. The relocated data MAY be submitted to the destination
registry using any registry specific means or a SubmitObjectsRequest. However, the effect
SHOULD be the same as if a SubmitObjectsRequest was used.

May-2,2005Feb 22, 2007

2935
2936

2936
2937

2937

2938
2939
2940
2941
2942
2943
2944
2945
2946
2946
2947
2948
2949
2950
2951
2952

2953

2954

2955

2956
2957

2957
2958
2959

2958
2959

2959

2960
2961

2961

2962

2963

2964

2965

2966
2967

2967

2968

2969
2970
2971
2972
2973
2974

7. The destinationRegistry notifies the sourceRegistry that the relocated objects have been safely
committed using the Event Notification feature of the registry as described in chapter 7.
8. The sourceRegistry removes the relocated objects using any registry specific means and logging
an AuditableEvent of type Relocated. This concludes the Object Relocation transaction.
9.4.1 RelocateObjectsRequest
<element name="RelocateObjectsRequest'>
<complexType>
<complexContent>
<extension base="rs:RegistryRequestType'">
<sequence>
<element name="Query" type='"rim:AdhocQueryType'/>
<element name="SourceRegistry'" type="rim:0bjectRefType'"/>
<element name="DestinationRegistry"
type="rim:0bjectRefType'" />
<element name="OwnerAtSource" type="rim:0bjectRefType'"/>
<element name="OwnerAtDestination" type="rim:0bjectRefType"/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>
9.4.1.1 Parameters:
= id: the attribute id provides the transaction identifier for this instance of the protocol.
= AdhocQuery: This element specifies an ad hoc query that selects the RegistryObjects that are
being relocated.
= sourceRegistry: This element specifies the ObjectRef to the sourceRegistry Registry instance. The
value of this attribute MUST be a local reference when the message is sent by the ownerAtSource
to the sourceRegistry.
= destinationRegistry: This element specifies the ObjectRef to the destinationRegistry Registry
instance.
= ownerAtSource: This element specifies the ObjectRef to the ownerAtSource User instance.
= ownerAtDestination: This element specifies the ObjectRef to the ownerAtDestination User
instance.
9.4.1.2 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

9.4.1.3

Exceptions:

In addition to the exceptions common to all requests, the following exceptions MAY be returned:

9.4.2

regrep-rs

= ObjectNotFoundException: signifies that the specified Registry or User was not found in
the registry.

AcceptObjectsRequest

<element name='"AcceptObjectsRequest'">
<complexType>
<complexContent>
<extension base="rs:RegistryRequestType'">
<attribute name='"correlationId" use='"required"
type="{http://www.w3.0rg/2001/XMLSchema}lanyURI" />

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 99 of 130

2974
2975
2976
2977

2978

2979

2980
2981

2982

2983

2984

2985

2986
2987

2987

2988

2989

2990
2991

2991
2992

2992

2993
2994

2994

2995
2996

2996
2997

2997
2998

2998
2999
3000
3001
3002

2999
3000
3001

3000
3001
3002
3003

</extension>
</complexContent>
</complexType>
</element>

9.4.2.1 Parameters:

= correlationld: Provides the transaction identifier for this instance of the protocol.

9.4.2.2 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

9.4.2.3 Exceptions:

In addition to the exceptions common to all requests, the following exceptions MAY be returned:

= InvalidRequestException: signifies that the specified correlationld was not found to
match an ongoing RelocateObjectsRequest in the registry.

9.4.3 Object Relocation and Remote ObjectRefs

The following scenario describes what typically happens when a person moves:

1. When a person moves from one house to another, other persons may have their old postal
addresses.

2. When a person moves, they leave their new address as the forwarding address with the post
office.

3. The post office forwards their mail for some time to their new address.

Eventually the forwarding request expires and the post office no longer forwards mail for that
person.

5. During this forwarding interval the person notifies interested parties of their change of address.

The Object Relocation feature supports a similar model for relocation of RegistryObjects. The following
steps describe the expected behavior when an object is relocated.

1. When a RegistryObject O1 is relocated from one registry R1 to another registry R2, other
RegistryObjects may have remote ObjectRefs to O1.

2. The registry R1 MUST create an AuditableEvent of type Relocated that includes the home URI
for the new registry R2.

3. Aslong as the AuditableEvent exists in R1, if R1 gets a request to retrieve O1 by id, it MUST
forward the request to R2 and transparently retrieve O1 from R2 and deliver it to the client. The
object O1 MUST include the home URI to R2 within the optional home attribute of
RegistryObject. Clients are advised to check the home attribute and update the home attribute of
their local ObjectRef to match the new home URI value for the object.

4. Eventually the AuditableEvent is cleaned up after a registry specific interval. R1 is no longer
required to relay requests for O1 to R2 transparent to the client. Instead R1 MUST return an
ObjectNotFoundException.

5. Clients that are interested in the relocation of O1 and being notified of its new address may
choose to be notified by having a prior subscription using the event notification facility of the
registry. For example a Registry that has a remote ObjectRefs to O1 may create a subscription
on relocation events for O1. This however, is not required behavior.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 100 of 130

3001

3002
3003

3003
3004

3005

3006
3007

3007
3008
3008

3009
3010
3011
3011

3012

3013
3014
3015
3015
3016

3017

3018
3019
3020

3019
3020
3021

3020
3021

3021
3022
3023

3022

3023
3024
3025

3024

9.4.4 Notification of Object Relocation To ownerAtDestination

This section describes how the destinationRegistry uses the event notification feature of the registry to
notify the ownerAtDestination of a Relocated event.

The destinationRegistry MUST send a Notification with the following required characteristics:
* The notification MUST be an instance of a Notification element.

* The Notification instance MUST have at least one Slot as follows:

o The Slot MUST have the name:
urn: oasi s: names:tc: ebxm -regrep:rs:events:correl ationld

o The Slot MUST have the correlationld for the Object Relocation transaction as the value
of the Slot.

9.4.5 Notification of Object Commit To sourceRegistry

This section describes how the destinationRegistry uses the event notification feature of the registry to
notify the sourceRegistry that it has completed committing the relocated objects.
The destinationRegistry MUST send a Notification with the following required characteristics:

¢ The notification MUST be an instance of a Notification element.

* The Notification instance MUST have at least one Slot as follows:

o The Slot MUST have the name
urn: oasi s: names:tc: ebxm -regrep:rs: events: obj ectsCommitted

o The Slot MUST have the value of true.

9.4.6 Object Ownership and Owner Reassignment

A registry MUST determine the ownership of a RegistryObject based upon the most recent
AuditableEvent that has the eventType matching the canonical EventType ClassificationNode for Create
or Relocate events.

A special case of Object Relocation is when an ObjectRelocationRequest to a registry specifies the
same registry as sourceRegistry and destinationRegistry. In such cases the request is effectively to
change the owner of the specified objects from current owner to a new owner.

In such case if the client does not have the RegistryAdministrator role then the protocol requires the
ownerAtDestination to issue an AcceptObjectsRequest as described earlier.

However, if the client does have the RegistryAdministrator role then the registry MUST change the owner
of the object to the user specified as ownerAtDestination without the ownerAtDestination to issue an
AcceptObjectsRequest.

9.4.7 Object Relocation and Timeouts

No timeouts are specified for the Object Relocation protocol. Registry implementations MAY cleanup
incomplete Object Relocation transactions in a registry specific manner as an administrative task using
registry specific policies.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 101 of 130

3025

3026
3027
3028

3027
3028
3029
3030

3031

3032
3033

3033

3034
3035
3036
3037

3035

3036
3037
3038
3039

3037

3038
3039
3040
3041

3039

3040
3041
3042

3041

3042
3043
3044
3045

3043

3044
3045
3046

10 Registry Security

This chapter describes the security features of ebXML Registry. A glossary of security terms can be
referenced from [RFC 2828]. The registry security specification incorporates by reference the following
specifications:

e [WSI-BSP] WS-I Basic Security Profile 1.0

* [WSS-SMS] Web Services Security: SOAP Message Security 1.0

* [WSS-SWA] Web Services Security: SOAP Messages with Attachments (SwA) Profile 1.0
This chapter provides registry specific details not present in above specifications.

10.1 Security Use Cases

This section describes various use cases that require security features from the registry. Subsequent
sections describe specific registry mechanisms that enable each of these use cases.

10.1.1 Identity Management

An organization deploys an ebXML Registry and needs to define the set of users and services that are
authorized to use the services offered by the registry. They require that the registry provide some
mechanism for registering and subsequently managing the identity and credentials associated with such
authorized users and services.

10.1.2 Message Security

A Registered User sends a request message to the registry and receives a response back from the
registry. The user requires that the message integrity be protected during transmission from tampering
(man-in-the-middle attack). The user may also require that the message communication is not available
to unauthorized parties (confidentiality).

10.1.3 Repository Item Security

A Registered User submits a repository item to the registry. The user requires that the registry provide
mechanisms to protect the integrity of the repository item during transmission on the wire and as long as
it is stored in the registry. The user may also require that the content of the Repositoryltem is not
available to unauthorized parties (confidentiality).

10.1.4 Authentication

An organization that deploys an ebXML Registry requires that when a Registered User sends a request
to the registry, the registry checks the credentials provided by the user to ensure that the user is a
Registered User and to unambiguously determine the user’s identity.

10.1.5 Authorization and Access Control

An organization that deploys an ebXML Registry requires that the registry provide a mechanism that
protect its resources from unauthorized access. Specifically, when a Registry Requestor sends a request
to the registry, the registry restricts the actions of the requestor to specific actions on specific resources
for which the requestor is authorized.

10.1.6 Audit Trail

An organization that deploys an ebXML Registry requires that the registry keep a journal or Audit Trail of
all significant actions performed by Registry Requestors on registry resources. This provides a basic form
of non-repudiation where a Registry Requestor cannot repudiate that that they performed actions that

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 102 of 130

3045

3046

3047
3048

3048
3049
3050

3049
3050

3050

3051
3052

3052

3053
3054
3055

3054

3055

3056
3057
3058
3059

3057

3058
3059
3060
3061
3062
3063
3064

3059
3060
3061

3060
3061

3061

3062
3063
3064
3065
3066
3067
3068

are logged in the Audit Trail.

10.2 Identity Management

An ebXML Registry MUST provide an Identity Management mechnism that allows identities and
credentials to be registered for authorized users of the registry and subsequently managed.

If a registry implements the Registry SAML Profile as described in chapter 11 then the Identity
Management capability MUST be provided by an Identity Provider service that integrates with the
registry using the SAML 2.0 protocols as defined by [SAMLCore].

If a registry does not implement the Registry SAML Profile then it MUST provide User Registration and
Identity Management functionality in an implementation specific manner.

10.3 Message Security

A registry MUST provide mechanisms to securely exchange messages between a Registry Requestor
and the registry to ensure data and source integrity as described in this section.

10.3.1 Transport Layer Security

A registry MUST support HTTP/S communication between an HTTP Requestor and its HTTP interface
binding. A registry MUST also support HTTP/S communication between a SOAP Requestor and its
SOAP interface binding when the underlying transport protocol is HTTP.

HTTP/S support SHOULD allow for both SSL and TLS as transport protocols.

10.3.2 SOAP Message Security

A registry MUST support signing and verification of all registry protocol messages (requests and
responses) between a SOAP Requestor and its SOAP binding. Such mechanisms MUST conform to
[WSI-BSP], [WSS-SMS], [WSS-SWA] and [XMLDSIG]. The reader should refer to these specifications for
details on these message security mechanisms.

10.3.2.1 Request Message Signature

When a Registered User sends a request message to the registry, the requestor SHOULD sign the
request message with a Message Signature. This ensures the integrity of the message and also enables
the registry to perform authentication and authorization for the request. If the registry receives a request
that does not include a Message signature then it MUST implicitly treat the request as coming from a
Registry Guest. A Registered User need not sign a request message with a Message Signature when
the SOAP communication is conducted over HTTP/S as the message security is handled by the
transport layer security provided by HTTP/S in this case.

When a Registered User sends a request message to the registry that contains a Repositoryltem as a
SOAP Attachment, the requestor MUST also reference and sign the Repositoryltem from the message
signature. This MUST conform to [RFC2392] and [WSS-SWA].

If the registry receives a request containing an unsigned Repositoryltem then it MUST return an
UnsignedRepositoryltemException.

10.3.2.2 Response Message Signature

When a Registered User sends a request message to the registry, the registry MAY use a pre-
established preference policy or a default policy to determine whether the response message SHOULD
be signed with a Message Signature. When a Registry Guest sends a request, the Registration Authority
MAY use a default policy to determine whether the response contains a header signature. A registry
need not sign a response message with a Message Signature when the SOAP communication is
conducted over HTTP/S as the message security is handled by the transport layer security provided by
HTTP/S in this case.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 103 of 130

3063
3064
3065

3064
3065
3066

3065

3066
3067
3068
3069
3070
3071

3067

3068

3069
3070

3070
3071
3072

3071
3072
3073

3072

3073

3074
3075
3076
3077
3078
3079
3080
3081
3078
3079
3079
3080
3080
3081
3081
3082
3082
3083
3083
3084
3085
3086
3087
3088
3089
3089
3090
3090
3091
3092
3092

When a registry sends a signed response message to a Registry Client that contains a Repositoryltem
as a SOAP Attachement, the registry MUST also reference and sign the Repositoryltem from the
message signature. This MUST conform to [RFC2392] and [WSS-SWA].

If the Registry Client receives a signed response with a Repositoryltem that does not include a
Repositoryltem Signature then it SHOULD not trust the integrity of the response and treat it as an error
condition.

10.3.2.3 Keylnfo Requirements

The sender of a registry protocol message (Registry Requestor and Registry) SHOULD provide their
public key under the <wsse:Security> element. If provided, it MUST be contained in a
<wsse:BinarySecurityToken> element and MUST be referenced from the <ds:KeyInfo> element in the
Message Signature. The value of wsu:ld attribute of the <wsse:BinarySecurityToken> containing the
senders public key MUST be urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert.
The <wsse:BinarySecurityToken> SHOULD contain a X509 Certificate.

Listing 3 shows an example of Message signature including specifying the Keylnfo.

10.3.2.4 Message Signature Validation

Signature validation ensures message and attached Repositoryltems integrity and security, concerning
both data and source.

If the registry receives a request containing a Message Signature then it MUST validate the Message
Signature as defined by [WSS-SMS]. In case the request contains an attached Repositoryltem it MUST
validate the Repositoryltems signature as defined by [WSS-SWA].

If the Registry Requestor receives a response containing a Message Signature then it SHOULD validate
the Message Signature as defined by [WSS-SMS]. In case the response contains an attached
Repositoryltem then it SHOULD validate the Repositoryltem signature as defined by [WSS-SWA).

10.3.2.5 Message Signature Example

The following example shows the format of a Message Signature:

<soap:Envelope>
<soap:Header>
<wsse:Security>
<wsse:BinarySecurityToken EncodingType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-soap-message-security-
1.0#Baseb4Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert'>
1ui+Jy4WYKGIW5xM3aHnLx0OpGVIpzSg4V486hHFe7sHET /uxxVBovT7JV1A2RnWS
WkXm9jAEdsm/
hs+f3NwvK23bh46mNmnCQVsUYHbYAREZpykrd/eRwNgx8T+ByeFhmSviW77n6yTc
I17XU7xZT54S59
hTSyBLN2SceldEQpQXh5ssZK9aZTMrsFTINBvNHC3Qg7w00Otr5V4axH3MXffsul9
WzxPCfHdalN4
rLRENY318pc6bn00zAMwOomUWWBEJZxxBGGUc9QY3VjwNALgGDaEAT7gpURkCI85
HjdnSA5SM4cY
7jAsYX/CIpEKRIJcBULITEFrBZIBYDPzRW1SdsJRIngF7yCoGWJ+/HYOyP8P40M59
FDiOkM8GwWOEO
WgYrJHH92gqaVhoiPTLi7
</wsse:BinarySecurityToken>
<ds:Signature>

<!--The Message Signature -->
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" ">
<cl4n:InclusiveNamespaces PrefixList="wsse soap"
xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc—-cl4n#"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<ds:Reference URI="#TheBody">

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 104 of 130

3093
3094
3095
3095
3096
3096
3097
3098
3099
3099
3100
3100
3101
3102
3103
3103
3104
3105
3106
3107
3106
3107
3108
3109
3110
3111
3112
3113
3114

3115

3116

3117
3118
3118

3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3126
3127
3127
3128
3128
3129
3129
3130
3130
3131
3131
3132
3133
3134
3135
3136
3137
3137
3138
3138
3139
3140

<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-
exc-cl4n#'">
<cl4n:InclusiveNamespaces PrefixList=""
xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc—-cl4n#"/>
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>i3gi5GjhHnfoBn/jOjOp2mgONa4=</ds:DigestValue

>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>PipXJ2Sfc+LTDng4pM5JcIYt9gg=</ds:Signatureval
ue>

<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#urn:oasis:names:tc:ebxml-
regrep:rs:security:SenderCert" ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"/>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
</soap:Header>
<soap:Body wsu:Id="TheBody">
<lcm:SubmitObjectsRequest/>
</soap:Body>
</soap:Envelope>

Listing 3: Message Signature Example

10.3.2.6 Message With Repositoryltem: Signature Example

The following example shows the format of a Message Signature that also signs the
attached Respositoryltem:

Content-Type: multipart/related; boundary="”BoundaryStr” type="text/xml”
--BoundaryStr
Content-Type: text/xml
<soap:Envelope>
<soap:Header>
<wsse:Security>
<wsse:BinarySecurityToken EncodingType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-soap-message-security-
1.0#Baseb4Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert'>
1ui+Jy4WYKGIW5xM3aHnLx0OpGVIpzSg4V486hHFe7sHET /uxxVBovT7JV1A2RnWS
WkXm9jAEdsm/
hs+f3NwvK23bh46mNmnCQVsUYHbYAREZpykrd/eRwNgx8T+ByeFhmSviW77n6yTc
I17XU7xZT54S59
hTSyBLN2SceldEQpQXh5ssZK9aZTMrsFTINBvNHC3Qg7w00tr5V4axH3MXffsul9
WzxPCfHdalN4
rLRENY318pc6bn00zAMwOomUWWBEJZxxBGGUc9QY3VjwNALgGDaEAT7gpURkCI85
HjdnSA5SM4cY
7jAsYX/CIpEKRIJcBULITEFrBZIBYDPzRW1SdsJRIngF7yCoGWJ+/HYOyP8P40M59
FDiOkM8GwWOEO
WgYrJHH92gqaVhoiPTLi7
</wsse:BinarySecurityToken>
<ds:Signature>
<!-- The Message Signature -->
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" ">
<cl4n:InclusiveNamespaces PrefixList="wsse soap"
xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc—-cl4n#"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>

May-2,-20605Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 105 of 130

3140
3141
3142
3143
3143
3144
3144
3145
3146
3147
3147
3148
3148
3149
3150
3151
3152
3152
3153
3154
3154
3155
3155
3156
3157
3157
3158
3159
3160
3160
3161
3162
3161
3162
3163
3164
3164
3165
3165
3166
3167
3168
3169
3169
3170
3171
3172
3173
3174
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187

3188

3189

3190
3191

<ds:Reference URI="#TheBody'">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-
exc-cl4n#">
<cl4n:InclusiveNamespaces PrefixList=""
xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>i3gi5GjhHnfoBn/jOj0p2mgONa4=</ds:DigestValue
>
</ds:Reference>
</ds:SignedInfo>

<!--A reference to a RepositorylItem (one for each
RepositoryItem) -->
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" ">
<cl4n:InclusiveNamespaces PrefixList="wsse soap"
xmlns:cl4n="http://www.w3.0rg/2001/10/xml-exc—-cl4n#"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<ds:Reference URI="cid:${REPOSITORY ITEM1 ID}">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-
exc—-cl4n#'">
<ds:Transform Algorithm="http://docs.oasis-
open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-
Content-Only-Transform' />
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>j6lwx3rvEPOOVKtMup4NbeVu8nk=</ds:DigestValue

>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>PipXJ2Sfc+LTDng4pM5JcIYt9gg=</ds:Signatureval
ue>

<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#urn:oasis:names:tc:ebxml-
regrep:rs:security:SenderCert" ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"/>
</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>
</soap:Header>
<soap:Body wsu:Id="TheBody">
<lcm:SubmitObjectsRequest/>
</soap:Body>
</soap:Envelope>
—--BoundaryStr
Content-Type: image/png
Content-ID: <${REPOSITORY_ITEM1_ID}>
Content-Transfer-Encoding: base64
the repository item (e.g. PNG Image) goes here..

Listing 4: Repositoryltem Signature Example

10.3.2.7 SOAP Message Security and HTTP/S

When using HTTP/S between a Registry Client and a registry, SOAP message security MUST NOT be
used. Specifically:

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 106 of 130

3191
3192
3193
3194

3195

3196
3197

3197
3198

3198

3199

3200
3201

3201
3202

3202
3203
3204
3205
3206

3207
3208

3208
3209
3209

3210

3211
3212
3213
3214

3212
3213

3214
3215

3216

3217
3218
3219
3220
3221
3222

» The Registry Client MUST NOT sign the request message or any repository items in the request.
+ The registry MUST NOT verify request or Repositoryltem signatures.

« The registry MUST NOT sign the response message or any repository items in the response.

« The Registry Client MUST NOT verify response or Repositoryltem signatures.

10.3.3 Message Confidentiality

A registry SHOULD support encryption of protocol messages as defined section 9 of [WSI-BSP] as a
mechanism to support confidentiality of protocol messages during transmission on the wire.

A Registry Client MAY use encryption of Repositoryltems as defined by [WSS-SWA] as a mechanism to
support confidentiality of Repositoryltems during transmission on the wire.

A registry SHOULD support the submission of encrypted repository items.

10.3.4 Key Distribution Requirements

The registry and Registered Users MUST mutually exchange their public keys. This is necessary to
enable:

e Mutual Authentication of Registry Client and registry using SSL/TLS handshake for transport
layer security over HTTP/S

e Validation of Message Signature and Repositoryltem Signature (described in section).
» Decryption of encrypted messages

In order to enable Message Security the following requirements MUST be met:

1. A Certificate is associated with the registry.

2. A Certificate is associated with Registry Client.

3. A Registry Client registers its public key certificate with the registry. This is typically done during User
Registration and is implementation specific.

4. Registry Client obtains the registry’s public key certificate and stores it in its own local key store. This
is done in an implementation specific manner.

10.4 Authentication

The Registry MUST be able to authenticate the identity of the User associated with client requests in
order to perform authorization and access control and to maintain an Audit Trail of registry access. In
security terms a service that provides the ability to authenticate requestors is referred to as an
Authentication Authority.

A registry MUST provide one or more of the following Authentication mechanisms:
* Registry as Authentication Authority

» External Authentication Authority

10.4.1 Registry as Authentication Authority

A registry MAY provide authentication capability by serving as an Authentication Authority. In this role the
registry uses the <ds:Keylnfo> in the Message Signature as credentials to authenticate the requestor.
This typically requires checking that the public key supplied in the <ds:Keylnfo> of the Message
Signature matches the public key of a Registered User. This also requires that the registry maintain a
“registry keystore” that contains the public keys of Registered Users. The remaining details of registry as
an authentication authority are implementation specific.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 107 of 130

3218
3219
3220
3221

3219

3220
3221
3222

3221

3222
3223
3224
3225

3223

3224
3225
3226

3225
3226

3226
3227

3228
3229

3229
3230

3230
3231
3232
3233

3231

3232
3233
3234
3235
3236
3237
3238

3233
3234

Alternatively, if the Registry Client communicates with the registry over HTTP/S, the registry MUST
authenticate the Registry Client User if a registered certificate is provided through SSL Client
Authentication. If the certificate is not known to the registry then the Registry MUST assign the
RegistryGuest principal with the Registry Client.

10.4.2 External Authentication Authority

A registry MAY also use an external Authentication Authority to auhenticate client requests. The use of
an external Authentication Authority requires that the registry implement the Registry SAML Profile as
described in chapter 11.

10.4.3 Authenticated Session Support

Once a request is authenticated a Registry SHOULD establish an authenticated session using
implementation specific means to avoid having to re-authenticate subsequent request from the same
requestor. When the underlying transport protocol is HTTP, a registry SHOULD implement authenticated
session support based upon HTTP session capability as defined by [RFC2965].

10.5 Authorization and Access Control

Once a registry has authenticated the identity of the Registered User associated with a client request it
MUST perform authorization and subsequently enforce access control rules based upon the
authorization decision.

Authorization and access control is an operation conducted by the registry that decides WHO can do
WHAT ACTION on WHICH RESOURCE.

* The WHO is the User determined by the authentication step.
e The WHAT ACTION is determined by the registry protocol request sent by the client.

» The WHICH RESOURCE consists of the RegistryObjects and Repositoryltems impacted by the
registry protocol request.

The Access Control Policy associated with the resource that is impacted by the action determines
authorization and access control.

A registry MUST provide an access control and authorization mechanism based upon chapter titled
“Access Control Information Model” in [ebRIM]. This model defines a default access control policy that
MUST be supported by the registry. In addition it also defines a binding to [XACML] that allows fine-
grained access control policies to be defined.

10.6 Audit Trail

Once a registry has performed authorization checks, enforced access control and allowed a client
request to proceed it services the client request. A registry MUST create an Audit Trail of all
LifeCycleManager operations. A registry MAY create an Audit Trail of QueryManager operations. To
conserve storage resources, a registry MAY prune the Audit Trail information it stores in an
implementation specific manner. A registry SHOULD perform such pruning by removing the older
information in its Audit Trail content. However, it MUST not remove the original Create Event at the
beginning of the audit trail since the Create Event establishes the owner of the RegistryObject.

Details of how a registry maintains an Audit Trail of client requests is described in the chapter title “Event
Information Model” of [ebRIM].

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 108 of 130

3234

3235
3236
3237

3236

3237
3238

3238

3239

3240

3241
3242

11 Registry SAML Profile

This chapter defines the Registry SAML Profile that a registry MAY implement in order to support SAML
2.0 protocols defined by [SAMLCore]. A specific focus of the Registry SAML Profile is the Web Single
Sign On (SSO) profile defined by [SAMLProf].

11.1 Terminology

The reader should refer to the SAML Glossary [SAMLGIoss] for various terms used in the Registry SAML
profile. A few terms are described here for convenience:

Term Definition
Authentication An Authentication Authority is a system entity (typically a service) that enables
Authority other system entities (typically a user or service) to establish an authenticated

session by proving their identity by providing necessary credentials (e.g.
username / password, certificate alias / password). An Authentication Authority
produces authentication assertions as a result of successful authentication.
Enhanced Client | Describes a client that operates under certain constraints such as not being able
Proxy (ECP) to support HTTP Redirect protocol. Typically these are clients that do not have a
Web Browser environment. In this document the main example of an ECP is a
Registry Client that uses SOAP to communicate with the registry (SOAP

Requestor).
Identity Provider | A kind of service provider that creates, maintains, and manages identity
(1dP) information for principals (e.g. users). An ldentity Provider is usually also an

Authentication Authority.

Principal A system entity whose identity can be authenticated. This maps to User in
[ebRIM].
SAML Requestor | A system entity that utilizes the SAML protocol to request

services from another system entity (a SAML authority, a
responder). The term “client” for this notion is not used because
many system entities simultaneously or serially act as both

clients and servers.

Service Provider | A role donned by a system entity where the system entity provides services to

(SP) principals or other system entities. The Registry Service is a SP
Single Sign On The ability to share a single authenticated session across multiple SSO enabled
(SSO) services and application. The client may establish the authenticated session by

authenticating with any Authentication Authority within the system. The client may
then perform secure operations with any SSO enabled service within the system
using the authenticated session.

Single Logout The ability to logout nearly simultaneously from multiple Service Providers within a
federated system.

11.2 Use Cases for SAML Profile

The Registry SAML Profile is intended to address following use cases using the protocols defined by
[SAMLCore].

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 109 of 130

3242

3243
3244
3245
3246
3247

3244
3245
3246
3247

3245

3246
3247

3248

3249
3250

3250

3251
3252

3252

3253

3254
3255
3256

3255

11.2.1 Registry as SSO Participant:

A large enterprise is deploying an ebXML Registry. The enterprise already has an existing ldentity
Provider (e.g. an Access Manager service) where it maintains user information and credentials. The
enterprise also has an existing Authentication Authority (which may be the same service as the Identity
Provider) that is used to authenticate users and enable Single Sign On (SSO) across all their enterprise
services applications.

The enterprise wishes to use its existing Identity Provider to manage registry users and to avoid
duplicating the user database contained in the Identity Provider within the registry. The enterprise also
wishes to use its existing Authentication Authority to authenticate registry users and expects the registry
to participate in SSO capability provided by their Authentication Authority service.

Source Web Site
(Company.com)

Asserting Party
Destination Web Site
(Travel.com)
==
— Relying Party
: i :

Figure 27: SAML SSO Typical Scenario

11.3 SAML Roles Played By Registry

In order to conform to the registry SAML Profile an ebXML Registry plays the Service Provider (SP) role
based upon conformance with SAML 2.0 protocols.

11.3.1 Service Provider Role

The Service Provider role enables the registry to participate in SAML protocols. Specifically it allows the
registry to utilize an Identity Provider to perform client authentication on its behalf.

11.3.1.1 Service Provider Requirements
The following are a list of requirements for the Service Provider role of the registry:

* MUST support the protocols, messages and bindings that are the responsibility of the Service
Provider as defined by Web SSO Profile in [SAMLProf]. Specifically it MUST be able to intiate
and participate in the Authentication Request Protocol with an Identity Provider.

e MUST be able to use a SAML Identity Provider to authenticate client requests.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 110 of 130

3256
3257

3257

3258

3259
3260

3260
3261

3261
3262
3263

3262

3263
3264

3264
3265

3265
3266
3267

3268
3269

3270
3271

* MUST support the ability to maintain a security context for registry clients across multiple client
requests.

11.4 Registry SAML Interface

In order to conform to the registry SAML Profile an ebXML Registry MUST implement a new SAML
interface in addition to its service interfaces such as QueryManager and LifeCycleManager.

Details of the registry’s SAML interface are not described by this specification. Instead they are described
by the SAML 2.0 specifications and MUST support SAML HTTP and SOAP requests.

A registry uses its SAML interface to participate in SAML protocols with SAML Clients and SAML Identity
Providers. Specifically, an IdentityProvider uses the registry’s SAML Service Provider interface to deliver
the Response to an Authentication Request.

11.5 Requirements for Registry SAML Profile

In order to conform to the Registry SAML Profile a registry MUST implement specific SAML protocol that
support specific SAML protocol message exchanges using specific protocol bindings.

Table 7 lists the matrix of SAML Profiles, Protocols Messages and their Bindings that a registry MUST
support in order to conform to the registry SAML Profile.

The reader should refer to:
e [SAMLProf] for description of profiles listed
¢ [SAMLCore] for description of Message Flows listed
¢ [SAMLBInd] for description of Bindings listed

Profile Message Flows Binding Implementation
Requirement
Web SSO <AuthnRequest> from Registry ||[HTTP redirect MUST
to ldentityProvider
IdentityProvider <Response>to ||[HTTP POST |MUST |
Registry [HTTP artifact |[MUST |
Single Logout <LogoutRequest> ‘HTTP redirect HMUST ‘
[SOAP |ImAY |
<LogoutResponse> ‘HTTP redirect HMUST ‘
ISOAP |IMAY |
)) ‘<ArtifactResolve>, HSOAP HMUST ‘
Artifact Resolution
‘<ArtifactResponse> HSOAP HMUST ‘
Enhanced Client/Proxy ||[ECP to Registry, Registry to ECP ||PAOS MUST
SSO to IdentityProvider
IdentityProvider to ECP to PAOS MUST
Registry, Registry to ECP

Table 7: Required SAML Profiles, Protocols and Bindings

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 111 of 130

3272

3273

3274

3275
3276

3276
3277

3277
3278

3278
3279
3280

3279
3280

3280

3281
3282

11.6 SSO Operation

This section describes the interaction sequnce for various types of SSO operations.

11.6.1 Scenario Actors

The following are the actors that will be participating the various SSO Operation scenarios described in
subsequent section:

 HTTP Requestor: This represents a Registry Client that accesses the registry using the HTTP
binding of the registry protocols typically through a User Agent such as a Web Browser.

* SOAP Requestor: This represents a Registry Client that accesses the registry using the SOAP
binding of the registry protocols.

» Registry: This represents a Registry and includes all Registry interfaces such as QueryManager,
LifeCycleManager and the registry’s SAML Service Provider. The Registry participates in ebXML
Registry protocols as well as SAML protocols.

* IdentityProvider: This represents the IdentityProvider used by the registry to perform
Authentication on its behalf.

11.6.2 SSO Operation — Unauthenticated HTTP Requestor

Figure 28 shows a high level view of the Single Sign On (SSO) operation when the SOAP Requestor is
unauthenticated and accesses the registry over HTTP via a User Agent such as a Web Browser.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 112 of 130

3282
3283

3284

3285

3286
3287

3287
3288

3288
3289
3290

3289
3290
3291
3292
3293
3294

3290
3291
3292

11.6.2.1

HTTF Requestor

Reqgistry

| 1. HTTP GET or POST recw&sl

b5

IdentityProvider

.1: Does a security context exist. Mo, Mded to create one (impl. specific)

1.2: <samlp AuthnFequest = message.u.s.iqg HTTF Fedirect via HTTP Fequestor

1.2 1 identify Suldject (rmpl. specific)

HTTP Eesponsze with requested resnurceb|

]

1.2.2: <samlp:Epsponse> message using HTTP

= — — — — — — — —

Figure 28: SSO Operation — Unauthenticated HTTP Requestor

Scenario Sequence

ST or HT TP Artifact wia HTTP Eeguestor

1.2.2.1: estalilish security context far

1.2.2.2: Map Subject to User (spec de

1.2.2 .3 perfarm authorization decisio

Figure 28 shows the following sequence of steps for the operation:
The HTTP Requestor sends a HTTP GET or POST request to a Registry interface such as the

Fuject (mpl. specific)

inph

, pprocess request (spec defined)

The Registry checks to see if it already has a security context established for the Subject
associated with the request. It determines that there is no pre-existing security context.

In order to establish a security context, the Registry therefor initiates the <samlp:AuthnRequest>
protocol with the IdentityProvider. The <AuthnRequest> is sent using HTTP Redirect via the User

1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the User Agent being used by the HTTP Requestor to get the
credentials associated with the Subject and then using the credentials to authenticate that the
IdentityProvider knows the Subject. In case of SSL/TLS based communication the credetials are
acquired without any user intervention directly from the User Agent. The figure assumes that the

The IdentityProvider sends a <sampl:Response> message containing a

<saml:AuthenticationStatement> to the Registry using either HTTP POST or HTTP Artifact

1
QueryManager or LifeCycleManager.
1.1
1.2
Agent (e.g. Web Browser) used by the HTTP Requestor.
1.2.
IdentityProvider is able to authenticate the Subject.
1.2.2
SAML Binding via the User Agent.
regrep-rs

Copyright © OASIS Open 20852007. All Rights Reserved.

May-2-2005Feb 22, 2007
Page 113 of 130

3291
3292
3293
3294

3292
3293

3293
3294
3295
3296

3294

3295

3296
3297

3297
3298
3299
3300

3298

3299
3300

3301

1.2.2.1 The Registry uses implementation specific means to establish a security context for the Subject
authenticated by the IdentityProvider based upon the information contained about the Subject
in the <samlp:Response> message. This may include creating an HTTP Session for the HTTP
Requestor.

1.2.2.2 The Registry maps the information about the Subject in the <samlp:Response> message into a
<rim:User> instance. This establishes the <rim:User>context for the security context.

1.2.2.3 The Registry then performs authorization decision based upon the original HTTP request and
the <rim:User>. The figure assumes that authorization decision was to allow the request to be
processed. The Registry processes the request and subsequently return the requested
resource to the HTTP Requestor via the HTTP response.

11.6.3 SSO Operation — Authenticated HTTP Requestor

This is the case where the HTTP Requestor first authenticates with an IdentityProvider and then
accesses the registry over HTTP via a User Agent such as a Web Browser.

Currently there are no standard means defined for carrying SAML Assertions resulting from the Registry
Requestor authenticating with an IdentityProvider over HTTP protocol to a Service Provider such as the
registry. A registry MAY support this scenario in an implementation specific manner. Typically, the Identity
Provider will define any such implementation specific manner.

11.6.4 SSO Operation — Unuthenticated SOAP Requestor

This is the case where an unauthenticated Registry Requestor accesses the registry over SOAP.
Figure 29 shows the steps involved.

SOAP Requestor Reqgistry IdentityProvider

| | |
| 1. <rs:RegistnyFequast> S0AF request | |
|

{===
l
1.1: Does a security context exist. Mo, Meed tolcreate one (mpl. specificy
|

1.2, <samiplauthnReguest 'O£ message using PACS Binding HTTP OFK response
==}

|
|
1.2.1: <samlpAuthnREequest > message using HTTP POST or HTTP Artifact I

fo==
fii==

1.2.1.1: identify Principal {impl. specific)

1.2.1.2: <zamlp:Eespanszes> message using AL S0AF Binding targetted to RegistnSerce

==}

1.2.1.2.1: <samlp:Response> message using PADY Binding (i.e. HTTF POST)

1.2.1.2.1.1: establish security context far SUbJect (impl. specificy

1.2.1.2.1.2: Map Subject to User {spec defifed)

1.2.1.2.1.3; perform authorization decision)| process reguest {spec defined)

<Registn/Response > SOAP messagell|

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 114 of 130

3302

3303

3304

3305
3306
3307
3308

3306
3307

3307
3308
3309
3310

3308
3309
3310

3309
3310
3311
3312
3313
3314

3310
3311
3312

3311
3312

3312
3313
3314
3315

3313
3314

3314
3315
3316
3317
3318

3315

3316

3317
3318

11.6.4.1

Figure 29: SSO Operation - Unauthenticated SOAP Requestor

Scenario Sequence

Figure 29 shows the following sequence of steps for the operation:

1 The SOAP Requestor sends a <rs:RegistryRequest> SOAP message such as a
<lcm:SubmitObjectsRequest> to a Registry interface such as the LifeCycleManagerManager. In the
request header the SOAP Requestor declares that it is an ECP requestor as defined by the ECP
Profile in [SAMLProf].

1.1 The Registry checks to see if it already has a security context established for the Subject
associated with the request. It determines that there is no pre-existing security context.

1.2 Because the request is from an ECP client, the registry uses the ECP Profile defined by
[SAMLProf] and sends a <samlp:AuthnRequest> SOAP message as response to the
<rs:RegistryRequest> SOAP message to the SOAP Requestor using the PAOS Binding as defined
by [SAMLBInd]. The response has an HTTP Response status of OK.

1.2.1 The SOAP Requestor then initiates the <samlp:AuthnRequest> protocol with the IdentityProvider.
The <sampl:AuthnRequest> is sent using HTTP POST or Artifact Binding directly to the
IdentityProvider.

1.2.1.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the SOAP Requestor to get the credentials associated with the
Subject and then using the credentials to authenticate that the IdentityProvider knows the
Subject. In case of SSL/TLS based communication the credetials are acquired without any user
intervention directly from the SOAP Requestor. The figure assumes that the IdentityProvider is
able to authenticate the Subject.

1.2.1.2 The IdentityProvider sends a <sampl:Response> message containing a
<saml:AuthenticationStatement> to the SOAP Requestor using SAML SOAP Binding. The
HTTP header specifies the Registry as the ultimate target of the response.

1.2.1.2.1

1.2.1.2.1.1

1.2.1.2.1.2

1.2.1.2.1.3

11.6.5

The SOAP Requestor forwards the <sampl:Response> message containing a
<saml:AuthenticationStatement> to the Registry using PAOS Binding via HTTP POST.

The Registry uses implementation specific means to establish a security context for the
Subject authenticated by the IdentityProvider based upon the information contained about
the Subject in the <samlp:Response> message. This may include creating an HTTP
Session for the HTTP Requestor.

The Registry maps the information about the Subject in the <samlp:Response> message
into a <rim:User> instance. This establishes the <rim:User>context for the security context.

The Registry then performs authorization decision based upon the original SOAP request
and the <rim:User>. The figure assumes that authorization decision was to allow the request
to be processed. The Registry processes the request and subsequently return a
<rs:RegistryResponse> SOAP message as response to the original <rs:RegistryRequest>
SOAP request.

SSO Operation — Authenticated SOAP Requestor

This is the case where the Registry Requestor first authenticates with an IdentityProvider directly and
then makes a request to the registry using SOAP.

regrep-rs

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 115 of 130

3318
3319

3319

3320

3321
3322

3322
3323
3324
3325
3326
3327

3323
3324
3325

3324
3325

S50AP Requestor Registry IdentityProvider

| 1 <samip:authnRequests messhoe using HTTP POST or HTTP Arttags '

|
| 1.1 identify Principal {mpl. specific)
[

1.2: <zamlp:Response > messhge using HTTP POST or HTTP Artifact
[

I
21 <rs:RegistryReguest> message with SaML Tokens T
I

2.2 perform authorization deciszion, 4rncess request (spec defined)

I
<rz:RegistryResponse » Ill I
I
I
I

message

Figure 30: SSO Operation - Authenticated SOAP Requestor

11.6.5.1 Scenario Sequence

The figure shows the following sequence of steps for the operation:

1 The SOAP Requestor then initiates the <samlp:AuthnRequest> protocol directly with the
IdentityProvider. The <sampl:AuthnRequest> is sent using HTTP POST or Artifact Binding.

1.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the SOAP Requestor to get the credentials associated with the
Subject and then using the credentials to authenticate that the IdentityProvider knows the Subject.
In case of SSL/TLS based communication the credetials are acquired without any user
intervention directly from the SOAP Requestor. The figure assumes that the IdentityProvider is
able to authenticate the Subject.

1.2 The IdentityProvider sends a <sampl:Response> message containing a
<saml:AuthenticationStatement> to the SOAP Requestor using SAML HTTP POST or HTTP
Artifact Binding.

2 The SOAP Requestor sends a <rs:RegistryRequest> SOAP message such as a
<lcm:SubmitObjectsRequest> to a Registry interface such as the LifeCycleManagerManager. The

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 116 of 130

3325
3326
3327

3326
3327

3327
3328
3329
3330

3328

3329

3330
3331

3331
3332

3333
3334
3335

3334

3335

3336

3337

3338
3339

3339
3340
3341

3342
3343

3340

3341
3342

3342

3343
3344

3344
3345

3346

3347
3348
3349
3350

<rs:RegistryRequest> SOAP message includes SAML Tokens in the <soap:Header> of the SOAP
message as defined by [WSS-SAML]. The SAML Tokens are based upon the <sampl:Response>
during authentication.

2.1 The registry maps the SAML Tokens from the <soap:Header> of the <rs:RegistryRequest> to a
<rim:User> instance. This establishes the <rim:User> context for the request.

2.2 The Registry then performs authorization decision based upon the original SOAP request and the
<rim:User>. The figure assumes that authorization decision was to allow the request to be
processed. The Registry processes the request and subsequently return a <rs:RegistryResponse>
SOAP message as response to the original <rs:RegistryRequest> SOAP request.

11.6.6 <samlp:AuthnRequest> Generation Rules

The following rules MUST be observed when the registry or Registry Client issues a
<samlp:AuthnRequest>:

* Avregistry MUST specify a NamelDPolicy within the <samlp:AuthRequest>

* The Format of the NamelDPolicy MUST be urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent as defined by section in [SAMLCore]. Note that it is the Persistent Identifier that
maps to the id attribute of <rim:User>.

11.6.7 <samlp:Response> Processing Rules
This section describes how the registry processes the <sampl:Response> to a <sampl:AuthnRequest>:
<samlp:Response> Processing

» Response Processing: The registry MUST verify the <ds:Signature> for the <sampl:Response> if
present.

* The registry MUST check the <samlp:Status> associated with <sampl:Response> for errors. If

the <samlp:Status> has a top level <samlp:StatusCode> whose value is NOT
urn:oasis:names:tc:SAML:2.0:status:Success then the registry MUST throw

an AuthenticationException. The AuthenticationException message SHOULD include the
information from the StatusCode, StatusMessage and StatusDetail from the <samlp:Status>.

<saml:Assertion> Processing

e The registry SHOULD check the <saml:Assertion> for Conditions and honour any standard
Conditions defined by [SAMLCore] if any are specified.

<saml:AuthnStatement> Processing

e The registry MUST check the SessionNotOnOrAfter attribute of the <saml:AuthnStatement> for
validity of the authenticated session.

<saml:Subject> Processing

* Aregistry MUST map the <saml:Subject> to a <rim:User> instance as described in 11.6.8.

11.6.8 Mapping Subject to User

As required by [SAMLCore] a <samlp:Response> to a <samlp:AuthnRequest> MUST contain a
<saml:Subject> that identifies the Subject that was authenticated by the IdentityProvider. In addition it
MUST contain a <sampl:AuthnStatement> which asserts that the IdentityProvider indeed authenticated
the Subject.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 117 of 130

3348
3349

3350

3351
3352
3353

3352

3353
3354
3355

3354

3355
3356

3356
3357
3358

3357
3358
3359
3360
3361
3362

The following table defines the mapping between a <saml:Subject> and a <rim:User>:

— Subject — User Attribute — Description
Attribute
— NamelD content - id attribute NamelD Format MUST be

“urn:oasis:names:tc:SAML:1.1:nameid-
format:persistent”

Table 8: Mapping Subject to User

Note that any attribute of Subject not specified above SHOULD be ignored when mapping Subject to
User. Note that any attribute of User not specified above MUST be left unspecified when mapping
Subject to User.

11.7 External Users

The SAML Profile allows registry Users to be registered in an Identity Provider external to the registry.
These are referred to as “External Users”. A registry dynamically creates such External Users by
mapping a SAML Subject to a User instance dynamically.

The following are some restrictions on External User instances:

» External User instances are transient from the registry’s perspective and MUST not be stored
within the registry as User instances

* A RegistryObject MUST not have a reference to an External User unless it is composed within
that RegistryObject. Composed RegistryObjects such as Classification instances are allowed to
reference their parent External User instance.

* Since External User instances are transient they MUST not match a registry Query.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 118 of 130

3363

3364

3365

3366

3367

3368

3369
3370

3370
3371
3372

3371

3372
3373
3374

3375

3376
3377

3377
3378
3379

3378

3379

3380
3381
3381

3382
3383
3384

12 Native Language Support (NLS)

This chapter describes the Native Languages Support (NLS) features of ebXML Registry.

12.1 Terminology

The following terms are used in NLS.

NLS Term Description

Coded Character Set (CCS) CCS is a mapping from a set of abstract characters
to a set of integers. [RFC 2130]. Examples of CCS
are 1SO-10646, US-ASCII, ISO-8859-1, and so on.

Character Encoding Scheme (CES) CES is a mapping from a CCS (or several) to a set
of octets. [RFC 2130]. Examples of CES are ISO-
2022, UTF-8.

Character Set (charset) + charset is a set of rules for mapping from a

sequence of octets to a sequence of
characters.[RFC 2277],[RFC 2278].
Examples of character set are ISO-2022-JP,
EUC-KR.

« Alist of registered character sets can be
found at [TANA].

12.2 NLS and Registry Protcol Messages

For the accurate processing of data in both registry client and registry services, it is essential for the
recipient of a protocol message to know the character set being used by it.

A Registry Client SHOULD specify charset parameter in MIME header when they specify text/xml as
Content-Type. A registry MUST specify charset parameter in MIME header when they specify text/xml as
Content-Type.

The following is an example of specifying the character set in the MIME header.

Content-Type: text/xml; charset=I1S0-2022-JP

If a registry receives a protocol message with the charset parameter omitted then it MUST use the
default charset value of "us-ascii" as defined in [RFC 3023].

Also, when an application/xml entity is used, the charset parameter is optional, and registry client and
registry services MUST follow the requirements in Section 4.3.3 of [REC-XML] which directly address
this contingency.

If another Content-Type is used, then usage of charset MUST follow [RFC 3023].

12.3 NLS Support in RegistryObjects

The information model XML Schema [RR-RIM-XSD] defines the <rim:InternationalStringType> for
defining elements that contains a locale senstive string value.

<complexType name='"InternationalStringType'">
<sequence maxOccurs="unbounded" minOccurs="0">
<element ref="tns:LocalizedString"/>

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 119 of 130

3385
3386

3387

3388
3389

3389

3390
3391
3392
3393
3394

3395

3396
3397

3397
3398
3399
3400
3401
3402
3403
3403
3404
3405
3406
3407
3408
3409
3409
3410
3411
3412

3413

3414
3415

3415
3416

3416
3417
3418

3417
3418
3419
3420
3421
3422
3423
3424
3425
3425
3426
3426
3427
3427
3428
3429

3430

3431
3432

</sequence>
</complexType>

An InternationalStringType may contain zero or more LocalizedStrings within it where each
LocalizedString contain a string value is a specified local language and character set.

<complexType name='"LocalizedStringType">

<attribute ref="xml:lang" default="en-US"/>

<attribute default="UTF-8" name='"charset"/>

<attribute name="value" type="tns:FreeFormText" use='"required"/>
</complexType>

Examples of such attributes are the “name” and “description” attributes of the RegistryObject class

defined by [ebRIM] as shown below.

<complexType name="InternationalStringType">

<sequence maxOccurs="unbounded" minOccurs="0">

<element ref="tns:LocalizedString"/>

</sequence>
</complexType>
<element name="InternationalString"

type="tns:InternationalStringType" />

<element name="Name" type='"tns:InternationalStringType"/>
<element name="Description" type="tns:InternationalStringType'"/>

<complexType name='"LocalizedStringType">

<attribute ref="xml:lang" default="en-US"/>

<!--attribute name = '"lang" default = "en-US" form = "qualified"

type = '"language"/-->

<attribute default="UTF-8" name="charset"/>

<attribute name='"value" type="tns:FreeFormText" use="required"/>
</complexType>
<element name="LocalizedString'" type="tns:LocalizedStringType'/>

An element InternationalString is capable of supporting multiple locales within its collection of

LocalizedStrings.

The above schema allows a single RegistryObject instance to include values for any NLS sensitive

element in multiple locales.

The following example illustrates how a single RegistryObject can contain NLS sesnitive <rim:Name>
and “<rim:Description> elements with their value specified in multiple locales. Note that the <rim:Name>

and <rim:Description> use the <rim:InternationalStringType> as their type.

<rim:ExtrinsicObject id="S${ID}" mimeType="text/xml">
<rim:Name>

<rim:LocalizedString xml:lang="en-US" value="customACP1l.xml"/>
<rim:LocalizedString xml:lang="fi-FI" value="customACP1l.xml"/>
<rim:LocalizedString xml:lang="pt-BR" value="customACP1l.xml"/>

</rim:Name>
<rim:Description>

<rim:LocalizedString xml:lang="en-US" value="A sample custom

ACP"/>

<rim:LocalizedString xml:lang="fi-FI" value="Esimerkki custom
ACP"/>

<rim:LocalizedString xml:lang="pt-BR" value="Exemplo de ACP
customizado
">

</rim:Description>
</rim:ExtrinsicObject>

Since locale information is specified at the sub-element level there is no language or character set

associated with a specific RegistryObject instance.

regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved.

Page 120 of 130

3432

3433
3434
3435

3434

3435

3436

3437
3438
3439

3438

3439
3440
3441
3440
3441
3442
3443

3444
3445
3446

3445

3446
3447
3448

3447
3448
3449
3450
3451

12.3.1 Character Set of LocalizedString

The character set used by a locale specific String (LocalizedString) is defined by the charset attribute.
Registry Clients SHOULD specify UTF-8 or UTF-16 as the value of the charset attribute of
LocalizedStrings for maximum interoperability.

12.3.2 Language of LocalizedString
The language MAY be specified in xml:lang attribute (Section 2.12 [REC-XML)).

12.4 NLS and Repository Items

While a single instance of an ExtrinsicObject is capable of supporting multiple locales, it is always
associated with a single repository item. The repository item MAY be in a single locale or MAY be in
multiple locales. This specification does not specify any NLS requirements for repository items.

12.4.1 Character Set of Repository Items

When a submitter submits a repository item, they MAY specify the character set used by the respository
item using the MIME Content-Type mime header for the mime multipart containing the repository item
as shown below:

Content-Type: text/xml; charset="UTF-8"

Registry Clients SHOULD specify UTF-8 or UTF-16 as the value of the charset attribute of
LocalizedStrings for maximum interoperability. A registry MUST preserve the charset of a repository item
as it is originally specified when it is submitted to the registry.

12.4.2 Language of Repository Items

The Content-language mime header for the mime bodypart containing the repository item MAY specify
the language for a locale specific repository item. The value of the Content-language mime header
property MUST conform to [RFC 1766].

This document currently specifies only the method of sending the information of character set and
language, and how it is stored in a registry. However, the language information MAY be used as one of
the query criteria, such as retrieving only DTD written in French. Furthermore, a language negotiation
procedure, like registry client is asking a favorite language for messages from registry services, could be
another functionality for the future revision of this document.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 121 of 130

3448

3449
3450

3450

3451

3452
3453

3453
3454

3454

3455
3456

13 Conformance

This chapter defines the technical conformance requirements for ebXML Registry. Note that it does not
define specific conformance tests to verify compliance with various conformance profiles.

13.1 Conformance Profiles

An ebXML Registry MUST comply with one of the following conformance profiles:

* Registry Lite — This conformance profile requires the regsitry to implement a minimal set of core
features defined by this specification.

¢ Registry Full — This conformance profile requires the registry to implement additional set of features in
addition to those required by the Registry Lite conformance profile.

13.2 Feature Matrix

The following table identifies the implementation requirements for each feature defined by this
specification for each conformance profile defined above.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 122 of 130

Table 9: Feature Conformance Matrix

regrep-rs May-2,2005Feb 22, 2007
Copyright © OASIS Open 26052007. All Rights Reserved. Page 123 of 130

Feature Registry Lite Registry Full
SOAP Binding
QueryManager binding MUST MUST
LifeCycleManager binding MUST MUST
HTTP Binding
RPC Encoded URL MUST MUST
User Defined URL MAY MUST
File Path URL MAY MUST
LifeCycleManager
SubmitObjects Protocol MUST MUST
UpdateObjects Protocol MUST MUST
ApproveObjects Protocol MUST MUST
DeprecateObjects Protocol MUST MUST
UnderprecateObjects Protocol MUST MUST
RemoveObjects Protocol MUST MUST
Registry Managed Version Control MAY MUST
QueryManager
SQL Query MAY MUST
Filter Query MUST MUST
Stored Parameterized Query MAY MUST
Iterative Query MAY MUST
Event Notification MAY MUST
Content Management Services
Validate Content Protocol MAY MUST
Catalog Content Protocol MAY MUST
Canonical XML Cataloging Service MAY MUST
Cooperating Registries
Remote object references MAY MUST
Federated queries MAY MUST
Object Replication MAY MUST
Object Relocation MAY MUST
Registry Security
Identity Management MUST MUST
Message Security
Transport layer security MAY MUST
SOAP Message Security MUST MUST
Repository Item Security MUST MUST
Authorization and Access Control
Default Access Control Policy MUST MUST
Custom Access Control Policies MAY MUST

regrep-rs
Copyright © OASIS Open 20852007. All Rights Reserved.

May2-2005Feb 22, 2007

Page 124 of 130

3456

Feature Registry Lite Registry Full
Audit Trail MUST MUST
Registry SAML Profile MAY MUST
NLS MUST MUST
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved.

Page 125 of 130

w7 14 References

ss 14.1 Normative References

3459 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF
3460 RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.1xt.
3460 \ [ebRIM] ebXML Registry Information Model Version 3-83.0.1
3461 http://www.oasis-open.org/committees/regrep/documents/3-083.0.1/specs/regrep-
3462 rim-3-63.0.1-cs-01.pdf
3463 [REC-XML] W3C Recommendation. Extensible Markup language(XML)1.0(Second Edition)
3464 http://www.w3.0rg/TR/REC-xml
3465 [RFC 1766] IETF (Internet Engineering Task Force). RFC 1766:
3466 Tags for the Identification of Languages, ed. H. Alvestrand. 1995.
3467 http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html
3468 [RFC 2130] IETF (Internet Engineering Task Force). RFC 2130
3469 The Report of the IAB Character Set Workshop held 29 February - 1 March,
3470 1996
3470 http://www.fags.org/rfcs/rfc2130.html
3471 [RFC 2277] IETF (Internet Engineering Task Force). RFC 2277:
3472 IETF policy on character sets and languages, ed. H. Alvestrand. 1998.
3473 http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
3473 [RFC 2278] IETF (Internet Engineering Task Force). RFC 2278:
3474 IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998.
3475 http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
3476 [RFC2616] IETF (Internet Engineering Task Force). RFC 2616:
3477 Fielding et al. Hypertext Transfer Protocol -- HTTP/1.1 . 1999.
3478 http://www.w3.org/Protocols/rfc2616/rfc2616.html
3479 [RFC2965] IETF (Internet Engineering Task Force). RFC 2965:
3480 D. Kristol et al. HTTP State Management Mechanism. 2000.
3481 http://www.w3.org/Protocols/rfc2616/rfc2616.html
3482 [RR-CMS-XSD] ebXML Registry Content Management Services XML Schema
3483 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
3484 [RR-LCM-XSD] ebXML Registry LifeCycleManager XML Schema
3485 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd
3486 [RR-RIM-XSD] ebXML Registry Information Model XML Schema
3487 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
3488 [RR-RS-XSD] ebXML Registry Service Protocol XML Schema
3489 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd
3490 [RR-QM-XSD] ebXML Registry QueryManager XML Schema
3491 http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd
3492 [SAMLBInd] S. Cantor et al., Bindings for the OASIS Security Assertion Markup Language
3493 (SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-bindings-
3494 2.0-cd-03.
3493 http://www.oasis-open.org/committees/security/.
3494 Note: when this document is finalized, this URL will be updated.
3495 [SAMLConform] P.Mishra et al. Conformance Requirements for the OASIS Security Assertion
3496 Markup Language (SAML) V2.0. OASIS SSTC, September 2004. Document ID
3497 sstc-saml-conformance-2.0-cd-03.
regrep-rs May-2,-2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 126 of 130

http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.w3.org/TR/REC-xml
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
http://www.faqs.org/rfcs/rfc2130.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.ietf.org/rfc/rfc2119.txt

3496
3497
3498
3499
3500
3501
3499

3500
3501
3502

3501
3502

3503
3504

3504
3505

3506
3507

3507
3508

3509
3510

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519

3520
3521

3521
3522
3523
3524

3525
3526

3526
3527
3528
3528
3529
3530
3531

[SAMLCore]

[SAMLProf]

[SAMLP-XSD]

[SAML-XSD]

[SOAP11]
[SwA]
[SQL]
[SQL/PSM]
[UUID]
[WSDL]

[XML]

[XMLDSIG]

[WSI-BSP]

[WSS-SMS]

[WSS-SWA]

regrep-rs

http://www.oasis-open.org/committees/security/.

Note: when this document is finalized, this URL will be updated.

S. Cantor et al., Assertions and Protocals far the OA SIS Security Assertion
Markup Language (SAML) V2.0.0ASIS SSTC, December 2004. Document ID
sstcesaml-core-2.0-cd-03.

http://www.oasis-open.org/com mittees/securityy.

Note: when this document is finalized, this URL will be updated.

S. Cantor et al., Profiles for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-profiles-
2.0-cd-03.

http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

S. Cantor et al., SAML protocols schema. OASIS SSTC, September 2004.
Document ID sstc-saml-schema-protocol-2.0.

http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

S. Cantor et al., SAML assertions schema. OASIS SSTC, September 2004.
Document ID sstc-saml-schema-assertion-2.0.

http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

W3C Note. Simple Object Access Protocol, May 2000
http://www.w3.0rg/TR/SOAP

W3C Note: SOAP with Attachments, Dec 2000
http://www.w3.0rg/TR/SOAP-attachments

Structured Query Language (FIPS PUB 127-2)
http://www.itl.nist.gov/fipspubs/fip127-2.htm

Database Language SQL — Part 4: Persistent Stored Modules
(SQL/PSM) [ISO/IEC 9075-4:1996]

DCE 128 bit Universal Unique Identifier
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
W3C Note. Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

T. Bray, et al. Extensible Markup Language (XML) 1.0 (Second Edition). World
Wide Web Consortium, October 2000.

http://www.w3.0org/TR/REC-xml

XML-Signature Syntax and Processing
http://www.w3.0rg/TR/2001/PR-xmldsig-core-20010820/
WS-I: Basic Security Profile 1.0

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
Note: when this document is finalized, this URL will be updated.

Web Services Security: SOAP Message Security 1.0
http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-soap-message-
security-1.0.pdf

Web Services Security: SOAP Message with Attachments (SwA) Profile 1.0
http://www.oasis-open.org/apps/org/workgroup/wss/download.php/10902/wss-
swa-profile-1.0-cd-01.pdf

Note: when this document is finalized, this URL will be updated.

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 127 of 130

http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/wsdl
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.itl.nist.gov/fipspubs/fip127-2.htm
http://www.w3.org/TR/SOAP-attachments
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/

3530

3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3545
3546
3547
3548
3549
3550
3551

3552
3553
3554

3553

3554
3555
3556

3555

3556
3557
3558

3557
3558
3559

3560
3561

3561

3562
3563

3563

14.2 Informative

[ebBPSS]
[ebCPP]
[ebMS]
[DeltaV]
[XPT]

[IANA]

[RFC2392]

[RFC 2828]

[RFC 3023]

[SAMLMeta]

[SAMLGIloss]

[SAMLSecure]

[SAMLTech]

[UML]

regrep-rs

ebXML Business Process Specification Schema
http://www.ebxml.org/specs

ebXML Collaboration-Protocol Profile and Agreement Specification
http://www.ebxml.org/specs/

ebXML Messaging Service Specification, Version 1.0
http://www.ebxml.org/specs/

Versioning Extension to WebDAV, IETF RFC 3253
http://www.webdav.org/deltav/protocol/rfc3253.html

XML Path Language (XPath) Version 1.0
http://www.w3.0rg/TR/xpath

IANA (Internet Assigned Numbers Authority).

Official Names for Character Sets, ed. Keld Simonsen et al.
http://www.iana.org/

E. Levinson, Content-ID and Message-ID Uniform Resource Locators, IETF
RFC 2392,

http://lwww.ietf.org/rfc/rfc2392.txt

IETF (Internet Engineering Task Force). RFC 2828:
Internet Security Glossary, ed. R. Shirey. May 2000.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2828.html
IETF (Internet Engineering Task Force). RFC 3023:
XML Media Types, ed. M. Murata. 2001.
ftp://ftp.isi.edu/in-notes/rfc3023.txt

S. Cantor et al., Metadata for the OASIS Security Assertion Markup Language
(SAML) v2.0. OASIS SSTC, September 2004. Document ID sstc-saml-
metadata-2.0-cd-02.

http://www.oasis-open.org/committees/security/.

J. Hodges et al., Glossary for the OASIS Security Assertion Markup Language
(SAML) v2.0. OASIS SSTC, September 2004. Document ID sstc-saml-glossary-
2.0-cd-02.

http://www.oasis-open.org/committees/security/.

F. Hirsch et al., Security and Privacy Considerations for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS SSTC, September 2004.
Document ID sstc-saml-sec-consider-2.0-cd-02.

http://www.oasis-open.org/committees/security/.
J.Hughes et al.,Technical Overview of the OASIS Security
Assertion Markup Language (SAML)V2.0.

http://www.oasis-open.org/committees/download.php/7874/sstc-saml-tech-
overview-2.0-draft-01.pdf

Unified Modeling Language

http://www.uml.org
http://www.omg.org/cgi-bin/doc?formal/03-03-01

May-2,2005Feb 22, 2007

Copyright © OASIS Open 20852007. All Rights Reserved. Page 128 of 130

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.uml.org/
http://www.w3.org/TR/xpath
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
ftp://ftp.isi.edu/in-notes/rfc3023.txt
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.ietf.org/rfc/rfc2392.txt
http://www.iana.org/
http://www.w3.org/TR/xpath
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs
http://www.ebxml.org/specs

3564

3565
3566
3567

3566
3567
3568

3569

A. Acknowledgments

The editors would like to acknowledge the contributions of the OASIS ebXML Registry Technical
Committee, whose voting members at the time of publication are listed as contributors on the title page of

this document.

* Finally, the editors wish to acknowledge the following people for their contributions of material used
as input to the OASIS ebXML Registry specifications:

Name Affiliation
Aziz. Abouelfoutouh Government of Canada
Ed Buchinski Government of Canada
Asuman Dogac Middle East Technical University,
Ankara Turkey
Michael Kass NIST

Richard Lessard Government of Canada
Evan Wallace NIST
David Webber Individual
regrep-rs May-2,2005Feb 22, 2007

Copyright © OASIS Open 26052007. All Rights Reserved.

Page 129 of 130

3570

3571
3572
3573
3574
3575
3576
3577
3578

3572
3573
3574

3573

3574
3575
3576
3577
3578
3579
3580
3581

3575
3576

3576
3577
3578
3579

B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself does not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required
to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

regrep-rs May-2,-2005Feb 22, 2007
Copyright © OASIS Open 20852007. All Rights Reserved. Page 130 of 130

	1 Introduction
	1.1 Audience
	1.2 Terminology
	1.3 Notational Conventions
	1.3.1 UML Diagrams
	1.3.2 Identifier Placeholders
	1.3.3 Constants
	1.3.4 Bold Text
	1.3.5 Example Values

	1.4 XML Schema Conventions
	1.4.1 Schemas Defined by ebXML Registry
	1.4.2 Schemas Used By ebXML Registry

	1.5 Registry Actors
	1.6 Registry Use Cases
	1.7 Registry Architecture
	1.7.1 Registry Clients
	1.7.1.1 Client API

	1.7.2 Registry Service Interfaces
	1.7.3 Service Interface: Protocol Bindings
	1.7.4 Authentication and Authorization
	1.7.5 Metadata Registry and Content Repository

	2 Registry Protocols
	2.1 Requests and Responses
	2.1.1 RegistryRequestType
	2.1.1.1 Syntax:
	2.1.1.2 Parameters:
	2.1.1.3 Returns:
	2.1.1.4 Exceptions:

	2.1.2 RegistryRequest
	2.1.3 RegistryResponseType
	2.1.3.1 Syntax:
	2.1.3.2 Parameters:

	2.1.4 RegistryResponse
	2.1.5 RegistryErrorList
	2.1.5.1 Syntax:
	2.1.5.2 Parameters:

	2.1.6 RegistryError
	2.1.6.1 Syntax:
	2.1.6.2 Parameters:

	3 SOAP Binding
	3.1 ebXML Registry Service Interfaces: Abstract Definition
	3.2 ebXML Registry Service Interfaces SOAP Binding
	3.3 ebXML Registry Service Interfaces SOAP Service Template
	3.4 Mapping of Exception to SOAP Fault

	4 HTTP Binding
	4.1 HTTP Interface URL Pattern
	4.2 RPC Encoding URL
	4.2.1 Standard URL Parameters
	4.2.2 QueryManager Binding
	4.2.2.1 Sample getRegistryObject Request
	4.2.2.2 Sample getRegistryObject Response
	4.2.2.3 Sample getRepositoryItem Request
	4.2.2.4 Sample getRepositoryItem Response

	4.2.3 LifeCycleManager HTTP Interface

	4.3 Submitter Defined URL
	4.3.1 Submitter defined URL Syntax
	4.3.2 Assigning URL to a RegistryObject
	4.3.3 Assigning URL to a Repository Item

	4.4 File Path Based URL
	4.4.1 File Folder Metaphor
	4.4.2 File Path of a RegistryObject
	4.4.2.1 File Path Example

	4.4.3 Matching URL To Objects
	4.4.4 URL Matches a Single Object
	4.4.5 URL Matches Multiple Object
	4.4.6 Directory Listing
	4.4.7 Access Control In RegistryPackage Hierarchy

	4.5 URL Resolution Algorithm
	4.6 Security Consideration
	4.7 Exception Handling

	5 Lifecycle Management Protocols
	5.1 Submit Objects Protocol
	5.1.1 SubmitObjectsRequest
	5.1.1.1 Syntax:
	5.1.1.2 Parameters:
	5.1.1.3 Returns:
	5.1.1.4 Exceptions:

	5.1.2 Unique ID Generation
	5.1.3 ID Attribute And Object References
	5.1.4 Audit Trail
	5.1.5 Sample SubmitObjectsRequest

	5.2 The Update Objects Protocol
	5.2.1 UpdateObjectsRequest
	5.2.1.1 Syntax:
	5.2.1.2 Parameters:
	5.2.1.3 Returns:
	5.2.1.4 Exceptions:

	5.2.2 Audit Trail

	5.3 The Approve Objects Protocol
	5.3.1 ApproveObjectsRequest
	5.3.1.1 Syntax:
	5.3.1.2 Parameters:
	5.3.1.3 Returns:
	5.3.1.4 Exceptions:

	5.3.2 Audit Trail

	5.4 The Deprecate Objects Protocol
	5.4.1 DeprecateObjectsRequest
	5.4.1.1 Syntax:
	5.4.1.2 Parameters:
	5.4.1.3 Returns:
	5.4.1.4 Exceptions:

	5.4.2 Audit Trail

	5.5 The Undeprecate Objects Protocol
	5.5.1 UndeprecateObjectsRequest
	5.5.1.1 Syntax:
	5.5.1.2 Parameters:
	5.5.1.3 Returns:
	5.5.1.4 Exceptions:

	5.5.2 Audit Trail

	5.6 The Remove Objects Protocol
	5.6.1 RemoveObjectsRequest
	5.6.1.1 Syntax:
	5.6.1.2 Parameters:
	5.6.1.3 Returns:
	5.6.1.4 Exceptions:

	5.7 Registry Managed Version Control
	5.7.1 Version Controlled Resources
	5.7.2 Versioning and Object Identification
	5.7.3 Logical ID
	5.7.4 Version Identification
	5.7.4.1 Version Identification for a RegistryObject
	5.7.4.2 Version Identification for a RepositoryItem

	5.7.5 Versioning of ExtrinsicObject and Repository Items
	5.7.5.1 ExtrinsicObject and Shared RepositoryItem

	5.7.6 Versioning and Composed Objects
	5.7.7 Versioning and References
	5.7.8 Versioning and Audit Trail
	5.7.9 Inter-versions Association
	5.7.10 Client Initiated Version Removal
	5.7.11 Registry Initiated Version Removal
	5.7.12 Locking and Concurrent Modifications
	5.7.13 Version Creation
	5.7.14 Versioning Override

	6 Query Management Protocols
	6.1 Ad Hoc Query Protocol
	6.1.1 AdhocQueryRequest
	6.1.1.1 Syntax:
	6.1.1.2 Parameters:
	6.1.1.3 Returns:
	6.1.1.4 Exceptions:

	6.1.2 AdhocQueryResponse
	6.1.2.1 Syntax:
	6.1.2.2 Parameters:

	6.1.3 AdhocQuery
	6.1.3.1 Syntax:
	6.1.3.2 Parameters:

	6.1.4 ReponseOption
	6.1.4.1 Syntax:
	6.1.4.2 Parameters:

	6.2 Iterative Query Support
	6.2.1 Query Iteration Example

	6.3 Stored Query Support
	6.3.1 Submitting a Stored Query
	6.3.1.1 Declaring Query Parameters
	6.3.1.2 Canonical Context Parameters

	6.3.2 Invoking a Stored Query
	6.3.2.1 Specifying Query Invocation Parameters

	6.3.3 Response to Stored Query Invocation
	6.3.4 Access Control on a Stored Query
	6.3.5 Canonical Query: Get Client’s User Object

	6.4 SQL Query Syntax
	6.4.1 Relational Schema for SQL Queries
	6.4.2 SQL Query Results

	6.5 Filter Query Syntax
	6.5.1 Filter Query Structure
	6.5.2 Query Elements
	6.5.3 Filter Elements
	6.5.3.1 FilterType
	6.5.3.1.1 Parameters:

	6.5.3.2 SimpleFilterType
	6.5.3.2.1 Parameters:

	6.5.3.3 BooleanFilter
	6.5.3.3.1 Parameters:

	6.5.3.4 FloatFilter
	6.5.3.4.1 Parameters:

	6.5.3.5 IntegerFilter
	6.5.3.5.1 Parameters:

	6.5.3.6 DateTimeFilter
	6.5.3.6.1 Parameters:

	6.5.3.7 StringFilter
	6.5.3.7.1 Parameters:

	6.5.3.8 CompoundFilter
	6.5.3.8.1 Parameters:

	6.5.4 Nested Query Elements
	6.5.5 Branch Elements

	6.6 Query Examples
	6.6.1 Name and Description Queries
	6.6.2 Classification Queries
	6.6.2.1 Retrieving ClassificationSchemes
	6.6.2.2 Retrieving Children of Specified ClassificationNode
	6.6.2.3 Retrieving Objects Classified By a ClassificationNode
	6.6.2.4 Retrieving Classifications that Classify an Object

	6.6.3 Association Queries
	6.6.3.1 Retrieving All Associations With Specified Object As Source
	6.6.3.2 Retrieving All Associations With Specified Object As Target
	6.6.3.3 Retrieving Associated Objects Based On Association Type
	6.6.3.4 Complex Association Query

	6.6.4 Package Queries
	6.6.5 ExternalLink Queries
	6.6.6 Audit Trail Queries

	7 Event Notification Protocols
	7.1 Use Cases
	7.1.1 CPP Has Changed
	7.1.2 New Service is Offered
	7.1.3 Monitor Download of Content
	7.1.4 Monitor Price Changes
	7.1.5 Keep Replicas Consistent With Source Object

	7.2 Registry Events
	7.3 Subscribing to Events
	7.3.1 Event Selection
	7.3.2 Notification Action
	7.3.3 Subscription Authorization
	7.3.4 Subscription Quotas
	7.3.5 Subscription Expiration
	7.3.6 Subscription Rejection

	7.4 Unsubscribing from Events
	7.5 Notification of Events
	7.6 Retrieval of Events
	7.7 Pruning of Events

	8 Content Management Services
	8.1 Content Validation
	8.1.1 Content Validation: Use Cases
	8.1.1.1 Validation of HL7 Conformance Profiles
	8.1.1.2 Validation of Business Processes
	8.1.1.3 Validation of UBL Business Documents

	8.2 Content Cataloging
	8.2.1 Content-based Discovery: Use Cases
	8.2.1.1 Find All CPPs Where Role is “Buyer”
	8.2.1.2 Find All XML Schema’s That Use Specified Namespace
	8.2.1.3 Find All WSDL Descriptions with a SOAP Binding

	8.3 Abstract Content Management Service
	8.3.1 Inline Invocation Model
	8.3.2 Decoupled Invocation Model

	8.4 Content Management Service Protocol
	8.4.1 ContentManagementServiceRequestType
	8.4.1.1 Syntax:
	8.4.1.2 Parameters:
	8.4.1.3 Returns:
	8.4.1.4 Exceptions:

	8.4.2 ContentManagementServiceResponseType
	8.4.2.1 Syntax:
	8.4.2.2 Parameters:

	8.5 Publishing / Configuration of a Content Management Service
	8.5.1 Multiple Content Management Services and Invocation Control Files

	8.6 Invocation of a Content Management Service
	8.6.1 Resolution Algorithm For Service and Invocation Control File
	8.6.2 Audit Trail and Cataloged Content
	8.6.3 Referential Integrity
	8.6.4 Error Handling

	8.7 Validate Content Protocol
	8.7.1 ValidateContentRequest
	8.7.1.1 Syntax:
	8.7.1.2 Parameters:
	8.7.1.3 Returns:
	8.7.1.4 Exceptions:

	8.7.2 ValidateContentResponse
	8.7.2.1 Syntax:
	8.7.2.2 Parameters:

	8.8 Catalog Content Protocol
	8.8.1 CatalogContentRequest
	8.8.1.1 Syntax:
	8.8.1.2 Parameters:
	8.8.1.3 Returns:
	8.8.1.4 Exceptions:

	8.8.2 CatalogContentResponse
	8.8.2.1 Syntax:
	8.8.2.2 Parameters:

	8.9 Illustrative Example: Canonical XML Cataloging Service
	8.10 Canonical XML Content Cataloging Service
	8.10.1 Publishing of Canonical XML Content Cataloging Service

	9 Cooperating Registries Support
	9.1 Cooperating Registries Use Cases
	9.1.1 Inter-registry Object References
	9.1.2 Federated Queries
	9.1.3 Local Caching of Data from Another Registry
	9.1.4 Object Relocation

	9.2 Registry Federations
	9.2.1 Federation Metadata
	9.2.2 Local Vs. Federated Queries
	9.2.2.1 Local Queries
	9.2.2.2 Federated Queries
	9.2.2.3 Membership in Multiple Federations

	9.2.3 Federated Lifecycle Management Operations
	9.2.4 Federations and Local Caching of Remote Data
	9.2.5 Caching of Federation Metadata
	9.2.6 Time Synchronization Between Registry Peers
	9.2.7 Federations and Security
	9.2.8 Federation Lifecycle Management Protocols
	9.2.8.1 Joining a Federation
	9.2.8.2 Creating a Federation
	9.2.8.3 Leaving a Federation
	9.2.8.4 Dissolving a Federation

	9.3 Object Replication
	9.3.1 Use Cases for Object Replication
	9.3.2 Queries And Replicas
	9.3.3 Lifecycle Operations And Replicas
	9.3.4 Object Replication and Federated Registries
	9.3.5 Creating a Local Replica
	9.3.6 Transactional Replication
	9.3.7 Keeping Replicas Current
	9.3.8 Lifecycle Management of Local Replicas
	9.3.9 Tracking Location of a Replica
	9.3.10 Remote Object References to a Replica
	9.3.11 Removing a Local Replica

	9.4 Object Relocation Protocol
	9.4.1 RelocateObjectsRequest
	9.4.1.1 Parameters:
	9.4.1.2 Returns:
	9.4.1.3 Exceptions:

	9.4.2 AcceptObjectsRequest
	9.4.2.1 Parameters:
	9.4.2.2 Returns:
	9.4.2.3 Exceptions:

	9.4.3 Object Relocation and Remote ObjectRefs
	9.4.4 Notification of Object Relocation To ownerAtDestination
	9.4.5 Notification of Object Commit To sourceRegistry
	9.4.6 Object Ownership and Owner Reassignment
	9.4.7 Object Relocation and Timeouts

	10 Registry Security
	10.1 Security Use Cases
	10.1.1 Identity Management
	10.1.2 Message Security
	10.1.3 Repository Item Security
	10.1.4 Authentication
	10.1.5 Authorization and Access Control
	10.1.6 Audit Trail

	10.2 Identity Management
	10.3 Message Security
	10.3.1 Transport Layer Security
	10.3.2 SOAP Message Security
	10.3.2.1 Request Message Signature
	10.3.2.2 Response Message Signature
	10.3.2.3 KeyInfo Requirements
	10.3.2.4 Message Signature Validation
	10.3.2.5 Message Signature Example
	10.3.2.6 Message With RepositoryItem: Signature Example
	10.3.2.7 SOAP Message Security and HTTP/S

	10.3.3 Message Confidentiality
	10.3.4 Key Distribution Requirements

	10.4 Authentication
	10.4.1 Registry as Authentication Authority
	10.4.2 External Authentication Authority
	10.4.3 Authenticated Session Support

	10.5 Authorization and Access Control
	10.6 Audit Trail

	11 Registry SAML Profile
	11.1 Terminology
	11.2 Use Cases for SAML Profile
	11.2.1 Registry as SSO Participant:

	11.3 SAML Roles Played By Registry
	11.3.1 Service Provider Role
	11.3.1.1 Service Provider Requirements

	11.4 Registry SAML Interface
	11.5 Requirements for Registry SAML Profile
	11.6 SSO Operation
	11.6.1 Scenario Actors
	11.6.2 SSO Operation – Unauthenticated HTTP Requestor
	11.6.2.1 Scenario Sequence

	11.6.3 SSO Operation – Authenticated HTTP Requestor
	11.6.4 SSO Operation – Unuthenticated SOAP Requestor
	11.6.4.1 Scenario Sequence

	11.6.5 SSO Operation – Authenticated SOAP Requestor
	11.6.5.1 Scenario Sequence

	11.6.6 <samlp:AuthnRequest> Generation Rules
	11.6.7 <samlp:Response> Processing Rules
	11.6.8 Mapping Subject to User

	11.7 External Users

	12 Native Language Support (NLS)
	12.1 Terminology
	12.2 NLS and Registry Protcol Messages
	12.3 NLS Support in RegistryObjects
	12.3.1 Character Set of LocalizedString
	12.3.2 Language of LocalizedString

	12.4 NLS and Repository Items
	12.4.1 Character Set of Repository Items
	12.4.2 Language of Repository Items

	13 Conformance
	13.1 Conformance Profiles
	13.2 Feature Matrix

	14 References
	14.1 Normative References
	14.2 Informative

