

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 1 of 62

1

 1

oBIX 1.0 2

Committee Specification 01, 5 December 2006 3

Document identifier: 4
obix-1.0-cs-01 5

Location: 6
http://www.oasis-open.org/committees/obix 7

Technical Committee: 8
OASIS Open Building Information Exchange TC 9

Chairs: 10
Toby Considine, University of North Carolina Chapel Hill 11
Paul Ehrlich, Building Intelligence Group 12

Editor: 13
Brian Frank, Tridium 14

Abstract: 15
This document specifies an object model and XML format used for machine-to-machine 16
(M2M) communication. 17

Status: 18
This document was last revised or approved by the Open Building Information Exchange 19
TC on the above date. The level of approval is also listed above. Check the current 20
location noted above for possible later revisions of this document. This document is 21
updated periodically on no particular schedule. 22
Technical Committee members should send comments on this specification to the 23
Technical Committee’s email list. Others should send comments to the Technical 24
Committee by using the “Send A Comment” button on the Technical Committee’s web 25
page at www.oasis-open.org/committees/obix. 26
For information on whether any patents have been disclosed that may be essential to 27
implementing this specification, and any offers of patent licensing terms, please refer to 28
the Intellectual Property Rights section of the Technical Committee web page 29
(www.oasis-open.org/committees/obix/ipr.php). 30
The non-normative errata page for this specification is located at www.oasis-31
open.org/committees/obix. 32

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 2 of 62

2

Notices 33

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 34
that might be claimed to pertain to the implementation or use of the technology described in this 35
document or the extent to which any license under such rights might or might not be available; 36
neither does it represent that it has made any effort to identify any such rights. Information on 37
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 38
website. Copies of claims of rights made available for publication and any assurances of licenses 39
to be made available, or the result of an attempt made to obtain a general license or permission 40
for the use of such proprietary rights by implementers or users of this specification, can be 41
obtained from the OASIS Executive Director. 42
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 43
applications, or other proprietary rights which may cover technology that may be required to 44
implement this specification. Please address the information to the OASIS Executive Director. 45
Copyright © OASIS Open 2004. All Rights Reserved. 46
This document and translations of it may be copied and furnished to others, and derivative works 47
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 48
published and distributed, in whole or in part, without restriction of any kind, provided that the 49
above copyright notice and this paragraph are included on all such copies and derivative works. 50
However, this document itself does not be modified in any way, such as by removing the 51
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 52
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 53
Property Rights document must be followed, or as required to translate it into languages other 54
than English. 55
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 56
successors or assigns. 57
This document and the information contained herein is provided on an “AS IS” basis and OASIS 58
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 59
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 60
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 61
PARTICULAR PURPOSE. 62

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 3 of 62

3

Table of Contents 63

1 Overview ... 7 64
1.1 XML ... 7 65
1.2 Networking .. 7 66
1.3 Normalization .. 7 67
1.4 Foundation .. 8 68

2 Quick Start .. 9 69
3 Architecture... 11 70

3.1 Object Model ... 11 71
3.2 XML ... 11 72
3.3 URIs .. 12 73
3.4 REST... 12 74
3.5 Contracts ... 12 75
3.6 Extendibility ... 13 76

4 Object Model... 14 77
4.1 obj.. 14 78
4.2 bool.. 15 79
4.3 int... 15 80
4.4 real .. 15 81
4.5 str .. 15 82
4.6 enum ... 15 83
4.7 abstime.. 15 84
4.8 reltime.. 16 85
4.9 uri .. 16 86
4.10 list .. 16 87
4.11 ref .. 16 88
4.12 err .. 16 89
4.13 op .. 16 90
4.14 feed ... 17 91
4.15 Null .. 17 92
4.16 Facets.. 17 93

4.16.1 displayName .. 17 94
4.16.2 display.. 17 95
4.16.3 icon .. 17 96
4.16.4 min ... 18 97
4.16.5 max .. 18 98
4.16.6 precision... 18 99
4.16.7 range.. 18 100
4.16.8 status ... 18 101
4.16.9 unit ... 19 102
4.16.10 writable... 19 103

5 Naming.. 20 104
5.1 Name... 20 105

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 4 of 62

4

5.2 Href.. 20 106
5.3 HTTP Relative URIs.. 21 107
5.4 Fragment URIs .. 21 108

6 Contracts... 22 109
6.1 Contract Terminology.. 22 110
6.2 Contract List .. 22 111
6.3 Is Attribute ... 23 112
6.4 Contract Inheritance.. 23 113
6.5 Override Rules .. 24 114
6.6 Multiple Inheritance ... 25 115

6.6.1 Flattening ... 25 116
6.6.2 Mixins... 25 117

6.7 Contract Compatibility ... 26 118
6.8 Lists (and Feeds)... 26 119

7 XML... 28 120
7.1 Design Philosophy... 28 121
7.2 XML Syntax ... 28 122
7.3 XML Encoding... 28 123
7.4 XML Decoding... 29 124
7.5 XML Namespace... 29 125
7.6 Namespace Prefixes in Contract Lists .. 29 126

8 Operations .. 30 127
9 Object Composition... 31 128

9.1 Containment .. 31 129
9.2 References .. 31 130
9.3 Extents .. 31 131
9.4 XML ... 32 132

10 Networking .. 33 133
10.1 Request / Response.. 33 134

10.1.1 Read .. 33 135
10.1.2 Write... 33 136
10.1.3 Invoke .. 34 137

10.2 Errors... 34 138
10.3 Lobby... 34 139
10.4 About ... 35 140
10.5 Batch ... 35 141

11 Core Contract Library.. 38 142
11.1 Nil .. 38 143
11.2 Range.. 38 144
11.3 Weekday ... 38 145
11.4 Month .. 38 146
11.5 Units .. 39 147

12 Watches .. 41 148
12.1 WatchService .. 41 149

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 5 of 62

5

12.2 Watch .. 41 150
12.2.1 Watch.add.. 42 151
12.2.2 Watch.remove.. 43 152
12.2.3 Watch.pollChanges.. 43 153
12.2.4 Watch.pollRefresh.. 43 154
12.2.5 Watch.lease ... 43 155
12.2.6 Watch.delete .. 44 156

12.3 Watch Depth.. 44 157
12.4 Feeds .. 44 158

13 Points .. 46 159
13.1 Writable Points .. 46 160

14 History ... 47 161
14.1 History Object.. 47 162
14.2 History Queries.. 47 163

14.2.1 HistoryFilter.. 47 164
14.2.2 HistoryQueryOut .. 48 165
14.2.3 HistoryRecord .. 48 166
14.2.4 History Query Example.. 48 167

14.3 History Rollups .. 49 168
14.3.1 HistoryRollupIn... 49 169
14.3.2 HistoryRollupOut.. 49 170
14.3.3 HistoryRollupRecord.. 49 171
14.3.4 Rollup Calculation.. 49 172

14.4 History Feeds .. 51 173
15 Alarming.. 52 174

15.1 Alarm States.. 52 175
15.1.1 Alarm Source ... 52 176
15.1.2 StatefulAlarm and AckAlarm.. 52 177

15.2 Alarm Contracts... 53 178
15.2.1 Alarm.. 53 179
15.2.2 StatefulAlarm ... 53 180
15.2.3 AckAlarm.. 53 181
15.2.4 PointAlarms.. 54 182

15.3 AlarmSubject ... 54 183
15.4 Alarm Feed Example... 54 184

16 Security ... 56 185
16.1 Error Handling ... 56 186
16.2 Permission based Degradation... 56 187

17 HTTP Binding.. 57 188
17.1 Requests ... 57 189
17.2 Security ... 57 190
17.3 Localization ... 57 191

18 SOAP Binding ... 59 192
18.1 SOAP Example ... 59 193

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 6 of 62

6

18.2 Error Handling ... 59 194
18.3 Security ... 59 195
18.4 Localization ... 59 196
18.5 WSDL .. 60 197

Appendix A. Revision History .. 62 198
 199

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 7 of 62

7

1 Overview 200

oBIX is designed to provide access to the embedded software systems which sense and control 201
the world around us. Historically integrating to these systems required custom low level 202
protocols, often custom physical network interfaces. But now the rapid increase in ubiquitous 203
networking and the availability of powerful microprocessors for low cost embedded devices is 204
weaving these systems into the very fabric of the Internet. Generically the term M2M for 205
Machine-to-Machine describes the transformation occurring in this space because it opens a new 206
chapter in the development of the Web - machines autonomously communicating with each other. 207
The oBIX specification lays the groundwork building this M2M Web using standard, enterprise 208
friendly technologies like XML, HTTP, and URIs. 209
 210
The following design points illustrate the problem space oBIX attempts to solve: 211

• XML: representing M2M information in a standard XML syntax; 212
• Networking: transferring M2M information in XML over the network; 213
• Normalization: standard representations for common M2M features: points, histories, 214

and alarms; 215
• Foundation: providing a common kernel for new standards; 216

1.1 XML 217

The principle requirement of oBIX is to develop a common XML syntax for representing 218
information from diverse M2M systems. The design philosophy of oBIX is based on a small, but 219
extensible data model which maps to a simple fixed XML syntax. This core object model and it’s 220
XML syntax is simple enough to capture entirely in one illustration provided in Chapter 4. The 221
object model’s extensibility allows for the definition of new abstractions through a concept called 222
contracts. The majority of the oBIX specification is actually defined in oBIX itself through 223
contracts. 224

1.2 Networking 225

Once we have a way to represent M2M information in XML, the next step is to provide standard 226
mechanisms to transfer it over networks for publication and consumption. oBIX breaks 227
networking into two pieces: an abstract request/response model and a series of protocol bindings 228
which implement that model. Version 1.0 of oBIX defines two protocol bindings designed to 229
leverage existing web service infrastructure: an HTTP REST binding and a SOAP binding. 230

1.3 Normalization 231

There are a few concepts which have broad applicability in systems which sense and control the 232
physical world. Version 1.0 of oBIX provides a normalized representation for three of these: 233

• Points: representing a single scalar value and it’s status – typically these map to 234
sensors, actuators, or configuration variables like a setpoint; 235

• Histories: modeling and querying of time sampled point data. Typically edge devices 236
collect a time stamped history of point values which can be fed into higher level 237
applications for analysis; 238

• Alarming: modeling, routing, and acknowledgment of alarms. Alarms indicate a 239
condition which requires notification of either a user or another application. 240

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 8 of 62

8

1.4 Foundation 241

The requirements and vertical problem domains for M2M systems are immensely broad – too 242
broad to cover in one single specification. oBIX is deliberately designed as a fairly low level 243
specification, but with a powerful extension mechanism based on contracts. The goal of oBIX is 244
to lay the groundwork for a common object model and XML syntax which serves as the 245
foundation for new specifications. It is hoped that a stack of specifications for vertical domains 246
can be built upon oBIX as a common foundation. 247

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 9 of 62

9

2 Quick Start 248

This chapter is for those eager beavers who want to immediately jump right into oBIX and all its 249
angle bracket glory. The best way to begin is to take a simple example that anybody is familiar 250
with – the staid thermostat. Let’s assume we have a very simple thermostat. It has a 251
temperature sensor which reports the current space temperature and it has a setpoint that stores 252
the desired temperature. Let’s assume our thermostat only supports a heating mode, so it has a 253
variable that reports if the furnace should currently be on. Let’s take a look at what our 254
thermostat might look like in oBIX XML: 255
 256

<obj href="http://myhome/thermostat"> 257
 <real name="spaceTemp" units="obix:units/fahrenheit" val="67.2"/> 258
 <real name="setpoint" unit="obix:units/fahrenheit" val="72.0"/> 259
 <bool name="furnaceOn" val="true"/> 260
</obj> 261

 262
The first thing to notice is that there are three element types. In oBIX there is a one-to-one 263
mapping between objects and elements. Objects are the fundamental abstraction used by the 264
oBIX data model. Elements are how those objects are expressed in XML syntax. This document 265
uses the term object and sub-objects, although you can substitute the term element and sub-266
element when talking about the XML representation. 267
 268
The root obj element models the entire thermostat. Its href attribute identifies the URI for this 269
oBIX document. There are three child objects for each of the thermostat’s variables. The real 270
objects store our two floating point values: space temperature and setpoint. The bool object 271
stores a boolean variable for furnace state. Each sub-element contains a name attribute which 272
defines the role within the parent. Each sub-element also contains a val attribute for the current 273
value. Lastly we see that we have annotated the temperatures with an attribute called units so 274
we know they are in Fahrenheit, not Celsius (which would be one hot room). The oBIX 275
specification defines a bunch of these annotations which are called facets. 276
 277
In real life, sensor and actuator variables (called points) imply more semantics than a simple 278
scalar value. In other cases such as alarms, it is desirable to standardize a complex data 279
structure. oBIX captures these concepts into contracts. Contracts allow us to tag objects with 280
normalized semantics and structure. 281
 282
Let’s suppose our thermostat’s sensor is reading a value of -412°F? Clearly our thermostat is 283
busted, so we should report a fault condition. Let’s rewrite the XML to include the status facet 284
and to provide additional semantics using contracts: 285
 286

<obj href="http://myhome/thermostat/"> 287
 288
 <!-- spaceTemp point --> 289
 <real name="spaceTemp" is="obix:Point" 290
 val="-412.0" status="fault" 291
 units="obix:units/fahrenheit"/> 292
 293
 <!-- setpoint point --> 294
 <real name="setpoint" is="obix:Point" 295
 val="72.0" 296
 unit="obix:units/fahrenheit"/> 297
 298

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 10 of 62

10

 <!-- furnaceOn point --> 299
 <bool name="furnaceOn" is="obix:Point" val="true"/> 300
 301
</obj> 302

 303
Notice that each of our three scalar values are tagged as obix:Points via the is attribute. This 304
is a standard contract defined by oBIX for representing normalized point information. By 305
implementing these contracts, clients immediately know to semantically treat these objects as 306
points. 307
 308
Contracts play a pivotal role in oBIX for building new abstractions upon the core object model. 309
Contracts are slick because they are just normal objects defined using standard oBIX syntax (see 310
Chapter 13 to take sneak peak the point contracts). 311

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 11 of 62

11

3 Architecture 312

The oBIX architecture is based on the following principles: 313
• Object Model: a concise object model used to define all oBIX information. 314
• XML Syntax: a simple XML syntax for expressing the object model. 315
• URIs: URIs are used to identify information within the object model. 316
• REST: a small set of verbs is used to access objects via their URIs and transfer their 317

state via XML. 318
• Contracts: a template model for expressing new oBIX “types”. 319
• Extendibility: providing for consistent extendibility using only these concepts. 320

3.1 Object Model 321

All information in oBIX is represented using a small, fixed set of primitives. The base abstraction 322
for these primitives is cleverly called object. An object can be assigned a URI and all objects can 323
contain other objects. 324
 325
There are eight special kinds of value objects used to store a piece of simple information: 326

• bool: stores a boolean value - true or false; 327
• int: stores an integer value; 328
• real: stores a floating point value; 329
• str: stores a UNICODE string; 330
• enum: stores an enumerated value within a fixed range; 331
• abstime: stores an absolute time value (timestamp); 332
• reltime: stores a relative time value (duration or time span); 333
• uri: stores a Universal Resource Identifier; 334

Note that any value object can also contain sub-objects. There are also a couple of other special 335
object types: list, op, feed, ref and err. 336

3.2 XML 337

oBIX is all about a simple XML syntax to represent its underlying object model. Each of the 338
object types map to one type of element. The value objects represent their data value using the 339
val attribute. All other aggregation is simply nesting of elements. A simple example to illustrate: 340

<obj href="http://bradybunch/people/Mike-Brady/"> 341
 <obj name="fullName"> 342
 <str name="first" val="Mike"/> 343
 <str name="last" val="Brady"/> 344
 </obj> 345
 <int name ="age" val="45"/> 346
 <ref name="spouse" href="/people/Carol-Brady"/> 347
 <list name="children"> 348
 <ref href="/people/Greg-Brady"/> 349
 <ref href="/people/Peter-Brady"/> 350
 <ref href="/people/Bobby-Brady"/> 351
 <ref href="/people/Marsha-Brady"/> 352
 <ref href="/people/Jan-Brady"/> 353
 <ref href="/people/Cindy-Brady"/> 354
 </list> 355
</obj> 356

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 12 of 62

12

Note in this simple example how the href attribute specifies URI references which may be used 357
to fetch more information about the object. Names and hrefs are discussed in detail in Chapter 5. 358

3.3 URIs 359

No architecture is complete without some sort of naming system. In oBIX everything is an object, 360
so we need a way to name objects. Since oBIX is really about making information available over 361
the web using XML, it makes to sense to leverage the venerable URI (Uniform Resource 362
Identifier). URIs are the standard way to identify “resources” on the web. 363
 364
Often URIs also provide information about how to fetch their resource - that’s why they are often 365
called URLs (Uniform Resource Locator). From a practical perspective if a vendor uses HTTP 366
URIs to identify their objects, you can most likely just do a simple HTTP GET to fetch the oBIX 367
document for that object. But technically, fetching the contents of a URI is a protocol binding 368
issue discussed in later chapters. 369
 370
The value of URIs are that they come with all sorts of nifty rules already defined for us (see RFC 371
3986). For example URIs define which characters are legal and which are illegal. Of great value 372
to oBIX is URI references which define a standard way to express and normalize relative URIs. 373
Plus most programming environments have libraries to manage URIs so developers don’t have to 374
worry about nitty gritty normalization details. 375

3.4 REST 376

Many savvy readers may be thinking that objects identified with URIs and passed around as XML 377
documents is starting to sound a lot like REST – and you would be correct. REST stands for 378
REpresentational State Transfer and is an architectural style for web services that mimics how 379
the World Wide Web works. The WWW is basically a big web of HTML documents all 380
hyperlinked together using URIs. Likewise, oBIX is basically a big web of XML object documents 381
hyperlinked together using URIs. 382
 383
REST is really more of a design style, than a specification. REST is resource centric as opposed 384
to method centric - resources being oBIX objects. The methods actually used tend to be a very 385
small fixed set of verbs used to work generically with all resources. In oBIX all network requests 386
boil down to three request types: 387

• Read: an object 388
• Write: an object 389
• Invoke: an operation 390

3.5 Contracts 391

In every software domain, patterns start to emerge where many different object instances share 392
common characteristics. For example in most systems that model people, each person probably 393
has a name, address, and phone number. In vertical domains we may attach domain specific 394
information to each person. For example an access control system might associate a badge 395
number with each person. 396
 397
In object oriented systems we capture these patterns into classes. In relational databases we 398
map them into tables with typed columns. In oBIX we capture these patterns using a concept 399
called contracts, which are standard oBIX objects used as a template. Contracts are more nimble 400
and flexible than strongly typed schema languages, without the overhead of introducing new 401

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 13 of 62

13

syntax. A contract document is parsed just like any other oBIX document. In geek speak 402
contracts are a combination of prototype based inheritance and mixins. 403
 404
Why do we care about trying to capture these patterns? The most important use of contracts is 405
by the oBIX specification itself to define new standard abstractions. It is just as important for 406
everyone to agree on normalized semantics as it is as on syntax. Contracts also provide the 407
definitions needed to map to the OO guy’s classes or the relational database guy’s tables. 408

3.6 Extendibility 409

We want to use oBIX as a foundation for developing new abstractions in vertical domains. We 410
also want to provide extendibility for vendors who implement oBIX across legacy systems and 411
new product lines. Additionally, it is common for a device to ship as a blank slate and be 412
completely programmed in the field. This leaves us with a mix of standards based, vendor based, 413
and even project based extensions. 414
 415
The principle behind oBIX extendibility is that anything new is defined strictly in terms of objects, 416
URIs, and contracts. To put it another way - new abstractions don’t introduce any new XML 417
syntax or functionality that client code is forced to care about. New abstractions are always 418
modeled as standard trees of oBIX objects, just with different semantics. That doesn’t mean that 419
higher level application code never changes to deal with new abstractions, but the core stack that 420
deals with networking and parsing shouldn’t have to change. 421
 422
This extendibility model is similar to most mainstream programming languages such as Java or 423
C#. The syntax of the core language is fixed with a built in mechanism to define new 424
abstractions. Extendibility is achieved by defining new class libraries using the language’s fixed 425
syntax. This means I don’t have to update the compiler every time some one adds a new class. 426

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 14 of 62

14

4 Object Model 427

The oBIX specification is based on a small, fixed set of object types. These object types map one 428
to one to an XML element type. The oBIX object model is summarized in the following 429
illustration. Each box represents a specific object type (and XML element name). Each object 430
type also lists its supported attributes. 431
 432

 433

4.1 obj 434

The root abstraction in oBIX is object, modeled in XML via the obj element. Every XML element 435
in oBIX is a derivative of the obj element. Any obj element or its derivatives can contain other 436
obj elements. The attributes supported on the obj element include: 437

• name: defines the object’s purpose in its parent object (discussed in the Chapter 5); 438
• href: provides a URI reference for identifying the object (discussed in the Chapter 5); 439
• is: defines the contracts the object implements (discussed in Chapter 6); 440
• null: support for null objects (discussed in Section 4.15) 441
• facets: a set of attributes used to provide meta-data about the object (discussed in 442

Section 4.16); 443
• val: an attribute used only with value objects (bool, int, real, str, enum, abstime, 444

reltime, and uri) to store the actual value; 445
The contract definition of obj: 446

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 15 of 62

15

<obj href="obix:obj" null="false" writable="false" status="ok" /> 447

4.2 bool 448

The bool object represents a boolean condition of either true or false. Its val attribute maps to 449
xs:boolean defaulting to false. The literal value of a bool must be “true” or “false” (the literals 450
“1” and “0” are not allowed). The contract definition: 451

<bool href="obix:bool" is="obix:obj" val="false" null="false"/> 452
An example: 453

<bool val="true"/> 454

4.3 int 455

The int type represents an integer number. Its val attribute maps to xs:long as a 64-bit 456
integer with a default of 0. The contract definition: 457

<int href="obix:int" is="obix:obj" val"0" null="false"/> 458
An example: 459

<int val="52"/> 460

4.4 real 461

The real type represents a floating point number. Its val attribute maps to xs:double as a 462
IEEE 64-bit floating point number with a default of 0. The contract definition: 463

<real href="obix:real" is="obix:obj" val="0" null="false"/> 464
An example: 465

<real val="41.06"/> 466

4.5 str 467

The str type represents a string of Unicode characters. Its val attribute maps to xs:string 468
with a default of the empty string. The contract definition: 469

<str href="obix:str" is="obix:obj" val="" null="false"/> 470
An example: 471

<str val="hello world"/> 472

4.6 enum 473

The enum type is used to represent a value which must match a finite set of values. The finite 474
value set is called the range. The val attribute of an enum is represented as a string key using 475
xs:string. Enums default to null. The range of an enum is declared via facets using the 476
range attribute. The contract definition: 477

<enum href="obix:enum" is="obix:obj" val="" null="true"/> 478
An example: 479

<enum range="/enums/OffSlowFast" val="slow"/> 480

4.7 abstime 481

The abstime type is used to represent an absolute point in time. Its val attribute maps to 482
xs:dateTime. Abstimes default to null. The contract definition: 483

<abstime href="obix:abstime" is="obix:obj" val="1970-01-01T00:00" null="true"/> 484
An example for 9 March 2005 at 1:30PM GMT: 485

<abstime val="2005-03-09T13:30Z"/> 486

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 16 of 62

16

4.8 reltime 487

The reltime type is used to represent a relative duration of time. Its val attribute maps to 488
xs:duration with a default of 0sec. The contract definition: 489

<reltime href="obix:reltime" is="obix:obj" val="PT0S" null="false"/> 490
An example of 15 seconds: 491

<reltime val="PT15S"/> 492

4.9 uri 493

The uri type is used to store a URI reference. Unlike a plain old str, a uri has a restricted 494
lexical space as defined by RFC 3986 and XML Schema anyURI type. Most URIs will also be a 495
URL, meaning that they identify a resource and how to retrieve it (typically via HTTP). The 496
contract: 497

<uri href="obix:uri" is="obix:obj" val="" null="false"/> 498
An example for the oBIX home page: 499

<uri val="http://obix.org/" /> 500

4.10 list 501

The list object is a specialized object type for storing a list of other objects. The primary 502
advantage of using a list versus a generic obj is that lists can specify a common contract for 503
their contents using the of attribute. If specified the of attribute must be a list of URIs formatted 504
as a contract list. The definition of list is: 505

<list href="obix:list" is="obix:obj" of="obix:obj"/> 506
An example list of strings: 507

<list of="obix:str"> 508
 <str val="one"/> 509
 <str val="two"/> 510
</list> 511

Lists are discussed in greater detail along with contracts in section 6.8. 512

4.11 ref 513

The ref object is used to create an out of document reference to another oBIX object. It the 514
oBIX equivalent of the HTML anchor tag. The contract definition: 515

<ref href="obix:ref " is="obix:obj"/> 516
A ref element must always specify a href attribute. References are discussed in detail in 517
section 9.2. 518

4.12 err 519

The err object is a special object used to indicate an error. Its actual semantics are context 520
dependent. Typically err objects should include a human readable description of the problem 521
via the display attribute. The contract definition: 522

<err href="obix:err" is="obix:obj"/> 523

4.13 op 524

The op object is used to define an operation. All operations take one input object as a 525
parameter, and return one object as an output. The input and output contracts are defined via the 526
in and out attributes. The contract definition: 527

<op href="obix:op" is="obix:obj" in="obix:Nil" out="obix:Nil"/> 528

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 17 of 62

17

Operations are discussed in detail in Chapter 8. 529

4.14 feed 530

The feed object is used to define a topic for a feed of events. Feeds are used with watches to 531
subscribe to a stream of events such as alarms. A feed should specify the event type it fires via 532
the of attribute. The in attribute can be used to pass an input argument when subscribing to the 533
feed (a filter for example). 534

<feed href="obix:feed" is="obix:obj" in="obix:Nil" of="obix:obj"/> 535
Feeds are subscribed via Watches discussed in Chapter 12. 536

4.15 Null 537

All objects support the concept of null. Null is the absence of a value. Null is indicated using the 538
null attribute with a boolean value. All objects default null to false with the exception of enum 539
and abstime (since any other default would be confusing). 540
 541
Null is inherited from contracts a little differently than other attributes. See Section 6.4 for details. 542

4.16 Facets 543

All objects can be annotated with a predefined set of attributes called facets. Facets provide 544
additional meta-data about the object. The set of available facets is: displayName, display, 545
icon, min, max, precision, range, and unit. Vendors which wish to annotate objects with 546
additional facets should consider using XML namespace qualified attributes. 547

4.16.1 displayName 548

The displayName facet provides a localized human readable name of the object stored as a 549
xs:string: 550

<obj name="spaceTemp" displayName="Space Temperature"/> 551
Typically the displayName facet should be a localized form of the name attribute. There are no 552
restrictions on displayName overrides from the contract (although it should be uncommon since 553
displayName is just a human friendly version of name). 554

4.16.2 display 555

The display facet provides a localized human readable description of the object stored as a 556
xs:string: 557

<bool name="occupied" val="false" display="Unoccupied"/> 558
There are no restrictions on display overrides from the contract. 559
The display attribute serves the same purpose as Object.toString() in Java or C#. It provides a 560
general way to specify a string representation for all objects. In the case of value objects (like 561
bool or int) it should provide a localized, formatted representation of the val attribute. 562

4.16.3 icon 563

The icon facet provides a URI reference to a graphical icon which may be used to represent the 564
object in an user agent: 565

<object icon="/icons/equipment.png"/> 566
The contents of the icon attribute must be a URI to an image file. The image file is preferably a 567
16x16 PNG file. There are no restrictions on icon overrides from the contract. 568

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 18 of 62

18

4.16.4 min 569

The min facet is used to define an inclusive minimum value: 570
<int min="5" val="6"/> 571

The contents of the min attribute must match its associated val type. The min facet is used with 572
int, real , abstime, and reltime to define an inclusive lower limit of the value space. It is 573
used with str to indicate the minimum number of Unicode characters of the string. It is used 574
with list to indicate the minimum number of child objects (named or unnamed). Overrides of 575
the min facet may only narrow the value space using a larger value. The min facet must never 576
be greater than the max facet (although they can be equal). 577

4.16.5 max 578

The max facet is used to define an inclusive maximum value: 579
<real max="70" val="65"/> 580

The contents of the max attribute must match its associated val type. The max facet is used with 581
int, real, abstime, and reltime to define an inclusive upper limit of the value space. It is 582
used with str to indicate the maximum number of Unicode characters of the string. It is used 583
with list to indicate the maximum number of child objects (named or unnamed). Overrides of 584
the max facet may only narrow the value space using a smaller value. The max facet must never 585
be less than the min facet (although they can be equal). 586

4.16.6 precision 587

The precision facet is used to describe the number of decimal places to use for a real value: 588
<real precision="2" val="75.04"/> 589

The contents of the precision attribute must be xs:int. The value of the precision 590
attribute equates to the number of meaningful decimal places. In the example above, the value of 591
2 indicates two meaningful decimal places: “75.04”. Typically precision is used by client 592
applications which do their own formatting of real values. There are no restrictions on 593
precision overrides. 594

4.16.7 range 595

The range facet is used to define the value space of an enumeration. A range attribute is a URI 596
reference to an obix:Range object (see section 11.2 for the definition). It is used with the bool 597
and enum object types: 598

<enum range="/enums/OffSlowFast" val="slow"/> 599
The override rule for range is that the specified range must inherit from the contract’s range. 600
Enumerations are funny beasts in that specialization of an enum usually involves adding new 601
items to the range. Technically this is widening the enum’s value space, rather than narrowing it. 602
But in practice, adding items into the range is what we desire. 603

4.16.8 status 604

The status facet is used to annotate an object about the quality and state of the information: 605
<real val="67.2" status="alarm"/> 606

Status is an enumerated string value with one of the following values (ordered by priority): 607
• disabled: This state indicates that the object has been disabled from normal operation 608

(out of service). In the case of operations and feeds, this state is used to disable support 609
for the operation or feed. 610

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 19 of 62

19

• fault: The fault state indicates that the data is invalid or unavailable due to a failure 611
condition - data which is out of date, configuration problems, software failures, or 612
hardware failures. Failures involving communications should use the down state. 613

• down: The down state indicates a communication failure. 614

• unackedAlarm: The unackedAlarm state indicates there is an existing alarm 615
condition which has not been acknowledged by a user – it is the combination of the 616
alarm and unacked states. The difference between alarm and unackedAlarm is that 617
alarm implies that a user has already acknowledged the alarm or that no human 618
acknowledgement is necessary for the alarm condition. The difference between 619
unackedAlarm and unacked is that the object has returned to a normal state. 620

• alarm: This state indicates the object is currently in the alarm state. The alarm state 621
typically means that an object is operating outside of its normal boundaries. In the case 622
of an analog point this might mean that the current value is either above or below its 623
configured limits. Or it might mean that a digital sensor has transitioned to an undesired 624
state. See Alarming (Chapter 15) for additional information. 625

• unacked: The unacked state is used to indicate a past alarm condition which remains 626
unacknowledged. 627

• overridden: The overridden state means the data is ok, but that a local override is 628
currently in effect. An example of an override might be the temporary override of a 629
setpoint from it’s normal scheduled setpoint. 630

• ok: The ok state indicates normal status. This is the assumed default state for all 631
objects. 632

Status must be one of the enumerated strings above. It might be possible in the native system to 633
exhibit multiple status states simultaneously, however when mapping to oBIX the highest priority 634
status should be chosen – priorities are ranked from top (disabled) to bottom (ok). 635

4.16.9 unit 636

The unit facet defines a unit of measurement. A unit attribute is a URI reference to a 637
obix:Unit object (see section 11.5 for the contract definition). It is used with the int and real 638
object types: 639

<real unit="obix:units/fahrenheit" val="67.2"/> 640
It is recommended that the unit facet not be overridden if declared in a contract. If it is 641
overridden, then the override should use a Unit object with the same dimensions as the contract 642
(it must measure the same physical quantity). 643

4.16.10 writable 644

The writable facet specifies if this object can be written by the client. If false (the default), then 645
the object is read-only. It is used with all objects except operations and feeds: 646

<str name="userName" val="jsmith" writable="false"/> 647
<str name="fullName" val="John Smith" writable="true"/> 648

 649

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 20 of 62

20

5 Naming 650

All oBIX objects have two potential identifiers: name and href. Name is used to define the role of 651
an object within its parent. Names are programmatic identifiers only; the displayName facet 652
should be used for human interaction. Naming convention is to use camel case with the first 653
character in lowercase. The primary purpose of names is to attach semantics to sub-objects. 654
Names are also used to indicate overrides from a contract. A good analogy to names is the 655
field/method names of a class in Java or C#. 656
 657
Hrefs are used to attach URIs to objects. An href is always a URI reference, which means it 658
might be a relative URI that requires normalization against a base URI. The exception to this rule 659
is the href of the root object in an oBIX document – this href must be an absolute URI, not a URI 660
reference. This allows the root object’s href to be used as the effective base URI (xml:base) for 661
normalization. A good analogy is hrefs in HTML or XLink. 662
 663
Some objects may have both a name and an href, just a name, just an href, or neither. It is 664
common for objects within a list to not use names, since most lists are unnamed sequences of 665
objects. The oBIX specification makes a clear distinction between names and hrefs - you should 666
not assume any relationship between names and hrefs. From a practical perspective many 667
vendors will likely build an href structure that mimics the name structure, but client software 668
should never assume such a relationship. 669

5.1 Name 670

The name of an object is represented using the name attribute. Names are programmatic 671
identifiers with restrictions on their valid character set. A name must contain only ASCII letters, 672
digits, underbar, or dollar signs. A digit may not be used as the first character. Convention is to 673
use camel case with the first character in lower case: “foo”, “fooBar”, “thisIsOneLongName”. 674
Within a given object, all of its direct children must have unique names. Objects which don’t 675
have a name attribute are called unnamed objects. The root object of an oBIX document should 676
not specify a name attribute (but almost always has an absolute href URI). 677

5.2 Href 678

The href of an object is represented using the href attribute. If specified, the root object must 679
have an absolute URI. All other hrefs within an oBIX document are treated as URI references 680
which may be relative. Because the root href is always an absolute URI, it may be used as the 681
base for normalizing relative URIs within the document. The formal rules for URI syntax and 682
normalization are defined in RFC 3986. We consider a few common cases that serve as design 683
patterns within oBIX in Section 5.3. 684
 685
As a general rule every object accessible for a read must specify a URI. An oBIX document 686
returned from a read request must specify a root URI. However, there are certain cases where 687
the object is transient, such as a computed object from an operation invocation. In these cases 688
there may not be a root URI, meaning there is no way to retrieve this particular object again. If no 689
root URI is provided, then the server’s authority URI is implied to be the base URI for resolving 690
relative URI references. 691

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 21 of 62

21

5.3 HTTP Relative URIs 692

Vendors are free to use any URI scheme, although the recommendation is to use HTTP URIs 693
since they have well defined normalization semantics. This section provides a summary of how 694
HTTP URI normalization should work within oBIX client agents. The general rules are: 695

• If the URI starts with “scheme:” then it is an globally absolute URI 696
• If the URI starts with a single slash, then it is server absolute URI 697
• If the URI starts with a “#”, then it is a fragment identifier (discussed in next section) 698
• If the URI starts with “../”, then the path must backup from the base 699

Otherwise the URI is assumed to be a relative path from the base URI 700
Some examples: 701

http://server/a + http://overthere/x → http://overthere/x 702
http://server/a + /x/y/z → http://server/x/y/z 703
http://server/a/b + c → http://server/a/c 704
http://server/a/b/ + c → http://server/a/b/c 705
http://server/a/b + c/d → http://server/a/c/d 706
http://server/a/b/ + c/d → http://server/a/b/c/d 707
http://server/a/b + ../c → http://server/c 708
http://server/a/b/ + ../c → http://server/a/c 709

Perhaps one of the trickiest issues is whether the base URI ends with slash. If the base URI 710
doesn’t end with a slash, then a relative URI is assumed to be relative to the base’s parent (to 711
match HTML). If the base URI does end in a slash, then relative URIs can just be appended to 712
the base. In practice, systems organized into hierarchical URIs should always specify the base 713
URI with a trailing slash. Retrieval with and without the trailing slash should be supported with 714
the resulting document always adding the implicit trailing slash in the root object’s href. 715

5.4 Fragment URIs 716

It is not uncommon to reference an object internal to an oBIX document. This is achieved using 717
fragment URI references starting with the “#”. Let’s consider the example: 718

<obj href="http://server/whatever/"> 719
 <enum name="switch1" range="#onOff" val="on"/> 720
 <enum name="switch2" range="#onOff" val="off"/> 721
 <list is="obix:Range" href="onOff"> 722
 <obj name="on"/> 723
 <obj name="off"/> 724
 </list> 725
</obj> 726

In this example there are two objects with a range facet referencing a fragment URI. Any URI 727
reference starting with “#” must be assumed to reference an object within the same oBIX 728
document. Clients should not perform another URI retrieval to dereference the object. In this 729
case the object being referenced is identified via the href attribute. 730
 731
In the example above the object with an href of “onOff” is both the target of the fragment URI, but 732
also has the absolute URI “http://server/whatever/onOff”. But suppose we had an object that was 733
the target of a fragment URI within the document, but could not be directly addressed using an 734
absolute URI? In that case the href attribute should be a fragment identifier itself. When an href 735
attribute starts with “#” that means the only place it can be used is within the document itself: 736

… 737
 <list is="obix:Range" href="#onOff"> 738
… 739

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 22 of 62

22

6 Contracts 740

Contracts are a mechanism to harness the inherit patterns in modeling oBIX data sources. What 741
is a contract? Well basically it is just a normal oBIX object. What makes a contract object 742
special, is that other objects reference it as a “template object” using the is attribute. 743
 744
So what does oBIX use contracts for? Contracts solve many problems in oBIX: 745

• Semantics: contracts are used to define “types” within oBIX. This lets us collectively 746
agree on common object definitions to provide consistent semantics across vendor 747
implementations. For example the Alarm contract ensures that client software can 748
extract normalized alarm information from any vendor’s system using the exact same 749
object structure. 750

• Defaults: contracts also provide a convenient mechanism to specify default values. For 751
example the Alarm contract provides a specification for all the default values which don’t 752
need to be passed over the network for every read. 753

• Type Export: it is likely that many vendors will have a system built using a statically 754
typed language like Java or C#. Contracts provide a standard mechanism to export type 755
information in a format that all oBIX clients can consume. 756

 757
Why use contracts versus other approaches? There are certainly lots of ways to solve the above 758
problems. The benefit of the contract design is its flexibility and simplicity. Conceptually 759
contracts provide an elegant model for solving many different problems with one abstraction. 760
From a specification perspective, we can define new abstractions using the oBIX XML syntax 761
itself. And from an implementation perspective, contracts give us a machine readable format that 762
clients already know how to retrieve and parse – to use OO lingo, the exact same syntax is used 763
to represent both a class and an instance. 764

6.1 Contract Terminology 765

In order to discuss contracts, it is useful to define a couple of terms: 766
• Contract: is a reusable object definition expressed as a standard oBIX XML document. 767

Contracts are the templates or prototypes used as the foundation of the oBIX type 768
system. 769

• Contract List: is a list of one or more URIs to contract objects. It is used as the value of 770
the is, of, in and out attributes. The list of URIs is separated by the space character. 771
You can think of a contract list as a type declaration. 772

• Implements: when an object specifies a contract in its contract list, the object is said to 773
implement the contract. This means that the object is inheriting both the structure and 774
semantics of the specified contract. 775

• Implementation: an object which implements a contract is said to be an implementation 776
of that contract. 777

6.2 Contract List 778

The syntax of a contract list attribute is a list of URI references to other oBIX objects. It is used 779
as the value of the is, of, in and out attributes. The URIs within the list are separated by the 780
space character (Unicode 0x20). Just like the href attribute, a contract URI can be an absolute 781

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 23 of 62

23

URI, server relative, or even a fragment reference. The URIs within a contract list may be scoped 782
with an XML namespace prefix (see Section 7.6). 783

6.3 Is Attribute 784

An object defines the contracts it implements via the is attribute. The value of the is attribute is 785
a contract list. If the is attribute is unspecified, then the following rules are used to determine the 786
implied contract list: 787

• If the object is an item inside a list or feed, then the contract list specified by the of 788
attribute is used. 789

• If the object overrides (by name) an object specified in one of its contracts, then the 790
contract list of the overridden object is used. 791

• If all the above rules fail, then the respective primitive contract is used. For example, an 792
obj element has an implied contract of obix:obj and real an implied contract of 793
obj:real. 794

Note that element names such as bool, int, or str are syntactic sugar for an implied contract. 795
However if an object implements one of the primitives, then it must use the correct XML element 796
name. For example if an object implements obix:int, then it must be expressed as <int/>, 797
rather than <obj is="obix:int"/>. Therefore it is invalid to implement multiple value types - 798
such as implementing both obix:bool and obix:int. 799

6.4 Contract Inheritance 800

Contracts are a mechanism of inheritance – they establish the classic “is a” relationship. In the 801
abstract sense a contract allows us to inherit a type. We can further distinguish between the 802
explicit and implicit contract: 803

• Explicit Contract: defines an object structure which all implementations must conform 804
with. 805

• Implicit Contract: defines semantics associated with the contract. Usually the implicit 806
contract is documented using natural language prose. It isn’t mathematical, but rather 807
subject to human interpretation. 808

For example when we say an object implements the Alarm contract, we immediately know that 809
will have a child called timestamp. This structure is in the explicit contract of Alarm and is 810
formally defined in XML. But we also attach semantics to what it means to be an Alarm object: 811
that the object is providing information about an alarm event. These fuzzy concepts can’t be 812
captured in machine language; rather they can only be captured in prose. 813
 814
When an object declares itself to implement a contract it must meet both the explicit contract and 815
the implicit contract. An object shouldn’t put obix:Alarm in its contract list unless it really 816
represents an alarm event. There isn’t much more to say about implicit contracts other than it is 817
recommended that a human brain be involved. So now let’s look at the rules governing the 818
explicit contract. 819
 820
A contract’s named children objects are automatically applied to implementations. An 821
implementation may choose to override or default each of its contract’s children. If the 822
implementation omits the child, then it is assumed to default to the contract’s value. If the 823
implementation declares the child (by name), then it is overridden and the implementation’s value 824
should be used. Let’s look at an example: 825

<obj href="/def/television"> 826
 <bool name="power" val="false"/> 827
 <int name="channel" val="2" min="2" max="200"/> 828

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 24 of 62

24

</obj> 829
 830
<obj href="/livingRoom/tv" is="/def/television"> 831
 <int name="channel" val="8"/> 832
 <int name="volume" val="22"/> 833
</obj> 834

In this example we have a contract object identified with the URI “/def/television”. It has two 835
children to store power and channel. Then we specify a living room TV instance that includes 836
“/def/television” in its contract list via the is attribute. In this object, channel is overridden to 8 837
from its default value of 2. However since power was omitted, it is implied to default to false. 838
 839
An override is always matched to its contract via the name attribute. In the example above we 840
knew we were overriding channel, because we declared an object with a name of “channel”. We 841
also declared an object with a name of “volume”. Since volume wasn’t declared in the contract, 842
we assume it’s a new definition specific to this object. 843
 844
Also note that the contract’s channel object declares a min and max facet. These two facets are 845
also inherited by the implementation. Almost all attributes are inherited from their contract 846
including facets, val, of, in, and out. The href attribute are never inherited. The null 847
attribute inherits as follows: 848

1. If the null attribute is specified, then its explicit value is used; 849
2. If a val attribute is specified and null is unspecified, then null is implied to be false; 850
3. If neither a val attribute or a null attribute is specified, then the null attribute is 851

inherited from the contract; 852
This allows us to implicitly override a null object to non-null without specifying the null attribute. 853

6.5 Override Rules 854

Contract overrides are required to obey the implicit and explicit contract. Implicit means that the 855
implementation object provides the same semantics as the contract it implements. In the 856
example above it would be incorrect to override channel to store picture brightness. That would 857
break the semantic contract. 858
 859
Overriding the explicit contract means to override the value, facets, or contract list. However we 860
can never override the object to be in incompatible value type. For example if the contract 861
specifies a child as real, then all implementations must use real for that child. As a special 862
case, obj may be narrowed to any other element type. 863
 864
We also have to be careful when overriding attributes to never break restrictions the contract has 865
defined. Technically this means we can specialize or narrow the value space of a contract, but 866
never generalize or widen it. This concept is called covariance. Let’s take our example from 867
above: 868

<int name="channel" val="2" min="2" max="200"/> 869
In this example the contract has declared a value space of 2 to 200. Any implementation of this 870
contract must meet this restriction. For example it would an error to override min to –100 since 871
that would widen the value space. However we can narrow the value space by overriding min to 872
a number greater than 2 or by overriding max to a number less than 200. The specific override 873
rules applicable to each facet are documented in section 4.16. 874

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 25 of 62

25

6.6 Multiple Inheritance 875

An object’s contract list may specify multiple contract URIs to implement. This is actually quite 876
common - even required in many cases. There are two topics associated with the 877
implementation of multiple contracts: 878

• Flattening: contract lists must always be flattened when specified. This comes into play 879
when a contract has its own contract list (Section 6.6.1). 880

• Mixins: the mixin design specifies the exact rules for how multiple contracts are merged 881
together. This section also specifies how conflicts are handled when multiple contracts 882
contain children with the same name (Section 6.6.2). 883

6.6.1 Flattening 884

It is common for contract objects themselves to implement contracts, just like it is common in OO 885
languages to chain the inheritance hierarchy. However due to the nature of accessing oBIX 886
documents over a network, we wish to minimize round trip network requests which might be 887
required to “learn” about a complex contract hierarchy. Consider this example: 888

<obj href="/A" /> 889
<obj href="/B" is="/A" /> 890
<obj href="/C" is="/B" /> 891
<obj href="/D" is="/C" /> 892

In this example if we were reading object D for the first time, it would take three more requests to 893
fully learn what contracts are implemented (one for C, B, and A). Furthermore, if our client was 894
just looking for objects that implemented B, it would difficult to determine this just by looking at D. 895
 896
Because of these issues, servers are required to flatten their contract inheritance hierarchy into a 897
list when specifying the is, of, in, or out attributes. In the example above, the correct 898
representation would be: 899

<obj href="/A" /> 900
<obj href="/B" is="/A" /> 901
<obj href="/C" is="/B /A" /> 902
<obj href="/D" is="/C /B /A" /> 903

This allows clients to quickly scan Ds contract list to see that D implements C, B, and A without 904
further requests. 905

6.6.2 Mixins 906

Flattening is not the only reason a contract list might contain multiple contract URIs. oBIX also 907
supports the more traditional notion of multiple inheritance using a mixin metaphor. Consider the 908
following example: 909

<obj href="acme:Device"> 910
 <str name="serialNo"/> 911
</obj> 912
 913
<obj href="acme:Clock" is="acme:Device"> 914
 <op name="snooze"> 915
 <int name="volume" val="0"/> 916
</obj> 917
 918
<obj href="acme:Radio" is="acme:Device "> 919
 <real name="station" min="87.0" max="107.5"> 920
 <int name="volume" val="5"/> 921
</obj> 922
 923
<obj href="acme:ClockRadio" is="acme:Radio acme:Clock acme:Device"/> 924

In this example ClockRadio implements both Clock and Radio. Via flattening of Clock and 925
Radio, ClockRadio also implements Device. In oBIX this is called a mixin – Clock, Radio, 926

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 26 of 62

26

and Device are mixed into (merged into) ClockRadio. Therefore ClockRadio inherits four 927
children: serialNo, snooze, volume, and station. Mixins are a form of multiple inheritance 928
akin to Java/C# interfaces (remember oBIX is about the type inheritance, not implementation 929
inheritance). 930
 931
Note that Clock and Radio both implement Device - the classic diamond inheritance pattern. 932
From Device, ClockRadio inherits a child named serialNo. Furthermore notice that both 933
Clock and Radio declare a child named volume. This naming collision could potentially create 934
confusion for what serialNo and volume mean in ClockRadio. 935
 936
In oBIX we solve this problem by flattening the contract’s children using the following rules: 937

1. Process the contract definitions in the order they are listed 938
2. If a new child is discovered, it is mixed into the object’s definition 939
3. If a child is discovered we already processed via a previous contract definition, then the 940

previous definition takes precedence. However it is an error if the duplicate child is not 941
contract compatible with the previous definition (see Section 6.7). 942

In the example above this means that Radio.volume is the definition we use for 943
ClockRadio.volume, because Radio has a higher precedence than Clock (it is first in the 944
contract list). Thus ClockRadio.volume has a default value of “5”. However it would be 945
invalid if Clock.volume were declared as str, since it would not be contract compatible with 946
Radio’s definition as an int – in that case ClockRadio could not implement both Clock and 947
Radio. It is the server vendor’s responsibility not to create incompatible name collisions in 948
contracts. 949
 950
The first contract in a list is given specific significance since its definition trumps all others. In 951
oBIX this contract is called the primary contract. It is recommended that the primary contract 952
implement all the other contracts specified in the contract list (this actually happens quite naturally 953
by itself in many programming languages). This makes it easier for clients to bind the object into 954
a strongly typed class if desired. Obviously this recommendation doesn’t make sense for contract 955
objects themselves – contracts shouldn’t implement themselves. 956

6.7 Contract Compatibility 957

A contract list which is covariantly substitutable with another contract list is said to be contract 958
compatible. Contract compatibility is a useful term when talking about mixin rules and overrides 959
for lists and operations. It is a fairly common sense notion similar to previously defined override 960
rules – however, instead of the rules applied to individual facet attributes, we apply it to an entire 961
contract list. 962
 963
A contract list X is compatible with contract list Y, if and only if X narrows the value space defined 964
by Y. This means that X can narrow the set of objects which implement Y, but never expand the 965
set. Contract compatibility is not commutative (X is compatible with Y does not imply Y is 966
compatible with X). If that definition sounds too highfaluting, you can boil it down to this practical 967
rule: X can add new URIs to Y’s list, but never any take away. 968

6.8 Lists (and Feeds) 969

Implementations derived from list or feed contracts inherit the of attribute. Like other 970
attributes we can override the of attribute, but only if contract compatible - you must include all of 971
the URIs in the contract’s of attribute, but you can add additional ones (see Section 6.7). 972

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 27 of 62

27

 973
Lists and feeds also have the special ability to implicitly define the contract list of their contents. 974
In the following example it is implied that each child element has a contract list of 975
/def/MissingPerson without actually specifying the is attribute in each list item: 976

<list of="/def/MissingPerson"> 977
 <obj> <str name="fullName" val="Jack Shephard"/> </obj> 978
 <obj> <str name="fullName" val="John Locke"/> </obj> 979
 <obj> <str name="fullName" val="Kate Austen"/> </obj> 980
</list> 981

If an element in the list or feed does specify its own is attribute, then it must be contract 982
compatible with the of attribute. 983

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 28 of 62

28

7 XML 984

Chapter 4 specifies an abstract object model used to standardize how oBIX information is 985
modeled. This chapter specifies how the object model is represented in XML. 986

7.1 Design Philosophy 987

Since there are many different approaches to developing an XML syntax, it is worthwhile to 988
provide a bit of background to how the oBIX XML syntax was designed. Historically in M2M 989
systems, non-standard extensions have been second class citizens at best, but usually opaque. 990
One of the design principles of oBIX is to embrace vertical domain and vendor specific 991
extensions, so that all data and services have a level playing field. 992
 993
In order to achieve this goal, the XML syntax is designed to support a small, fixed schema for all 994
oBIX documents. If a client agent understands this very simple syntax, then the client is 995
guaranteed access to the server’s object tree regardless of whether those objects implement 996
standard or non-standard contracts. 997
 998
Higher level semantics are captured via contracts. Contracts “tag” an object with a type and can 999
be applied dynamically. This is very useful for modeling systems which are dynamically 1000
configured in the field. What is important is that contracts are optionally understood by clients. 1001
Contracts do not effect the XML syntax nor are clients required to use them for basic access to 1002
the object tree. Contracts are merely an abstraction layered cleanly above the object tree and it’s 1003
fixed XML syntax. 1004

7.2 XML Syntax 1005

The oBIX XML syntax maps very closely to the abstract object model. The syntax is summarized: 1006
• Every oBIX object maps to exactly one XML element; 1007
• An object’s children are mapped as children XML elements; 1008
• The XML element name maps to the built-in object type; 1009
• Everything else about an object is represented as XML attributes; 1010

The object model figure in Chapter 4 illustrates the valid XML elements and their respective 1011
attributes. Note the val object is simply an abstract base type for the objects which support the 1012
val attribute - there is no val element. 1013

7.3 XML Encoding 1014

The following rules apply to encoding oBIX documents: 1015
• oBIX documents must be well formed XML; 1016
• oBIX documents should begin with XML Declaration specifying their encoding; 1017

• It is strongly encouraged to use UTF-8 encoding without a byte order mark; 1018
• oBIX documents must not include a Document Type Declaration – oBIX documents 1019

cannot contain an internal or external subset; 1020
• oBIX documents should include an XML Namespace definition. Convention is declare 1021

the default namespace of the document to “http://obix.org/ns/schema/1.0”. If oBIX is 1022
embedded inside another type of XML document, then convention is to use “o” as the 1023
namespace prefix. Note that the prefix “obix” should not be used (see Section 7.6). 1024

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 29 of 62

29

7.4 XML Decoding 1025

The following rules apply to decoding of oBIX documents: 1026
• Must conform to XML processing rules as defined by XML 1.1; 1027
• Documents which are not well formed XML must be rejected; 1028
• Parsers are not required to understand a Document Type Declaration; 1029
• Any unknown element must be ignored regardless of its XML namespace 1030
• Any unknown attribute must be ignored regardless of its XML namespace 1031

 1032
The basic rule of thumb is: strict in what you generate, and liberal in what you accept. oBIX 1033
parsers are required to ignore elements and attributes which they do not understand. However 1034
an oBIX parser should never accept an XML document which isn’t well formed (such as 1035
mismatched tags). 1036

7.5 XML Namespace 1037

XML namespaces for standards within the oBIX umbrella should conform to the following pattern: 1038
http://obix.org/ns/{spec}/{version} 1039

 1040
The XML namespace for oBIX version 1.0 is: 1041

http://obix.org/ns/schema/1.0 1042
All XML in this document is assumed to have this namespace unless otherwise explicitly stated. 1043

7.6 Namespace Prefixes in Contract Lists 1044

XML namespace prefixes defined within an oBIX document may be used to prefix the URIs of a 1045
contract list. If a URI within a contract list starts with string matching a defined XML prefix 1046
followed by the “:” colon character, then the URI is normalized by replacing the prefix with it’s 1047
namespace value. 1048
 1049
The XML namespace prefix of “obix” is predefined. This prefix is used for all the oBIX defined 1050
contracts. The “obix” prefix is literally translated into “http://obix.org/def/”. For example the URI 1051
“obix:bool” is translated to “http://obix.org/def/bool”. Documents should not define an XML 1052
namespace using the prefix “obix” which collides with the predefined “obix” prefix – if it is defined, 1053
then it is superseded by the predefined value of “http://obix.org/def/”. All oBIX defined contracts 1054
are accessible via their HTTP URI using the HTTP binding. 1055
 1056
An example oBIX document with XML namespace prefixes normalized: 1057

<obj xmlns:acme="http://acme.com/def/" is="acme:CustomPoint obix:Point"/> 1058
 1059
<obj is="http://acme.com/def/CustomPoint http://obix.org/def/Point"/> 1060

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 30 of 62

30

8 Operations 1061

Operations are the things that you can “do” to an oBIX object. They are akin to methods in 1062
traditional OO languages. Typically they map to commands rather than a variable that has 1063
continuous state. Unlike value objects which represent an object and its current state, the op 1064
element merely represents the definition of an operation you can invoke. 1065
 1066
All operations take exactly one object as a parameter and return exactly one object as a result. 1067
The in and out attributes define the contract list for the input and output objects. If you need 1068
multiple input or output parameters, then wrap them in a single object using a contract as the 1069
signature. For example: 1070

<op href="/addTwoReals" in="/def/AddIn" out="obix:real"/> 1071
 1072
<obj href="/def/AddIn"> 1073
 <real name="a"/> 1074
 <real name="b"/> 1075
</obj> 1076

 1077
Objects can override the operation definition from one of their contracts. However the new in or 1078
out contract list must be contract compatible (see Section 6.7) with the contract’s definition. 1079
 1080
If an operation doesn’t require a parameter, then specify in as obix:Nil. If an operation 1081
doesn’t return anything, then specify out as obix:Nil. Occasionally an operation is inherited 1082
from a contract which is unsupported in the implementation. In this case use set the status 1083
attribute to disabled. 1084
 1085
Operations are always invoked via their own href attribute (not their parent’s href). Therefore 1086
operations should always specify an href attribute if you wish clients to invoke them. A common 1087
exception to this rule is contract definitions themselves. 1088

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 31 of 62

31

9 Object Composition 1089

A good metaphor for comparison with oBIX is the World Wide Web. If you ignore all the fancy 1090
stuff like JavaScript and Flash, basically the WWW is a web of HTML documents hyperlinked 1091
together with URIs. If you dive down one more level, you could say the WWW is a web of HTML 1092
elements such as <p>, <table>, and <div>. 1093
 1094
What the WWW does for HTML documents, oBIX does for objects. The logical model for oBIX is 1095
a global web of oBIX objects linked together via URIs. Some of these oBIX objects are static 1096
documents like contracts or device descriptions. Other oBIX objects expose real-time data or 1097
services. But they all are linked together via URIs to create the oBIX Web. 1098
 1099
Individual objects are composed together in two ways to define this web. Objects may be 1100
composed together via containment or via reference. 1101

9.1 Containment 1102

Any oBIX object may contain zero or more children objects. This even includes objects which 1103
might be considered primitives such as bool or int. All objects are open ended and free to 1104
specify new objects which may not be in the object’s contract. Containment is represented in the 1105
XML syntax by nesting the XML elements: 1106
 1107

<obj href="/a/"> 1108
 <list name="b" href="b"> 1109
 <obj href="b/c"> 1110
 </list> 1111
</obj> 1112

 1113
In this example the object identified by “/a” contains “/a/b”, which in turn contains “/a/b/c”. Child 1114
objects may be named or unnamed depending on if the name attribute is specified (Section 5.1). 1115
In the example, “/a/b” is named and “/a/b/c” is unnamed. Typically named children are used to 1116
represent fields in a record, structure, or class type. Unnamed children are often used in lists. 1117

9.2 References 1118

Let’s go back to our WWW metaphor. Although the WWW is a web of individual HTML elements 1119
like <p> and <div>, we don’t actually pass individual <p> elements around over the network. 1120
Rather we “chunk” them into HTML documents and always pass the entire document over the 1121
network. To tie it all together, we create links between documents using the <a> anchor 1122
element. These anchors serve as place holders, referencing outside documents via a URI. 1123
 1124
A oBIX reference is basically just like an HTML anchor. It serves as placeholder to “link” to 1125
another oBIX object via a URI. While containment is best used to model small trees of data, 1126
references may be used to model very large trees or graphs of objects. As a matter fact, with 1127
references we can link together all oBIX objects on the Internet to create the oBIX Web. 1128

9.3 Extents 1129

When oBIX is applied to a problem domain, we have to decide whether to model relationships 1130
using either containment or references. These decisions have a direct impact on how your model 1131
is represented in XML and accessed over the network. The containment relationship is imbued 1132

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 32 of 62

32

with special semantics regarding XML encoding and eventing. In fact, oBIX coins a term for 1133
containment called an object’s extent. An object’s extent is its tree of children down to 1134
references. Only objects which have an href have an extent. Objects without an href are always 1135
included in one or more of their ancestors extents. 1136
 1137

<obj href="/a/"> 1138
 <obj name="b" href="b"> 1139
 <obj name="c"/> 1140
 <ref name="d" href="/d"/> 1141
 </obj> 1142
 <ref name="e" href="/e"/> 1143
</obj> 1144

 1145
In the example above, we have five objects named ‘a’ to ‘e’. Because ‘a’ includes an href, it has 1146
an associated extent, which encompasses ‘b’ and ‘c’ by containment and ‘d’ and ‘e’ by reference. 1147
Likewise, ‘b’ has an href which results in an extent encompassing ‘c’ by containment and ‘d’ by 1148
reference. Object ‘c’ does not provide a direct href, but exists in both the ‘a’ and ‘b’ objects’ 1149
extents. Note an object with an href has exactly one extent, but can be nested inside multiple 1150
extents. 1151

9.4 XML 1152

When marshaling objects into an XML, it is required that an extent always be fully inlined into the 1153
XML document. The only valid objects which may be referenced outside the document are ref 1154
element themselves. 1155
 1156
If the object implements a contract, then it is required that the extent defined by the contract be 1157
fully inlined into the document (unless the contract itself defined a child as a ref element). An 1158
example of a contract which specifies a child as a ref is Lobby.about (10.3). 1159

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 33 of 62

33

10 Networking 1160

The heart of oBIX is its object model and associated XML syntax. However, the primary use case 1161
for oBIX is to access information and services over a network. The oBIX architecture is based on 1162
a client/server network model: 1163

• Server: software containing oBIX enabled data and services. Servers respond to 1164
requests from client over a network. 1165

• Client: software which makes requests to servers over a network to access oBIX enabled 1166
data and services. 1167

There is nothing to prevent software from being both an oBIX client and server. Although a key 1168
tenant of oBIX is that a client is not required to implement server functionality which might require 1169
a server socket to accept incoming requests. 1170

10.1 Request / Response 1171

All network access is boiled down into three request / response types: 1172
• Read: return the current state of an object at a given URI as an oBIX XML document. 1173
• Write: update the state of an existing object at a URI. The state to write is passed over 1174

the network as an oBIX XML document. The new updated state is returned in an oBIX 1175
XML document. 1176

• Invoke: invoke an operation identified by a given URI. The input parameter and output 1177
result are passed over the network as an oBIX XML document. 1178

Exactly how these three request/responses are implemented between a client and server is 1179
called a protocol binding. The oBIX specification defines two standard protocol bindings: HTTP 1180
Binding (see Chapter 17) and SOAP Binding (see Chapter 18). However all protocol bindings 1181
must follow the same read, write, invoke semantics discussed next. 1182

10.1.1 Read 1183

The read request specifies an object’s URI and the read response returns the current state of the 1184
object as an oBIX document. The response must include the object’s complete extent (see 9.3). 1185
Servers may return an err object to indicate the read was unsuccessful – the most common 1186
error is obix:BadUriErr (see 10.2 for standard error contracts). 1187

10.1.2 Write 1188

The write request is designed to overwrite the current state of an existing object. The write 1189
request specifies the URI of an existing object and it’s new desired state. The response returns 1190
the updated state of the object. If the write is successful, the response must include the object’s 1191
complete extent (see 9.3). If the write is unsuccessful, then the server must return an err object 1192
indicating the failure. 1193
The server is free to completely or partially ignore the write, so clients should be prepared to 1194
examine the response to check if the write was successful. Servers may also return an err 1195
object to indicate the write was unsuccessful. 1196
 1197
Clients are not required to include the object’s full extent in the request. Objects explicitly 1198
specified in the request object tree should be overwritten or “overlaid” over the server’s actual 1199
object tree. Only the val attribute should be specified for a write request (outside of identification 1200
attributes such as name). A write operation that provides facets has unspecified behavior. When 1201

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 34 of 62

34

writing int or reals with units, the write value must be in the same units as the server 1202
specifies in read requests – clients must not provide a different unit facet and expect the server 1203
to auto-convert (in fact the unit facet should be not included in the request). 1204

10.1.3 Invoke 1205

The invoke request is designed to trigger an operation. The invoke request specified the URI of 1206
an op object and the input argument object. The response includes the output object. The 1207
response must include the output object’s complete extent (see 9.3). Servers may also return an 1208
err object to indicate the invoke was unsuccessful. 1209

10.2 Errors 1210

Request errors are conveyed to clients with the err element. Any time an oBIX server 1211
successfully receives a request and the request cannot be processed, then the server should 1212
return an err object to the client. Returning a valid oBIX document with err must be used when 1213
feasible rather than protocol specific error handling (such as an HTTP response code). Such a 1214
design allows for consistency with batch request partial failures and makes protocol binding more 1215
pluggable by separating data transport from application level error handling. 1216
 1217
A few contracts are predefined for common errors: 1218

• BadUriErr: used to indicate either a malformed URI or a unknown URI; 1219
• UnsupportedErr: used to indicate an a request which isn’t supported by the server 1220

implementation (such as an operation defined in a contract, which the server doesn’t 1221
support); 1222

• PermissionErr: used to indicate that the client lacks the necessary security permission 1223
to access the object or operation. 1224

The contracts for these errors are: 1225
<err href="obix:BadUriErr"/> 1226
<err href="obix:UnsupportedErr"/> 1227
<err href="obix:PermissionErr"/> 1228

 1229
If one of the above contracts makes sense for an error, then it should be included in the err 1230
element’s is attribute. It is strongly encouraged to also include a useful description of the 1231
problem in the display attribute. 1232

10.3 Lobby 1233

All oBIX servers must provide an object which implements obix:Lobby. The Lobby object 1234
serves as the central entry point into an oBIX server, and lists the URIs for other well-known 1235
objects defined by the oBIX specification. Theoretically all a client needs to know to bootstrap 1236
discovery is one URI for the Lobby instance. By convention this URI is “http://server/obix”, 1237
although vendors are certainly free to pick another URI. The Lobby contract is: 1238

<obj href="obix:Lobby"> 1239
 <ref name="about" is="obix:About"/> 1240
 <op name="batch" in="obix:BatchIn" out="obix:BatchOut"/> 1241
 <ref name="watchService" is="obix:WatchService"/> 1242
</obj> 1243

The Lobby instance is where vendors should place vendor specific objects used for data and 1244
service discovery. 1245

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 35 of 62

35

10.4 About 1246

The obix:About object is a standardized list of summary information about an oBIX server. 1247
Clients can discover the About URI directly from the Lobby. The About contract is: 1248

<obj href="obix:About"> 1249
 1250
 <str name="obixVersion"/> 1251
 1252
 <str name="serverName"/> 1253
 <abstime name="serverTime"/> 1254
 <abstime name="serverBootTime"/> 1255
 1256
 <str name="vendorName"/> 1257
 <uri name="vendorUrl"/> 1258
 1259
 <str name="productName"/> 1260
 <str name="productVersion"/> 1261
 <uri name="productUrl"/> 1262
 1263
</obj> 1264

 1265
The following children provide information about the oBIX implementation: 1266

• obixVersion: specifies which version of the oBIX specification the server implements. 1267
This string must be a list of decimal numbers separated by the dot character (Unicode 1268
0x2E). 1269

 1270
The following children provide information about the server itself: 1271

• serverName: provides a short localized name for the server. 1272

• serverTime: provides the server’s current local time. 1273

• serverBootTime: provides the server’s start time - this should be the start time of the 1274
oBIX server software, not the machine’s boot time. 1275

 1276
The following children provide information about the server’s software vendor: 1277

• vendorName: the company name of the vendor who implemented the oBIX server 1278
software. 1279

• vendorUrl: a URI to the vendor’s website. 1280
 1281
The following children provide information about the software product running the server: 1282

• productName: with the product name of oBIX server software. 1283

• productUrl: a URI to the product’s website. 1284

• productVersion: a string with the product’s version number. Convention is to use 1285
decimal digits separated by dots. 1286

10.5 Batch 1287

The Lobby defines a batch operation which is used to batch multiple network requests together 1288
into a single operation. Batching multiple requests together can often provide significant 1289
performance improvements over individual round-robin network requests. As a general rule, one 1290
big request will always out-perform many small requests over a network. 1291
 1292

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 36 of 62

36

A batch request is an aggregation of read, write, and invoke requests implemented as a standard 1293
oBIX operation. At the protocol binding layer, it is represented as a single invoke request using 1294
the Lobby.batch URI. Batching a set of requests to a server must be processed semantically 1295
equivalent to invoking each of the requests individually in a linear sequence. 1296
 1297
The batch operation inputs a BatchIn object and outputs a BatchOut object: 1298

<list href="obix:BatchIn" of="obix:uri"/> 1299
 1300
<list href="obix:BatchOut" of="obix:obj"/> 1301

 1302
The BatchIn contract specifies a list of requests to process identified using the Read, Write, or 1303
Invoke contract: 1304

<uri href="obix:Read"/> 1305
 1306
<uri href="obix:Write"> 1307
 <obj name="in"/> 1308
</uri> 1309
 1310
<uri href="obix:Invoke"> 1311
 <obj name="in"/> 1312
</uri> 1313

 1314
The BatchOut contract specifies an ordered list of the response objects to each respective 1315
request. For example the first object in BatchOut must be the result of the first request in 1316
BatchIn. Failures are represented using the err object. Every uri passed via BatchIn for a 1317
read or write request must have a corresponding result obj in BatchOut with an href attribute 1318
using an identical string representation from BatchIn (no normalization or case conversion is 1319
allowed). 1320
 1321
It is up to vendors to decide how to deal with partial failures. In general idempotent requests 1322
should indicate a partial failure using err, and continue processing additional requests in the 1323
batch. If a server decides not to process additional requests when an error is encountered, then 1324
it is still required to return an err for each respective request not processed. 1325
 1326
Let’s look at a simple example: 1327
 1328

<list is="obix:BatchIn"> 1329
 <uri is="obix:Read" val="/someStr"/> 1330
 <uri is="obix:Read" val="/invalidUri"/> 1331
 <uri is="obix:Write" val="/someStr"> 1332
 <str name="in" val="new string value"/> 1333
 </uri> 1334
</list> 1335
 1336
<list is="obix:BatchOut"> 1337
 <str href="/someStr" val="old string value"/> 1338
 <err href="/invalidUri" is="obix:BadUriErr" display="href not found"/> 1339
 <str href="/someStr" val="new string value"> 1340
</list> 1341

 1342
In this example, the batch request is specifying a read request for “/someStr” and “/invalidUri”, 1343
followed by a write request to “/someStr”. Note that the write request includes the value to write 1344
as a child named “in”. 1345
 1346

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 37 of 62

37

The server responds to the batch request by specifying exactly one object for each request URI. 1347
The first read request returns a str object indicating the current value identified by “/someStr”. 1348
The second read request contains an invalid URI, so the server returns an err object indicating a 1349
partial failure and continues to process subsequent requests. The third request is a write to 1350
“someStr”. The server updates the value at “someStr”, and returns the new value. Note that 1351
because the requests are processed in order, the first request provides the original value of 1352
“someStr” and the third request contains the new value. This is exactly what we would expect 1353
had we processed each of these requests individually. 1354

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 38 of 62

38

11 Core Contract Library 1355

This chapter defines some fundamental object contracts that serve as building blocks for the oBIX 1356
specification. 1357

11.1 Nil 1358

The obix:Nil contract defines a standardized null object. Nil is commonly used for an 1359
operation’s in or out attribute to denote the absence of an input or output. The definition: 1360

<obj href="obix:Nil" null="true"/> 1361

11.2 Range 1362

The obix:Range contract is used to define an bool or enum’s range. Range is a list object that 1363
contains zero or more objects called the range items. Each item’s name attribute specifies the 1364
identifier used as the literal value of an enum. Item ids are never localized, and must be used 1365
only once in a given range. You may use the optional displayName attribute to specify a 1366
localized string to use in a user interface. The definition of Range: 1367

<list href="obix:Range" of="obix:obj"/> 1368
An example: 1369

<list href="/enums/OffSlowFast" is="obix:Range"> 1370
 <obj name="off" displayName="Off"/> 1371
 <obj name="slow" displayName="Slow Speed"/> 1372
 <obj name="fast" displayName="Fast Speed"/> 1373
</list> 1374

The range facet may be used to define the localized text of a bool value using the ids of “true” 1375
and “false”: 1376

<list href="/enums/OnOff" is="obix:Range"> 1377
 <obj name="true" displayName="On"/> 1378
 <obj name="false" displayName="Off"/> 1379
</list > 1380

11.3 Weekday 1381

The obix:Weekday contract is a standardized enum for the days of the week: 1382
<enum href="obix:Weekday" range="#Range"> 1383
 <list href="#Range" is="obix:Range"> 1384
 <obj name="sunday" /> 1385
 <obj name="monday" /> 1386
 <obj name="tuesday" /> 1387
 <obj name="wednesday" /> 1388
 <obj name="thursday" /> 1389
 <obj name="friday" /> 1390
 <obj name="saturday" /> 1391
 </list> 1392
</enum> 1393

11.4 Month 1394

The obix:Month contract is a standardized enum for the months of the year: 1395
<enum href="obix:Month" range="#Range"> 1396
 <list href="#Range" is="obix:Range"> 1397
 <obj name="january" /> 1398
 <obj name="febuary" /> 1399
 <obj name="march" /> 1400
 <obj name="april" /> 1401

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 39 of 62

39

 <obj name="may" /> 1402
 <obj name="june" /> 1403
 <obj name="july" /> 1404
 <obj name="august" /> 1405
 <obj name="september" /> 1406
 <obj name="october" /> 1407
 <obj name="november" /> 1408
 <obj name="december" /> 1409
 </list> 1410
</enum> 1411

11.5 Units 1412

Representing units of measurement in software is a thorny issue. oBIX provides a unit framework 1413
for mathematically defining units within the object model. An extensive database of predefined 1414
units is also provided. 1415
 1416
All units measure a specific quantity or dimension in the physical world. Most known dimensions 1417
can be expressed as a ratio of the seven fundamental dimensions: length, mass, time, 1418
temperature, electrical current, amount of substance, and luminous intensity. These seven 1419
dimensions are represented in SI respectively as kilogram (kg), meter (m), second (sec), Kelvin 1420
(K), ampere (A), mole (mol), and candela (cd). 1421
 1422
The obix:Dimension contract defines the ratio of the seven SI units using a positive or 1423
negative exponent: 1424

<obj href="obix:Dimension"> 1425
 <int name="kg" val="0"/> 1426
 <int name="m" val="0"/> 1427
 <int name="sec" val="0"/> 1428
 <int name="K" val="0"/> 1429
 <int name="A" val="0"/> 1430
 <int name="mol" val="0"/> 1431
 <int name="cd" val="0"/> 1432
</obj> 1433

A Dimension object contains zero or more ratios of kg, m, sec, K, A, mol, or cd. Each of these 1434
ratio maps to the exponent of that base SI unit. If a ratio is missing then the default value of zero 1435
is implied. For example acceleration is m/s2, which would be encoded in oBIX as: 1436

<obj is="obix:Dimension"> 1437
 <int name="m" val="1"/> 1438
 <int name="sec" val="-2"/> 1439
</obj> 1440

 1441
Units with equal dimensions are considered to measure the same physical quantity. This is not 1442
always precisely true, but is good enough for practice. This means that units with the same 1443
dimension are convertible. Conversion can be expressed by specifying the formula required to 1444
convert the unit to the dimension’s normalized unit. The normalized unit for every dimension is 1445
the ratio of SI units itself. For example the normalized unit of energy is the joule m2•kg•s-2. The 1446
kilojoule is 1000 joules and the watt-hour is 3600 joules. Most units can be mathematically 1447
converted to their normalized unit and to other units using the linear equations: 1448

unit = dimension • scale + offset 1449
toNormal = scalar • scale + offset 1450
fromNormal = (scalar - offset) / scale 1451
toUnit = fromUnit.fromNormal(toUnit.toNormal(scalar)) 1452

There are some units which don’t fit this model including logarithm units and units dealing with 1453
angles. But this model provides a practical solution for most problem spaces. Units which don’t 1454
fit this model should use a dimension where every exponent is set to zero. Applications should 1455
not attempt conversions on these types of units. 1456

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 40 of 62

40

 1457
The obix:Unit contract defines a unit including its dimension and its toNormal equation: 1458

<obj href="obix:Unit"> 1459
 <str name="symbol"/> 1460
 <obj name="dimension" is="obix:Dimension"/> 1461
 <real name="scale" val="1"/> 1462
 <real name="offset" val="0"/> 1463
</obj> 1464

The unit element contains a symbol, dimension, scale, and offset sub-object: 1465

• symbol: The symbol element defines a short abbreviation to use for the unit. For 1466
example “°F” would be the symbol for degrees Fahrenheit. The symbol element should 1467
always be specified. 1468

• dimension: The dimension object defines the dimension of measurement as a ratio of 1469
the seven base SI units. If omitted, the dimension object defaults to the 1470
obix:Dimension contract, in which case the ratio is the zero exponent for all seven 1471
base units. 1472

• scale: The scale element defines the scale variable of the toNormal equation. The 1473
scale object defaults to 1. 1474

• offset: The offset element defines the offset variable of the toNormal equation. If 1475
omitted then offset defaults to 0. 1476

The display attribute should be used to provide a localized full name for the unit based on the 1477
client’s locale. If the display attribute is omitted, clients should use symbol for display 1478
purposes. 1479
 1480
An example for the predefined unit for kilowatt: 1481

<obj href="obix:units/kilowatt" display="kilowatt"> 1482
 <str name="symbol" val="kW"/> 1483
 <obj name="dimension"> 1484
 <int name="m" val="2"/> 1485
 <int name="kg" val="1"/> 1486
 <int name="sec" val="-3"/> 1487
 </obj> 1488
 <real name="scale" val="1000"/> 1489
</obj> 1490

 1491
Automatic conversion of units is considered a localization issue – see Section 17.3 for more 1492
details. 1493

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 41 of 62

41

12 Watches 1494

A key requirement of oBIX is access to real-time information. We wish to enable clients to 1495
efficiently receive access to rapidly changing data. However, we don’t want to require clients to 1496
implement web servers or expose a well-known IP address. In order to address this problem, 1497
oBIX provides a model for client polled eventing called watches. The watch lifecycle is as follows: 1498

• The client creates a new watch object with the make operation on the server’s 1499
WatchService URI. The server defines a new Watch object and provides a URI to 1500
access the new watch. 1501

• The client registers (and unregisters) objects to watch using operations on the Watch 1502
object. 1503

• The client periodically polls the Watch URI using the pollChanges operation to obtain 1504
the events which have occurred since the last poll. 1505

• The server frees the Watch under two conditions. The client may explicitly free the 1506
Watch using the delete operation. Or the server may automatically free the Watch 1507
because the client fails to poll after a predetermined amount of time (called the lease 1508
time). 1509

 1510
Watches allow a client to maintain a real-time cache for the current state of one or more objects. 1511
They are also used to access an event stream from a feed object. Plus, watches serve as the 1512
standardized mechanism for managing per-client state on the server via leases. 1513

12.1 WatchService 1514

The WatchService object provides a well-known URI as the factory for creating new watches. 1515
The WatchService URI is available directly from the Lobby object. The contract for 1516
WatchService: 1517

<obj href="obix:WatchService"> 1518
 <op name="make" in="obix:Nil" out="obix:Watch"/> 1519
</obj> 1520

The make operation returns a new empty Watch object as an output. The href of the newly 1521
created Watch object can then be used for invoking operations to populate and poll the data set. 1522

12.2 Watch 1523

Watch object is used to manage a set of objects which are subscribed and periodically polled by 1524
clients to receive the latest events. The contract is: 1525

<obj href="obix:Watch"> 1526
 <reltime name="lease" min="PT0S" writable="true"/> 1527
 <op name="add" in="obix:WatchIn" out="obix:WatchOut"/> 1528
 <op name="remove" in="obix:WatchIn"/> 1529
 <op name="pollChanges" out="obix:WatchOut"/> 1530
 <op name="pollRefresh" out="obix:WatchOut"/> 1531
 <op name="delete"/> 1532
</obj> 1533
 1534
<obj href="obix:WatchIn"> 1535
 <list name="hrefs" of="obix:WatchInItem"/> 1536
</obj> 1537
 1538
<uri href="obix:WatchInItem"> 1539
 <obj name="in"/> 1540
</uri> 1541

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 42 of 62

42

 1542
<obj href="obix:WatchOut"> 1543
 <list name="values" of="obix:obj"/> 1544
</obj> 1545

 1546
Many of the Watch operations use two contracts: obix:WatchIn and obix:WatchOut. The 1547
client identifies objects to add and remove from the poll list via WatchIn. This object contains a 1548
list of URIs. Typically these URIs should be server relative. 1549
 1550
The server responds to add, pollChanges, and pollRefresh operations via the WatchOut 1551
contract. This object contains the list of subscribed objects - each object must specify an href 1552
URI using the exact same string as the URI identified by the client in the corresponding WatchIn. 1553
Servers are not allowed to perform any case conversions or normalization on the URI passed by 1554
the client. This allows client software to use the URI string as a hash key to match up server 1555
responses. 1556

12.2.1 Watch.add 1557

Once a Watch has been created, the client can add new objects to watch using the add 1558
operation. This operation inputs a list of URIs and outputs the current value of the objects 1559
referenced. The objects returned are required to specify an href using the exact string 1560
representation input by the client. If any object cannot be processed, then a partial failure should 1561
be expressed by returning an err object with the respective href. Subsequent URIs must not be 1562
effected by the failure of one invalid URI. The add operation should never return objects not 1563
explicitly included in the input URIs (even if there are already existing objects in the watch list). 1564
No guarantee is made that the order of objects in WatchOut match the order in of URIs in 1565
WatchIn – clients must use the URI as a key for matching. 1566
 1567
Note that the URIs supplied via WatchIn may include an optional in parameter. This parameter 1568
is only used when subscribing a watch to a feed object. Feeds also differ from other objects in 1569
that they return a list of historic events in WatchOut. Feeds are discussed in detail in Section 1570
12.4. 1571
 1572
It is invalid to add an op’s href to a watch, the server must report an err. 1573
 1574
If an attempt is made to add a URI to a watch which was previously already added, then the 1575
server should return the current object’s value in the WatchOut result, but treat poll operations as 1576
if the URI was only added once – polls should only return the object once. If an attempt is made 1577
to add the same URI multiple times in the same WatchIn request, then the server should only 1578
return the object once. 1579
 1580
Note: the lack of a trailing slash can cause problems with watches. Consider a client which adds 1581
a URI to a watch without a trailing slash. The client will use this URI as a key in its local 1582
hashtable for the watch. Therefore the server must use the URI exactly as the client specified. 1583
However, if the object’s extent includes children objects they will not be able to use relative URIs. 1584
It is recommended that servers fail-fast in these cases and return a BadUriErr when clients 1585
attempt to add a URI without a trailing slash to a watch (even though they may allow it for a 1586
normal read request). 1587

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 43 of 62

43

12.2.2 Watch.remove 1588

The client can remove objects from the watch list using the remove operation. A list of URIs is 1589
input to remove, and the Nil object is returned. Subsequent pollChanges and pollRefresh 1590
operations must cease to include the specified URIs. It is possible to remove every URI in the 1591
watch list; but this scenario must not automatically free the Watch, rather normal poll and lease 1592
rules still apply. It is invalid to use the WatchInItem.in parameter for a remove operation. 1593

12.2.3 Watch.pollChanges 1594

Clients should periodically poll the server using the pollChanges operation. This operation 1595
returns a list of the subscribed objects which have changed. Servers should only return the 1596
objects which have been modified since the last poll request for the specific Watch. As with add, 1597
every object must specify an href using the exact same string representation the client passed in 1598
the original add operation. The entire extent of the object should be returned to the client if any 1599
one thing inside the extent has changed on the server side. 1600
 1601
Invalid URIs must never be included in the response (only in add and pollRefresh). An 1602
exception to this rule is when an object which is valid is removed from the URI space. Servers 1603
should indicate an object has been removed via an err with the BadUriErr contract. 1604

12.2.4 Watch.pollRefresh 1605

The pollRefresh operation forces an update of every object in the watch list. The server must 1606
return every object and it’s full extent in the response using the href with the exact same string 1607
representation passed by the client in the original add. Invalid URIs in the poll list should be 1608
included in the response as an err element. A pollRefresh resets the poll state of every 1609
object, so that the next pollChanges only returns objects which have changed state since the 1610
pollRefresh invocation. 1611

12.2.5 Watch.lease 1612

All Watches have a lease time, specified by the lease child. If the lease time elapses without 1613
the client initiating a request on the Watch, then the server is free to expire the watch. Every new 1614
poll request resets the lease timer. So as long as the client polls at least as often as the lease 1615
time, the server should maintain the Watch. The following requests should reset the lease timer: 1616
read of the Watch URI itself or invocation of the add, remove, pollChanges, or pollRefresh 1617
operations. 1618
 1619
Clients may request a difference lease time by writing to the lease object (requires servers to 1620
assign an href to the lease child). The server is free to honor the request, cap the lease within a 1621
specific range, or ignore the request. In all cases the write request will return a response 1622
containing the new lease time in effect. 1623
 1624
Servers should report expired watches by returning an err object with the BadUriErr contract. 1625
As a general principle servers should honor watches until the lease runs out or the client explicitly 1626
invokes delete. However, servers are free to cancel watches as needed (such as power failure) 1627
and the burden is on clients to re-establish a new watch. 1628

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 44 of 62

44

12.2.6 Watch.delete 1629

The delete operation can be used to cancel an existing watch. Clients should always delete 1630
their watch when possible to be good oBIX citizens. However servers should always cleanup 1631
correctly without an explicit delete when the lease expires. 1632

12.3 Watch Depth 1633

When a watch is put on an object which itself has children objects, how does a client know how 1634
“deep” the subscription goes? oBIX requires watch depth to match an object‘s extent (see 1635
Section 9.3). When a watch is put on a target object, a server must notify the client of any 1636
changes to any of the objects within that target object’s extent. If the extent includes feed 1637
objects they are not included in the watch – feeds have special watch semantics discussed in 1638
Section 12.4. This means a watch is inclusive of all descendents within the extent except refs 1639
and feeds. 1640

12.4 Feeds 1641

Servers may expose event streams using the feed object. The event instances are typed via the 1642
feed’s of attribute. Clients subscribe to events by adding the feed’s href to a watch, optionally 1643
passing an input parameter which is typed via the feed’s in attribute. The object returned from 1644
Watch.add is a list of historic events (or the empty list if no event history is available). 1645
Subsequent calls to pollChanges returns the list of events which have occurred since the last 1646
poll. 1647
 1648
Let’s consider a simple example for an object which fires an event when its geographic location 1649
changes: 1650

<obj href="/car/"> 1651
 <feed href="moved" of="/def/Coordinate"/> 1652
<obj> 1653
 1654
<obj href="/def/Coordinate"> 1655
 <real name="lat"/> 1656
 <real name="long"/> 1657
</obj> 1658

 1659
We subscribe to the moved event feed by adding “/car/moved” to a watch. The WatchOut will 1660
include the list of any historic events which have occurred up to this point in time. If the server 1661
does not maintain an event history this list will be empty: 1662

<obj is="obix:WatchIn"> 1663
 <list names="hrefs"/> 1664
 <uri val="/car/moved" /> 1665
 </list> 1666
</obj> 1667
 1668
<obj is="obix:WatchOut"> 1669
 <list names="values"> 1670
 <feed href="/car/moved" of="/def/Coordinate/" /> <!-- empty history --> 1671
 </list> 1672
</obj> 1673

 1674
Now every time we call pollChanges for the watch, the server will send us the list of event 1675
instances which have accumulated since our last poll: 1676

<obj is="obix:WatchOut"> 1677
 <list names="values"> 1678
 <feed href="/car/moved" of="/def/Coordinate"> 1679
 <obj> 1680

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 45 of 62

45

 <real name="lat" val="37.645022"/> 1681
 <real name="long" val="-77.575851"/> 1682
 </obj> 1683
 <obj> 1684
 <real name="lat" val="37.639046"/> 1685
 <real name="long" val="-77.61872"/> 1686
 </obj> 1687
 </feed> 1688
 </list> 1689
</obj> 1690

 1691
Note the feed’s of attribute works just like the list’s of attribute. The children event instances 1692
are assumed to inherit the contract defined by of unless explicitly overridden. If an event 1693
instance does override the of contract, then it must be contract compatible. Refer to the rules 1694
defined in Section 6.8. 1695
 1696
Invoking a pollRefresh operation on a watch with a feed that has an event history, should 1697
return all the historical events as if the pollRefresh was an add operation. If an event history 1698
is not available, then pollRefresh should act like a normal pollChanges and just return the 1699
events which have occurred since the last poll. 1700

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 46 of 62

46

13 Points 1701

Anyone familiar with automation systems immediately identifies with the term point (sometimes 1702
called tags in the industrial space). Although there are many different definitions, generally points 1703
map directly to a sensor or actuator (called hard points). Sometimes the concept of a point is 1704
mapped to a configuration variable such as a software setpoint (called soft points). In some 1705
systems point is an atomic value, and in others it encapsulates a whole truckload of status and 1706
configuration information. 1707
 1708
The goal of oBIX is to capture a normalization representation of points without forcing an 1709
impedance mismatch on vendors trying to make their native system oBIX accessible. To meet 1710
this requirement, oBIX defines a low level abstraction for point - simply one of the primitive value 1711
types with associated status information. Point is basically just a marker contract used to tag an 1712
object as exhibiting “point” semantics: 1713

<obj href="obix:Point"/> 1714
 1715
This contract must only be used with the value primitive types: bool, real, enum, str, 1716
abstime, and reltime. Points should use the status attribute to convey quality information. 1717
The following table specifies how to map common control system semantics to a value type: 1718

bool digital point <bool is="obix:Point" val="true"/>

real analog point <real is="obix:Point" val="22" units="obix:units/celsius"/>

enum multi-state point <enum is="obix:Point" val="slow"/>

13.1 Writable Points 1719

Different control systems handle point writes using a wide variety of semantics. Sometimes we 1720
write a point at a specific priority level. Sometimes we override a point for a limited period of time, 1721
after which the point falls back to a default value. The oBIX specification doesn’t attempt to 1722
impose a specific model on vendors. Rather oBIX provides a standard WritablePoint contract 1723
which may be extended with additional mixins to handle special cases. WritablePoint defines 1724
write as an operation which takes a WritePointIn structure containing the value to write. The 1725
contracts are: 1726

<obj href="obix:WritablePoint" is="obix:Point"> 1727
 <op name="writePoint" in="obix:WritePointIn" out="obix:Point"/> 1728
</obj> 1729
 1730
<obj href="obix:WritePointIn"> 1731
 <obj name="value"/> 1732
</obj> 1733

 1734
It is implied that the value passed to writePoint match the type of the point. For example if 1735
WritablePoint is used with an enum, then writePoint must pass an enum for the value. 1736

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 47 of 62

47

14 History 1737

Most automation systems have the ability to persist periodic samples of point data to create a 1738
historical archive of a point’s value over time. This feature goes by many names including logs, 1739
trends, or histories. In oBIX, a history is defined as a list of time stamped point values. The 1740
following features are provided by oBIX histories: 1741

• History Object: a normalized representation for a history itself; 1742
• History Record: a record of a point sampling at a specific timestamp 1743
• History Query: a standard way to query history data as Points; 1744
• History Rollup: a standard mechanism to do basic rollups of history data; 1745

14.1 History Object 1746

Any object which wishes to expose itself as a standard oBIX history implements the 1747
obix:History contract: 1748

<obj href="obix:History"> 1749
 <int name="count" min="0" val="0"/> 1750
 <abstime name="start" null="true"/> 1751
 <abstime name="end" null="true"/> 1752
 <op name="query" in="obix:HistoryFilter" out="obix:HistoryQueryOut"/> 1753
 <feed name="feed" in="obix:HistoryFilter" of="obix:HistoryRecord"/> 1754
 <op name="rollup" in="obix:HistoryRollupIn" out="obix:HistoryRollupOut"/> 1755
</obj> 1756

Let’s look at each of History’s sub-objects: 1757

• count: this field stores the number of history records contained by the history; 1758

• start: this field provides the timestamp of the oldest record; 1759

• end: this field provides the timestamp of the newest record; 1760

• query: the query object is used to query the history to read history records; 1761

• feed: used to subscribe to a real-time feed of history records; 1762

• rollup: this object is used to perform history rollups (it is only supported for numeric 1763
history data); 1764

 1765
An example of a history which contains an hour of 15 minute temperature data: 1766

<obj href="http://x/outsideAirTemp/history/" is="obix:History"> 1767
 <int name="count" val="5"/> 1768
 <abstime name="start" val="2005-03-16T14:00"/> 1769
 <abstime name="end" val="2005-03-16T15:00"/> 1770
 <op name="query" href="query"/> 1771
 <op name="rollup" href="rollup"/> 1772
</obj> 1773

14.2 History Queries 1774

Every History object contains a query operation to query the historical data. 1775

14.2.1 HistoryFilter 1776

The History.query input contract: 1777
<obj href="obix:HistoryFilter"> 1778
 <int name="limit" null=”true”/> 1779

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 48 of 62

48

 <abstime name="start" null="true"/> 1780
 <abstime name="end" null="true"/> 1781
</obj> 1782

These fields are described in detail: 1783
• limit: an integer indicating the maximum number of records to return. Clients can use 1784

this field to throttle the amount of data returned by making it non-null. Servers must 1785
never return more records than the specified limit. However servers are free to return 1786
fewer records than the limit. 1787

• start: if non-null this field indicates an inclusive lower bound for the query’s time range. 1788

• end: if non-null this field indicates an inclusive upper bound for the query’s time range. 1789

14.2.2 HistoryQueryOut 1790

The History.query output contract: 1791
<obj href="obix:HistoryQueryOut"> 1792
 <int name="count" min="0" val="0"/> 1793
 <abstime name="start" null="true"/> 1794
 <abstime name="end" null="true"/> 1795
 <list name="data" of="obix:HistoryRecord"/> 1796
</obj> 1797

Just like History, every HistoryQueryOut returns count, start, and end. But unlike 1798
History, these values are for the query result, not the entire history. The actual history data is 1799
stored as a list of HistoryRecords in the data field. Remember that child order is not 1800
guaranteed in oBIX, therefore it might be common to have count after data. 1801

14.2.3 HistoryRecord 1802

The HistoryRecord contract specifies a record in a history query result: 1803
<obj href="obix:HistoryRecord"> 1804
 <abstime name="timestamp" null="true"/> 1805
 <obj name="value" null="true"/> 1806
</obj> 1807

Typically the value should be on the value types used with obix:Point. 1808

14.2.4 History Query Example 1809

An example query from the “/outsideAirTemp/history” example above: 1810
<obj href="http://x/outsideAirTemp/history/query" is="obix:HistoryQueryOut"> 1811
 <int name="count" val="5"> 1812
 <abstime name="start" val="2005-03-16T14:00"/> 1813
 <abstime name="end" val="2005-03-16T15:00"/> 1814
 <list name="data" of="#RecordDef obix:HistoryRecord"> 1815
 <obj> <abstime name="timestamp" val="2005-03-16T14:00"/> 1816
 <real name="value" val="40"/> </obj> 1817
 <obj> <abstime name="timestamp" val="2005-03-16T14:15"/> 1818
 <real name="value" val="42"/> </obj> 1819
 <obj> <abstime name="timestamp" val="2005-03-16T14:30"/> 1820
 <real name="value" val="43"/> </obj> 1821
 <obj> <abstime name="timestamp" val="2005-03-16T14:45"/> 1822
 <real name="value" val="47"/> </obj> 1823
 <obj> <abstime name="timestamp" val="2005-03-16T15:00"/> 1824
 <real name="value" val="44"/> </obj> 1825
 </list> 1826
 <obj href="#RecordDef" is="obix:HistoryRecord"> 1827
 <real name="value" units="obix:units/fahrenheit"/> 1828
 </obj> 1829
</obj> 1830

Note in the example above how the data list uses a document local contract to define facets 1831
common to all the records (although we still have to flatten the contract list). 1832

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 49 of 62

49

14.3 History Rollups 1833

Control systems collect historical data as raw time sampled values. However, most applications 1834
wish to consume historical data in a summarized form which we call rollups. The rollup operation 1835
is used summarize an interval of time. History rollups only apply to histories which store numeric 1836
information as a list of RealPoints. Attempting to query a rollup on a non-numeric history such 1837
as a history of BoolPoints should result in an error. 1838

14.3.1 HistoryRollupIn 1839

The History.rollup input contract extends HistoryFilter to add an interval parameter: 1840
<obj href="obix:HistoryRollupIn" is="obix:HistoryFilter"> 1841
 <reltime name="interval"/> 1842
</obj> 1843

14.3.2 HistoryRollupOut 1844

The History.rollup output contract: 1845
<obj href="obix:HistoryRollupOut"> 1846
 <int name="count" min="0" val="0"/> 1847
 <abstime name="start" null="true"/> 1848
 <abstime name="end" null="true"/> 1849
 <list name="data" of="obix:HistoryRollupRecord"/> 1850
</obj> 1851

The HistoryRollupOut object looks very much like HistoryQueryOut except it returns a list 1852
of HistoryRollupRecords, rather than HistoryRecords. Note: unlike HistoryQueryOut, 1853
the start for HistoryRollupOut is exclusive, not inclusive. This issue is discussed in greater 1854
detail next. 1855

14.3.3 HistoryRollupRecord 1856

A history rollup returns a list of HistoryRollupRecords: 1857
<obj href="obix:HistoryRollupRecord"> 1858
 <abstime name="start"/> 1859
 <abstime name="end" /> 1860
 <int name="count"/> 1861
 <real name="min" /> 1862
 <real name="max" /> 1863
 <real name="avg" /> 1864
 <real name="sum" /> 1865
</obj> 1866

The children are defined as: 1867
• start: the exclusive start time of the record’s rollup interval; 1868

• end: the inclusive end time of the record’s rollup interval; 1869

• count: the number of records used to compute this rollup interval; 1870

• min: specifies the minimum value of all the records within the interval; 1871

• max: specifies the maximum value of all the records within the interval; 1872

• avg: specifies the mathematical average of all the values within the interval; 1873

• sum: specifies the summation of all the values within the interval; 1874

14.3.4 Rollup Calculation 1875

The best way to understand how rollup calculations work is through an example. Let’s consider a 1876
history of meter data where we collected two hours of 15 minute readings of kilowatt values: 1877

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 50 of 62

50

<obj is="obix:HistoryQueryOut"> 1878
 <int name="count" val="9"> 1879
 <abstime name="start" val="2005-03-17T12:00"/> 1880
 <abstime name="end" val="2005-03-17T14:00"/> 1881
 <list name="data" of="#HistoryDef obix:HistoryRecord"> 1882
 <obj> <abstime name="timestamp" val="2005-03-17T12:00"/> 1883
 <real name="value" val="80"> </obj> 1884
 <obj> <abstime name="timestamp" val="2005-03-17T12:15"/> 1885
 <real name="value" val="82"></obj> 1886
 <obj> <abstime name="timestamp" val="2005-03-17T12:30"/> 1887
 <real name="value" val="90"> </obj> 1888
 <obj> <abstime name="timestamp" val="2005-03-17T12:45"/> 1889
 <real name="value" val="85"> </obj> 1890
 <obj> <abstime name="timestamp" val="2005-03-17T13:00"/> 1891
 <real name="value" val="81"> </obj> 1892
 <obj> <abstime name="timestamp" val="2005-03-17T13:15"/> 1893
 <real name="value" val="84"> </obj> 1894
 <obj> <abstime name="timestamp" val="2005-03-17T13:30"/> 1895
 <real name="value" val="91"> </obj> 1896
 <obj> <abstime name="timestamp" val="2005-03-17T13:45"/> 1897
 <real name="value" val="83"> </obj> 1898
 <obj> <abstime name="timestamp" val="2005-03-17T14:00"/> 1899
 <real name="value" val="78"> </obj> 1900
 </list> 1901
 <obj href="#HistoryRecord" is="obix:HistoryRecord"> 1902
 <real name="value" units="obix:units/kilowatt"/> 1903
 <obj> 1904
</obj> 1905

 1906
If we were to query the rollup using an interval of 1 hour with a start time of 12:00 and end time of 1907
14:00, the result should be: 1908

<obj is="obix:HistoryRollupOut obix:HistoryQueryOut"> 1909
 <int name="count" val="2"> 1910
 <abstime name="start" val="2005-03-16T12:00"/> 1911
 <abstime name="end" val="2005-03-16T14:00"/> 1912
 <list name="data" of="obix:HistoryRollupRecord"> 1913
 <obj> 1914
 <abstime name="start" val="2005-03-16T12:00"/> 1915
 <abstime name="end" val="2005-03-16T13:00"/> 1916
 <int name="count" val="4" /> 1917
 <real name="min" val="81" /> 1918
 <real name="max" val="90" /> 1919
 <real name="avg" val="84.5" /> 1920
 <real name="sum" val="338" /> 1921
 </obj> 1922
 <obj> 1923
 <abstime name="start" val="2005-03-16T13:00"/> 1924
 <abstime name="end" val="2005-03-16T14:00"/> 1925
 <int name="count" val="4" /> 1926
 <real name="min" val="78" /> 1927
 <real name="max" val="91" /> 1928
 <real name="avg" val="84" /> 1929
 <real name="sum" val="336" /> 1930
 </obj> 1931
 </list> 1932
</obj> 1933

If you whip out your calculator, the first thing you will note is that the first raw record of 80kW was 1934
never used in the rollup. This is because start time is always exclusive. The reason start time 1935
has to be exclusive is because we are summarizing discrete samples into a contiguous time 1936
range. It would be incorrect to include a record in two different rollup intervals! To avoid this 1937
problem we always make start time exclusive and end time inclusive. The following table 1938
illustrates how the raw records were applied to rollup intervals: 1939

Interval Start (exclusive) Interval End (inclusive) Records Included

2005-03-16T12:00 2005-03-16T13:00 82 + 90 + 85 + 81 = 338

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 51 of 62

51

2005-03-16T13:00 2005-03-16T14:00 84 + 91 + 83 + 78 = 336

14.4 History Feeds 1940

The History contract specifies a feed for subscribing to a real-time feed of the history records. 1941
History.feed reuses the same HistoryFilter input contract used by History.query – 1942
the same semantics apply. When adding a History feed to a watch, the initial result should 1943
contain the list of HistoryRecords filtered by the input parameter (the initial result should 1944
match what History.query would return). Subsequent calls to Watch.pollChanges should 1945
return any new HistoryRecords which have been collected since the last poll that also satisfy 1946
the HistoryFilter. 1947

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 52 of 62

52

15 Alarming 1948

The oBIX alarming feature specifies a normalized model to query, watch, and acknowledge 1949
alarms. In oBIX, an alarm indicates a condition which requires notification of either a user or 1950
another application. In many cases an alarm requires acknowledgement, indicating that 1951
someone (or something) has taken action to resolve the alarm condition. The typical lifecycle of 1952
an alarm is: 1953

1. Source Monitoring: algorithms in a server monitor an alarm source. An alarm source is 1954
an object with an href which has the potential to generate an alarm. Example of alarm 1955
sources might include sensor points (this room is too hot), hardware problems (disk is 1956
full), or applications (building is consuming too much energy at current energy rates) 1957

2. Alarm Generation: if the algorithms in the server detect that an alarm source has 1958
entered an alarm condition, then an alarm record is generated. Every alarm is uniquely 1959
identified using an href and represented using the obix:Alarm contract. Sometimes we 1960
refer to the alarm transition as off-normal. 1961

3. To Normal: many alarm sources are said to be stateful - eventually the alarm source 1962
exits the alarm state, and is said to return to-normal. Stateful alarms implement the 1963
obix:StatefulAlarm contract. When the source transitions to normal, we update 1964
normalTimestamp of the alarm. 1965

4. Acknowledgement: often we require that a user or application acknowledges that they 1966
have processed an alarm. These alarms implement the obix:AckAlarm contract. 1967
When the alarm is acknowledged, we update ackTimestamp and ackUser. 1968

15.1 Alarm States 1969

Alarm state is summarized with two variables: 1970
• In Alarm: is the alarm source currently in the alarm condition or in the normal condition. 1971

This variables maps to the alarm status state. 1972
• Acknowledged: is the alarm acknowledged or unacknowledged. This variable maps to 1973

the unacked status state. 1974
 1975
Either of these states may transition independent of the other. For example an alarm source can 1976
return to normal before or after an alarm has been acknowledged. Furthermore it is not 1977
uncommon to transition between normal and off-normal multiple times generating several alarm 1978
records before any acknowledgements occur. 1979
 1980
Note not all alarms have state. An alarm which implements neither StatefulAlarm nor the 1981
AckAlarm contracts is completely stateless – these alarms merely represent event. An alarm 1982
which implements StatefulAlarm but not AckAlarm will have an in-alarm state, but not 1983
acknowledgement state. Conversely an alarm which implements AckAlarm but not 1984
StatefulAlarm will have an acknowledgement state, but not in-alarm state. 1985

15.1.1 Alarm Source 1986

The current alarm state of an alarm source is represented using the status attribute. This 1987
attribute is discussed in Section 4.16.8. It is recommended that alarm sources always report their 1988
status via the status attribute. 1989

15.1.2 StatefulAlarm and AckAlarm 1990

An Alarm record is used to summarize the entire lifecycle of an alarm event. If the alarm 1991
implements StatefulAlarm it tracks transition from off-normal back to normal. If the alarm 1992

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 53 of 62

53

implements AckAlarm, then it also summarizes the acknowledgement. This allows for four 1993
discrete alarm states: 1994

alarm acked normalTimestamp ackTimestamp

true false null null

true true null non-null

false false non-null null

false true non-null non-null

15.2 Alarm Contracts 1995

15.2.1 Alarm 1996

The core Alarm contract is: 1997
<obj href="obix:Alarm"> 1998
 <ref name="source"/> 1999
 <abstime name="timestamp"/> 2000
</obj> 2001

 2002
The child objects are: 2003

• source: the URI which identifies the alarm source. The source should reference an oBIX 2004
object which models the entity that generated the alarm. 2005

• timestamp: this is the time at which the alarm source transitioned from normal to off-2006
normal and the Alarm record was created. 2007

15.2.2 StatefulAlarm 2008

Alarms which represent an alarm state which may transition back to normal must implement the 2009
StatefulAlarm contract: 2010

<obj href="obix:StatefulAlarm" is="obix:Alarm"> 2011
 <abstime name="normalTimestamp" null="true"/> 2012
</obj> 2013

 2014
The child object is: 2015

• normalTimestamp: if the alarm source is still in the alarm condition, then this field is null. 2016
Otherwise this indicates the time of the transition back to the normal condition. 2017

15.2.3 AckAlarm 2018

Alarms which support acknowledgement must implement the AckAlarm contract: 2019
<obj href="obix:AckAlarm" is="obix:Alarm"> 2020
 <abstime name="ackTimestamp" null="true"/> 2021
 <str name="ackUser" null="true"/> 2022
 <op name="ack" in="obix:AlarmAckIn" out="obix:AlarmAckOut"/> 2023
</obj> 2024
 2025
<obj href="obix:AckAlarmIn"> 2026
 <str name="ackUser" null="true"/> 2027
</obj> 2028
 2029
<obj href="obix:AckAlarmOut"> 2030
 <obj name="alarm" is="obix:AckAlarm obix:Alarm"/> 2031
</obj> 2032

 2033
The child objects are: 2034

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 54 of 62

54

• ackTimestamp: if the alarm is unacknowledged, then this field is null. Otherwise this 2035
indicates the time of the acknowledgement. 2036

• ackUser: if the alarm is unacknowledged, then this field is null. Otherwise this field 2037
should provide a string indicating who was responsible for the acknowledgement. 2038

 2039
The ack operation is used to programmatically acknowledge the alarm. The client may optionally 2040
specify an ackUser string via AlarmAckIn. However, the server is free to ignore this field 2041
depending on security conditions. For example a highly trusted client may be allowed to specify 2042
its own ackUser, but a less trustworthy client may have its ackUser predefined based on the 2043
authentication credentials of the protocol binding. The ack operation returns an AckAlarmOut 2044
which contains the updated alarm record. Use the Lobby.batch operation to efficiently 2045
acknowledge a set of alarms. 2046

15.2.4 PointAlarms 2047

It is very common for an alarm source to be an obix:Point. A respective PointAlarm 2048
contract is provided as a normalized way to report the value which caused the alarm condition: 2049

<obj href="obix:PointAlarm" is="obix:Alarm"> 2050
 <obj name="alarmValue"/> 2051
</obj> 2052

The alarmValue object should be one of the value types defined for obix:Point in Section 2053
13. 2054

15.3 AlarmSubject 2055

Servers which implement oBIX alarming must provide one or more objects which implement the 2056
AlarmSubject contract. The AlarmSubject contract provides the ability to categorize and 2057
group the sets of alarms a client may discover, query, and watch. For instance a server could 2058
provide one AlarmSubject for all alarms and other AlarmSubjects based on priority or time 2059
of day. The contract for AlarmSubject is: 2060

<obj href="obix:AlarmSubject"> 2061
 <int name="count" min="0" val="0"/> 2062
 <op name="query" in="obix:AlarmFilter" out="obix:AlarmQueryOut"/> 2063
 <feed name="feed" in="obix:AlarmFilter" of="obix:Alarm"/> 2064
</obj> 2065
 2066
<obj href="obix:AlarmFilter"> 2067
 <int name="limit" null=”true”/> 2068
 <abstime name="start" null="true"/> 2069
 <abstime name="end" null="true"/> 2070
</obj> 2071
 2072
<obj href="obix:AlarmQueryOut"> 2073
 <int name="count" min="0" val="0"/> 2074
 <abstime name="start" null="true"/> 2075
 <abstime name="end" null="true"/> 2076
 <list name="data" of="obix:Alarm"/> 2077
</obj> 2078

 2079
The AlarmSubject follows the same design pattern as History. The AlarmSubject 2080
specifies the active count of alarms; however, unlike History it does not provide the start 2081
and end bounding timestamps. It contains a query operation to read the current list of alarms 2082
with an AlarmFilter to filter by time bounds. AlarmSubject also contains a feed object 2083
which may be used to subscribe to the alarm events. 2084

15.4 Alarm Feed Example 2085

The following example illustrates how a feed works with this AlarmSubject: 2086

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 55 of 62

55

<obj is="obix:AlarmSubject" href="/alarms/"> 2087
 <int name="count" val="2"/> 2088
 <op name="query" href="query"/> 2089
 <feed name="feed" href="feed" /> 2090
</obj> 2091

 2092
The server indicates it has two open alarms under the specified AlarmSubject. If a client were 2093
to add the AlarmSubject’s feed to a watch: 2094

<obj is="obix:WatchIn"> 2095
 <list names="hrefs"/> 2096
 <uri val="/alarms/feed" /> 2097
 </list> 2098
</obj> 2099
 2100
<obj is="obix:WatchOut"> 2101
 <list names="values"> 2102
 <feed href="/alarms/feed" of="obix:Alarm"> 2103
 <obj href="/alarmdb/528" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm"> 2104
 <ref name="source" href="/airHandlers/2/returnTemp"/> 2105
 <abstime name="timestamp" val="2006-05-18T14:20"/> 2106
 <abstime name="normalTimestamp" null="null"/> 2107
 <real name="alarmValue" val="80.2"/> 2108
 </obj> 2109
 <obj href="/alarmdb/527" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm"> 2110
 <ref name="source" href="/doors/frontDoor"/> 2111
 <abstime name="timestamp" val="2006-05-18T14:18"/> 2112
 <abstime name=" normalTimestamp" null="null"/> 2113
 <real name="alarmValue" val="true"/> 2114
 </obj> 2115
 </feed> 2116
 </list> 2117
</obj> 2118

 2119
The watch returns the historic list of alarm events which is two open alarms. The first alarm 2120
indicates an out of bounds condition in AirHandler-2’s return temperature. The second alarm 2121
indicates that the system has detected that the front door has been propped open. 2122
 2123
Now let’s fictionalize that the system detects the front door is closed, and alarm point transitions 2124
to the normal state. The next time the client polls the watch the alarm would show up in the feed 2125
list (along with any additional changes or new alarms not shown here): 2126

<obj is="obix:WatchOut"> 2127
 <list names="values"> 2128
 <feed href="/alarms/feed" of="obix:Alarm">> 2129
 <obj href="/alarmdb/527" is="obix:StatefulAlarm obix:PointAlarm obix:Alarm"> 2130
 <ref name="source" href="/doors/frontDoor"/> 2131
 <abstime name="timestamp" val="2006-05-18T14:18"/> 2132
 <abstime name=" normalTimestamp" null="2006-05-18T14:45"/> 2133
 <real name="alarmValue" val="true"/> 2134
 </obj> 2135
 </feed> 2136
 </list> 2137
</obj> 2138

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 56 of 62

56

16 Security 2139

Security is a broad topic, that covers many issues: 2140
• Authentication: verifying a user (client) is who he says he is; 2141
• Encryption: protecting oBIX documents from prying eyes; 2142
• Permissions: checking a user’s permissions before granting access to read/write objects 2143

or invoke operations; 2144
• User Management: managing user accounts and permissions levels; 2145

 2146
The basic philosophy of oBIX is to leave these issues outside of the specification. Authentication 2147
and encryption is left as a protocol binding issue. Privileges and user management is left as a 2148
vendor implementation issue. Although it is entirely possible to define a publicly exposed user 2149
management model through oBIX, this specification does not define any standard contracts for 2150
user management. 2151

16.1 Error Handling 2152

It is expected that an oBIX server will perform authentication and utilize those user credentials for 2153
checking permissions before processing read, write, and invoke requests. As a general rule, 2154
servers should return err with the obix:PermissionErr contract to indicate a client lacks the 2155
permission to perform a request. In particularly sensitive applications, a server may instead 2156
choose to return BadUriErr so that an untrustworthy client is unaware that a specific object 2157
even exists. 2158

16.2 Permission based Degradation 2159

Servers should strive to present their object model to a client based on the privileges available to 2160
the client. This behavior is called permission based degradation. The following rules summarize 2161
effective permission based degradation: 2162

1. If an object cannot be read, then it should not be discoverable through objects which are 2163
available. 2164

2. Servers should attempt to group standard contracts within the same privilege level – for 2165
example don’t split obix:History’s start and end into two different security levels 2166
such that a client might be able to read start, and not end. 2167

3. Don’t include a contract in an object’s is attribute if the contract’s children are not 2168
readable to the client. 2169

4. If an object isn’t writable, then make sure the writable attribute is set to false (either 2170
explicitly or through a contract default). 2171

5. If an op inherited from a visible contract cannot be invoked, then set the null attribute to 2172
true to disable it. 2173

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 57 of 62

57

17 HTTP Binding 2174

The HTTP binding specifies a simple REST mapping of oBIX requests to HTTP. A read request 2175
is a simple HTTP GET, which means that you can simply read an object by typing its URI into 2176
your browser. Refer to “RFC 2616 Hypertext Transfer Protocol” for the full specification of HTTP 2177
1.1. 2178

17.1 Requests 2179

The following table summarizes how oBIX requests map to HTTP methods: 2180

oBIX Request HTTP Method Target

Read GET Any object with an href

Write PUT Any object with an href and writable=true

Invoke POST Any op object

The URI used for an HTTP request must map to the URI of the object being read, written, or 2181
invoked. Read requests use a simple HTTP GET and return the resulting oBIX document. Write 2182
and invoke are implemented with the PUT and POST methods respectively. The input is passed 2183
to the server as an oBIX document and the result is returned as an oBIX document. 2184
 2185
If the oBIX server processes a request, then it must return the resulting oBIX document with an 2186
HTTP status code of 200 OK. The 200 status code must be used even if the request failed and 2187
the server is returning an err object as the result. 2188
 2189
The oBIX documents passed between client and servers should specify a MIME type of “text/xml” 2190
for the Content-Type HTTP header. 2191
 2192
Clients and servers must encode the oBIX document passed over the network using standard 2193
XML encoding rules. It is strongly recommended using UTF8 without a byte-order mark. If 2194
specified, the Content-Encoding HTTP header must match the XML encoding. 2195

17.2 Security 2196

Numerous standards are designed to provide authentication and encryption services for HTTP. 2197
Existing standards should be used when applicable for oBIX HTTP implementations including: 2198

• RFC 2617 - HTTP Authentication: Basic and Digest Access Authentication 2199
• RFC 2818 - HTTP Over TLS (HTTPS) 2200
• RFC 4346/2246 – The TLS Protocol (Transport Layer Security) 2201
 2202

17.3 Localization 2203

Servers should localize appropriate data based on the desired locale of the client agent. 2204
Localization should include the display and displayName attributes. The desired locale of the 2205
client should be determined through authentication or via the Accept-Language HTTP header. A 2206
suggested algorithm is to check if the authenticated user has a preferred locale configured in the 2207

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 58 of 62

58

server’s user database, and if not then fallback to the locale derived from the Accept-Language 2208
header. 2209
 2210
Localization may include auto-conversion of units. For example if the authenticated user has a 2211
configured a preferred unit system such as English versus Metric, then the server might attempt 2212
to convert values with an associated unit facet to the desired unit system. 2213

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 59 of 62

59

18 SOAP Binding 2214

The SOAP binding maps a SOAP operation to each of the three oBIX request types: read, write 2215
and invoke. Like the HTTP binding, read is supported by every object, write is supported by 2216
objects whose writable attribute is true, and invoke is only supported by operations. Inputs 2217
and outputs of each request are specific to the target object. 2218
 2219
Unlike the HTTP binding, requests are not accessed via the URI of the target object, but instead 2220
via the URI of the SOAP server with the object’s URI encoded into the body of the SOAP 2221
envelope. 2222

18.1 SOAP Example 2223

The following is a SOAP request to an oBIX server’s About object: 2224
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"> 2225
 <env:Body> 2226
 <read xmlns="http://obix.org/ns/wsdl/1.0" 2227
 href="http://localhost/obix/about" /> 2228
</env:Body> 2229
</env:Envelope> 2230

 2231
An example response to the above request: 2232

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"> 2233
 <env:Body> 2234
 <obj name="about" 2235
 href="http://localhost/obix/about/" 2236
 xmlns="http://obix.org/ns/schema/1.0"> 2237
 <str name="obixVersion" val="1.0"/> 2238
 <str name="serverName" val="obix"/> 2239
 <abstime name="serverTime" val="2006-02-08T09:40:55.000+05:00"/> 2240
 <abstime name="serverBootTime" val="2006-02-08T09:33:31.980+05:00"/> 2241
 <str name="vendorName" val="Acme, Inc."/> 2242
 <uri name="vendorUrl" val="http://www.acme.com"/> 2243
 <str name="productName" val="Acme oBIX Server"/> 2244
 <str name="productVersion" val="1.0.3"/> 2245
 <uri name="productUrl" val="http://www.acme.com/obix"/> 2246
 </obj> 2247
 </env:Body> 2248
</env:Envelope> 2249

18.2 Error Handling 2250

The oBIX specification defines no SOAP faults. If a request is processed by an oBIX server, then 2251
a valid oBIX document should be returned with a failure indicated via the err object. 2252

18.3 Security 2253

Refer to the recommendations in WS-I Basic Profile 1.0 for security: 2254
 http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#security 2255

18.4 Localization 2256

SOAP bindings should follow localization patterns defined for the HTTP binding when applicable 2257
(see Section 17.3). 2258

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 60 of 62

60

18.5 WSDL 2259

In the types section of the WSDL document, the oBIX schema is imported. Server 2260
implementations might consider providing the schemaLocation attribute which is absent in the 2261
standard document. 2262
 2263
Missing from the standard oBIX WSDL is the service element. This element binds a SOAP server 2264
instance with a network address. Each instance will have to provide its own services section of 2265
the WSDL document. The following is an example of the WSDL service element: 2266
 2267

<wsdl:service name="obix"> 2268
 <wsdl:port name="obixPort" binding="tns:obixSoapBinding"> 2269
 <soap:address location="http://localhost/obix/soap"/> 2270
 </wsdl:port> 2271
</wsdl:service> 2272

 2273
Standard oBIX WSDL is: 2274

<wsdl:definitions targetNamespace="http://obix.org/ns/wsdl/1.0" 2275
 xmlns="http://obix.org/ns/wsdl/1.0" 2276
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 2277
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 2278
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2279
 xmlns:obix="http://obix.org/ns/schema/1.0"> 2280
 <wsdl:types> 2281
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2282
 elementFormDefault="qualified" 2283
 targetNamespace="http://obix.org/ns/wsdl/1.0"> 2284
 <xsd:import namespace="http://obix.org/ns/schema/1.0"/> 2285
 <xsd:complexType name="ReadReq"> 2286
 <xsd:attribute name="href" type="xsd:anyURI"/> 2287
 </xsd:complexType> 2288
 <xsd:complexType name="WriteReq"> 2289
 <xsd:complexContent> 2290
 <xsd:extension base="ReadReq"> 2291
 <xsd:sequence> 2292
 <xsd:element ref="obix:obj" maxOccurs="1" minOccurs="1"/> 2293
 </xsd:sequence> 2294
 </xsd:extension> 2295
 </xsd:complexContent> 2296
 </xsd:complexType> 2297
 <xsd:complexType name="InvokeReq"> 2298
 <xsd:complexContent> 2299
 <xsd:extension base="ReadReq"> 2300
 <xsd:sequence> 2301
 <xsd:element ref="obix:obj" maxOccurs="1" minOccurs="1"/> 2302
 </xsd:sequence> 2303
 </xsd:extension> 2304
 </xsd:complexContent> 2305
 </xsd:complexType> 2306
 <xsd:element name="read" type="ReadReq"/> 2307
 <xsd:element name="write" type="WriteReq"/> 2308
 <xsd:element name="invoke" type="InvokeReq"/> 2309
 </xsd:schema> 2310
 </wsdl:types> 2311
 <wsdl:message name="readSoapReq"> 2312
 <wsdl:part name="body" element="read"/> 2313
 </wsdl:message> 2314
 <wsdl:message name="readSoapRes"> 2315
 <wsdl:part name="body" element="obix:obj"/> 2316
 </wsdl:message> 2317
 <wsdl:message name="writeSoapReq"> 2318
 <wsdl:part name="body" element="write"/> 2319
 </wsdl:message> 2320
 <wsdl:message name="writeSoapRes"> 2321
 <wsdl:part name="body" element="obix:obj"/> 2322
 </wsdl:message> 2323

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 61 of 62

61

 <wsdl:message name="invokeSoapReq"> 2324
 <wsdl:part name="body" element="invoke"/> 2325
 </wsdl:message> 2326
 <wsdl:message name="invokeSoapRes"> 2327
 <wsdl:part name="body" element="obix:obj"/> 2328
 </wsdl:message> 2329
 <wsdl:portType name="oBIXSoapPort"> 2330
 <wsdl:operation name="read"> 2331
 <wsdl:input message="readSoapReq"/> 2332
 <wsdl:output message="readSoapRes"/> 2333
 </wsdl:operation> 2334
 <wsdl:operation name="write"> 2335
 <wsdl:input message="writeSoapReq"/> 2336
 <wsdl:output message="writeSoapRes"/> 2337
 </wsdl:operation> 2338
 <wsdl:operation name="invoke"> 2339
 <wsdl:input message="invokeSoapReq"/> 2340
 <wsdl:output message="invokeSoapRes"/> 2341
 </wsdl:operation> 2342
 </wsdl:portType> 2343
 <wsdl:binding name="oBIXSoapBinding" type="oBIXSoapPort"> 2344
 <soap:binding style="document" 2345
 transport="http://schemas.xmlsoap.org/soap/http"/> 2346
 <wsdl:operation name="read"> 2347
 <soap:operation soapAction="http://obix.org/ns/wsdl/1.0/read" 2348
 style="document"/> 2349
 <wsdl:input> 2350
 <soap:body use="literal"/> 2351
 </wsdl:input> 2352
 <wsdl:output> 2353
 <soap:body use="literal"/> 2354
 </wsdl:output> 2355
 </wsdl:operation> 2356
 <wsdl:operation name="write"> 2357
 <soap:operation soapAction="http://obix.org/ns/wsdl/1.0/write" 2358
 style="document"/> 2359
 <wsdl:input> 2360
 <soap:body use="literal"/> 2361
 </wsdl:input> 2362
 <wsdl:output> 2363
 <soap:body use="literal"/> 2364
 </wsdl:output> 2365
 </wsdl:operation> 2366
 <wsdl:operation name="invoke"> 2367
 <soap:operation soapAction="http://obix.org/ns/wsdl/1.0/invoke" 2368
 style="document"/> 2369
 <wsdl:input> 2370
 <soap:body use="literal"/> 2371
 </wsdl:input> 2372
 <wsdl:output> 2373
 <soap:body use="literal"/> 2374
 </wsdl:output> 2375
 </wsdl:operation> 2376
 </wsdl:binding> 2377
</wsdl:definitions> 2378

obix-1.0-cs-01 5 Dec 2006
Copyright © OASIS Open 2004-2006. All Rights Reserved. Page 62 of 62

62

Appendix A. Revision History 2379

Rev Date By Whom What

wd-0.1 14 Jan 03 Brian Frank Initial version

wd-0.2 22 Jan 03 Brian Frank

wd-0.3 30 Aug 04 Brian Frank Move to Oasis, SysService

wd-0.4 2 Sep 04 Brian Frank Status

wd-0.5 12 Oct 04 Brian Frank Namespaces, Writes, Poll

wd-0.6 2 Dec 04 Brian Frank Incorporate schema comments

wd-0.7 17 Mar 05 Brian Frank URI, REST, Prototypes, History

wd-0.8 19 Dec 05 Brian Frank Contracts, Ops

wd-0.9 8 Feb 06 Brian Frank Watches, Alarming, Bindings

wd-0.10 13 Mar 06 Brian Frank Overview, XML, clarifications

wd-0.11 20 Apr 06 Brian Frank 10.1 sections, ack, min/max

wd-0.11.1 28 Apr 06 Aaron Hanson WSDL Corrections

wd-0.12 22 May 06 Brian Frank Status, feeds, no deltas

wd-0.12.1 29 Jun 06 Brian Frank Schema, stdlib corrections

obix-1.0-cd-02 30 Jun 06 Aaron Hansen OASIS document format
compliance.

obix-1.0-cs-01 18 Oct 06 Brian Frank Public review comments

 2380

