
xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 1 of 52

 1

Extensible Resource Identifier (XRI) 2

Generic Syntax and Resolution 3

Specification 4

Committee Draft, 12 January 2004 5

Document identifier: 6
xri-syntax-resolution-1.0-cd 7

Location: 8
http://www.oasis-open.org/committees/xri/xri-syntax-resolution-1.0-cd 9

Editors: 10
Gabe Wachob, Visa International <gwachob@visa.com> 11
Drummond Reed, OneName <drummond.reed@onename.com> 12
Dave McAlpin, Epok <dave.mcalpin@epok.net> 13
Mike Lindelsee, Visa International <mlindels@visa.com> 14
Peter Davis, Neustar <peter.davis@neustar.biz> 15
Nat Sakimura, NRI <n-sakimura@nri.co.jp> 16

Abstract: 17
This document is the normative technical specification for XRI generic syntax and 18
resolution. For a non-normative introduction to the uses and features of XRIs, see the 19
“XRI Primer” at http://www.oasis-open.org/committees/xri/xri-primer-1.0. 20

Status: 21
This document is a Committee Draft. 22
Committee members should send comments on this specification to the xri@lists.oasis-23
open.org list. Others should subscribe to and send comments to the xri-24
comment@lists.oasis-open.org list. To subscribe, send an email message to xri-25
comment-request@lists.oasis-open.org with the word "subscribe" as the body of the 26
message. 27
For information on whether any patents have been disclosed that may be essential to 28
implementing this specification, and any offers of patent licensing terms, please refer to 29
the Intellectual Property Rights section of the XRI TC web page (http://www.oasis-30
open.org/committees/xri/). 31
The errata page for this specification is at http://www.oasis-open.org/committees/xri/xri-32
syntax-resolution-1.0-errata. 33

34

http://www.oasis-open.org/committees/xri/xri-syntax-resolution-1.0-cd
mailto:gwachob@visa.com
mailto:drummond.reed@onename.com
mailto:dave.mcalpin@epokinc.com
mailto:mlindels@visa.com
mailto:peter.davis@neustar.biz
mailto:n-sakimura@nri.co.jp
http://www.oasis-open.org/committees/xri/xri-primer-1.0
mailto:xri@lists.oasis-open.org
mailto:xri@lists.oasis-open.org
mailto:xri-comment@lists.oasis-open.org
mailto:xri-comment@lists.oasis-open.org
mailto:xri-comment-request@lists.oasis-open.org?body=subscribe
mailto:xri-comment-request@lists.oasis-open.org?body=subscribe
http://www.oasis-open.org/committees/xri/
http://www.oasis-open.org/committees/xri/
http://www.oasis-open.org/committees/xri
http://www.oasis-open.org/committees/xri

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 2 of 52

Table of Contents 34

Introduction .. 5 35
1.1 Overview of XRIs... 5 36

1.1.1 Generic Syntax .. 5 37
1.1.2 Examples ... 6 38
1.1.3 URI, URL, URN, and XRI... 7 39

1.2 Design Considerations .. 7 40
1.2.1 Abstraction and Independence .. 7 41
1.2.2 Persistence and Reassignability.. 8 42
1.2.3 Human-Friendliness and Machine-Friendliness .. 8 43
1.2.4 Internationalization... 8 44
1.2.5 Cross-Context Identification... 8 45
1.2.6 Authority, Delegation, and Federation ... 8 46
1.2.7 Security and Privacy .. 8 47
1.2.8 Extensibility .. 8 48

1.3 Terminology and Notation ... 8 49
1.3.1 Keywords ... 8 50
1.3.2 Syntax Notation.. 9 51
1.3.3 Glossary... 9 52

2 Syntax ... 13 53
2.1 Syntax Components .. 13 54

2.1.1 Authority... 13 55
2.1.1.1 URI Authority .. 13 56
2.1.1.2 XRI Authority... 15 57
2.1.1.3 Global Context Symbols (GCS) .. 15 58
2.1.1.4 Cross-References... 16 59
2.1.1.5 Self-References .. 16 60

2.1.2 Path.. 16 61
2.1.3 Query ... 17 62
2.1.4 Fragment.. 17 63

2.2 Characters... 18 64
2.2.1 Character Encoding ... 18 65
2.2.2 Reserved Characters ... 18 66
2.2.3 Unreserved Characters.. 18 67
2.2.4 Escaped Characters .. 19 68

2.2.4.1 Escaped Encoding.. 19 69
2.2.4.2 Encoding XRI Metadata.. 19 70
2.2.4.3 Transforming XRIs into IRIs and URIs.. 20 71
2.2.4.4 Special Escaping Rules for XRI Syntax .. 21 72
2.2.4.5 Transforming URIs and IRIs Back into XRIs ... 22 73

2.2.5 Excluded Characters.. 23 74
2.3 Relative XRI References... 24 75

2.3.1 Establishing a Base XRI .. 24 76

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 3 of 52

2.3.2 Obtaining the Referenced XRI... 24 77
2.3.3 Leading Segments Containing a Colon ... 25 78

2.4 Normalization and Comparison... 25 79
2.4.1 Case... 26 80
2.4.2 Encoding, Escaping, and Transformations.. 26 81
2.4.3 Optional Syntax.. 26 82
2.4.4 Cross-References .. 26 83
2.4.5 Canonicalization... 27 84

3 Resolution ... 28 85
3.1 Introduction.. 28 86

3.1.1 Assumptions .. 28 87
3.1.2 Phases of Resolution ... 28 88
3.1.3 URI vs. XRI Authorities .. 29 89
3.1.4 XRI Metadata Reserved for XRI Resolution .. 29 90

3.2 XRI Authority Resolution ... 29 91
3.2.1 Overview .. 29 92
3.2.2 XRI Descriptors.. 30 93
3.2.3 Initiating Resolution.. 32 94
3.2.4 Iterating Resolution .. 32 95
3.2.5 Examples ... 33 96
3.2.6 Resolving Cross-References in XRI Authorities .. 35 97
3.2.7 User Relative XRIs... 36 98

3.3 URI Authority Resolution... 36 99
3.4 Local Access ... 36 100

3.4.1 Local Access Service Types.. 36 101
3.4.2 HTTP/HTTPS Local Access .. 36 102
3.4.3 Constructing a Local Access HTTP/HTTPS URI... 37 103
3.4.4 Using a Cross-Reference to Specify a Representation Type...................................... 38 104

3.5 HTTP Headers .. 38 105
3.5.1 Caching.. 38 106
3.5.2 Location ... 38 107
3.5.3 Content-Location.. 39 108
3.5.4 Content-Type ... 39 109
3.5.5 X-XRI-Canonical .. 39 110

3.6 Other HTTP Features.. 39 111
3.7 Caching and Efficiency.. 39 112
3.8 Points of Extensibility .. 40 113

4 Security and Data Protection .. 41 114
4.1 Secure Resolution ... 41 115
4.2 XRI Metadata .. 41 116
4.3 XRI Usage in Legacy Infrastructure .. 41 117
4.4 XRI Usage in Evolving Infrastructure .. 41 118

5 References.. 42 119
5.1 Normative .. 42 120

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 4 of 52

5.2 Informative... 43 121
Appendix A. Collected ABNF for XRI (Normative) .. 44 122
Appendix B. XML Schema for XRI Descriptor (Normative) ... 47 123
Appendix C. Transforming HTTP URIs to XRIs (Non-Normative)... 49 124
Appendix D. Acknowledgments... 50 125
Appendix E. Revision History .. 51 126
Appendix F. Notices .. 52 127
 128

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 5 of 52

Introduction 129

1.1 Overview of XRIs 130

An Extensible Resource Identifier (XRI) provides a standard means of abstractly identifying a 131
resource independent of any particular concrete representation of that resource—or, in the case 132
of a completely abstract resource, of any representation at all. 133
XRIs are similar to URIs as defined in “Uniform Resource Identifiers (URI): Generic Syntax” 134
[RFC2396], but contain additional syntactic elements and extend the unreserved character set to 135
include characters beyond those allowed in generic URIs. To accommodate applications that 136
expect generic URIs, this specification defines rules for transforming an XRI into a valid URI as 137
defined by [RFC2396]. Since a revision of RFC 2396 is currently in progress, the XRI scheme 138
also incorporates some simplifications and enhancements to generic URI syntax as proposed in 139
[RFC2396bis]. 140
XRI syntax is internationalized following the recommendations in “Guidelines for New URL 141
Schemes” [RFC2718] and “Extensible Markup Language (XML) 1.0 (Second Edition)” [XML], and 142
specifically the requirements of the “anyURI” datatype as specified in “XML Schema Part 2: 143
Datatypes” [XMLSchema2]. To do this, the XRI scheme incorporates the syntax recommended 144
in another work-in-progress, “Internationalized Resource Identifiers (IRIs)” [IRI]. 145
Although an XRI is not a Uniform Resource Name (URN) as defined in “URN Syntax” [RFC2141], 146
XRIs consisting entirely of persistent segments are designed to meet the requirements set out in 147
“Functional Requirements for Uniform Resource Names” [RFC1737]. 148
This document specifies the ABNF for the XRI scheme. In addition it specifies an HTTP-based 149
resolution protocol for XRIs. Use of this protocol is not required; XRIs may also be resolved using 150
other protocols or resolution mechanisms. 151
While [RFC2396bis] and [IRI] are cited in this document, they are both works in progress and are 152
consequently non-normative. All relevant information from these proposals is reproduced here, so 153
access to these documents, while very informative, is not required. 154

1.1.1 Generic Syntax 155

XRI syntax is designed to be as simple and extensible as URI syntax. A fully-qualified XRI 156
consists of the scheme name “xri:” followed by the same four optional components as a generic 157
URI. 158
 159

 xri: authority / path ? query # fragment 160
 161
The definitions of these components are, for the most part, supersets of the equivalent 162
components in the generic URI syntax. One advantage of this approach is that the vast majority 163
of HTTP URIs, which inherit directly from generic URI syntax, can be transformed to valid XRIs 164
simply by changing the scheme from “http” to “xri”. The rules for this transformation are 165
summarized in Appendix C, “Transforming HTTP URIs to XRIs”. 166
XRI syntax extends generic URI syntax in six ways by providing support for: 167

1. Persistent and reassignable segments. Generic URI syntax does not distinguish between 168
persistent and reassignable identifiers. XRI syntax enables the top-level authority 169
segment as well as any subsequent path segment to be explicitly designated as either 170
persistent or reassignable. 171

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 6 of 52

2. Unlimited delegation. Generic URI syntax supports delegated identifiers (i.e., DNS names 172
or IP addresses) only within the top-level authority segment. XRI syntax supports 173
delegation of both persistent and reassignable identifiers at any level of the path. 174

3. Global context symbols. While XRI syntax supports the same generic syntax used in 175
URIs for DNS and IP authorities, it also provides shorthand symbols for establishing the 176
abstract context of an identifier. 177

4. Cross-references. Generic URI syntax does not provide a way to share identifiers across 178
contexts. This capability is particularly useful with abstract identifiers (e.g., to establish 179
the generic type of a resource, or to share standardized identifier metadata such as 180
version indicators). For this reason, XRI syntax allows XRIs (and URIs) to be shared 181
across contexts by means of parenthetical nesting. 182

5. Self-references. Generic URI syntax does not provide a way to indicate whether or not a 183
URI is intended for resolution. Since an XRI may itself be the full representation of an 184
abstract non-network resource (for example, concepts like “love,” “honesty,” or “user-185
friendliness”), XRI syntax provides a way to express self-reference. 186

6. Internationalized character set. Generic URI syntax limits legal characters to a subset of 187
the US-ASCII character set. XRI syntax, following the lead of Internationalized Resource 188
Identifiers [IRI], employs the broader Unicode character set, making the use of XRIs in 189
languages other than English much more straightforward. 190

1.1.2 Examples 191

The following examples illustrate XRI syntax. These examples have minimal annotation and are 192
only intended to give a sense of the scope and flavor of XRI syntax. For more information on the 193
normative syntax, see section 2. For a complete description of the uses and features of XRIs, see 194
the non-normative XRI Primer. 195
 196

 xri://www.example.com/pages/index.html 197
 --standard HTTP URI converted to an XRI 198
 199
 xri://[2010:836B:4179::836B:4179]/pages/index.html 200
 --using an IPv6 authority per RFC 2732 201
 202
 xri://www.example.com/inventory.parts/widget.subwidget.foobarator 203
 --delegation of reassignable identifiers 204
 205
 xri://www.example.com/:inventory:parts/:12:7:234 206
 --delegation of persistent identifiers 207
 208
 xri:@ExampleCorp 209
 xri:@ExampleCorp.www 210
 xri:@ExampleCorp.website 211
 xri:=JohnDoe 212
 xri:=JohnDoe.home 213
 xri:=JohnDoe.work 214
 xri:+flowers 215
 xri:+flowers.rose 216
 xri:+flowers.daisy 217
 --global context symbols 218
 219
 xri://www.example.com/(+management)/(+CEO) 220
 xri:(urn:oasis:spec:2040)/(+index) 221
 xri:(mailto:john.doe@example.com)/(+phone) 222
 xri:=JohnDoe.home/(+email) 223
 xri:=JohnDoe.home/(+email).($v/3) 224
 --cross-references 225
 226

227

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 7 of 52

 xri:(+flowers.rose) 227
 xri:(//www.example.com/dictionary/flowers/rose) 228
 xri:(http://www.example.com/dictionary/flowers/rose) 229
 --self-references 230
 231

 232
Table 1 also illustrates several examples of internationalized XRIs. 233
 234

French xri:@ALaFrançaise/areté

Hebrew xri://דג.בא.ef/gh/לכ/יט.html

Kanji

Table 1: Internationalized XRIs. 235

 236

1.1.3 URI, URL, URN, and XRI 237

The evolution and interrelationships of the terms “URI”, “URL”, and “URN” are explained in a 238
report from the Joint W3C/IETF URI Planning Interest Group, “Uniform Resource Identifiers 239
(URIs), URLs, and Uniform Resource Names (URNs): Clarifications and Recommendations” 240
[RFC3305]. According to section 2.1: 241

“During the early years of discussion of web identifiers (early to mid 90s), people assumed 242
that an identifier type would be cast into one of two (or possibly more) classes. An identifier 243
might specify the location of a resource (a URL) or its name (a URN), independent of 244
location. Thus a URI was either a URL or a URN.” 245

This view has since changed, as the report goes on to state in section 2.2: 246
“Over time, the importance of this additional level of hierarchy seemed to lessen; the view 247
became that an individual scheme did not need to be cast into one of a discrete set of URI 248
types, such as ‘URL’, ‘URN’, ‘URC’, etc. Web-identifier schemes are, in general, URI 249
schemes, as a given URI scheme may define subspaces.” 250

This conclusion is shared by [RFC2396bis], which states in section 1.1.3: 251
“An individual [URI] scheme does not need to be classified as being just one of ‘name’ or 252
‘locator’. Instances of URIs from any given scheme may have the characteristics of names or 253
locators or both, often depending on the persistence and care in the assignment of identifiers 254
by the identifier authority, rather than any quality of the scheme.” 255

The XRI scheme explicitly implements this philosophy. XRIs can be used either as indirect 256
“names” or direct “locators” for resources, including other XRIs. The XRI scheme also includes 257
syntax for distinguishing whether an XRI is intended only for identification or also for resolution. 258
For more information, see section 2.1.1.4, Self-References. 259

1.2 Design Considerations 260

The full set of requirements for XRI syntax and resolution is documented in “XRI Requirements 261
and Glossary v1.0 [XRIReqs]. A synopsis of the major design considerations is included here. 262

1.2.1 Abstraction and Independence 263

The overarching requirement of the XRI design is that XRI syntax be fully abstract (i.e., 264
independent of resource location, network, application, transport protocol, type, or security 265
method). Although XRI syntax may be extended for specific uses, the generic XRI syntax is 266

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 8 of 52

designed simply to represent logical associations between resources and therefore to be portable 267
across all networks, directories, domains, and applications. 268

1.2.2 Persistence and Reassignability 269

XRI syntax and resolution is designed to express and resolve fully persistent identifiers, fully 270
reassignable identifiers, or any combination of persistent and reassignable identifier segments. 271

1.2.3 Human-Friendliness and Machine-Friendliness 272

XRI syntax and resolution is designed to support both human-friendly identifiers (HFIs—those 273
optimized for human readability, memorability, and usability) and machine-friendly identifiers 274
(MFIs—those optimized for machine processing and network efficiency). XRI syntax allows any 275
combination of HFI and MFI components within a single XRI. 276

1.2.4 Internationalization 277

XRIs are designed to be rendered in the natural language of the intended user. They therefore 278
employ the Unicode character set [Unicode] and provide syntactical support for expressing 279
optional language-dependent context metadata. As a result, XRIs extend the virtues of human 280
readability, memorability, and usability to users of all human languages. 281

1.2.5 Cross-Context Identification 282

XRI syntax and resolution is designed to allow the use of an identifier in the context of another 283
identifier (i.e., for an XRI or a URI to be contained within another XRI). Such embedded identifiers 284
are called cross-references, and they are vital to XRI extensibility. 285

1.2.6 Authority, Delegation, and Federation 286

XRI syntax and resolution are designed to allow any resource to serve as an identifier authority, 287
and for any authority to delegate to any other authority at any level of the path. Thus XRI design 288
imposes no specific delegation model, network topology, or federation structure. 289

1.2.7 Security and Privacy 290

XRI syntax and resolution is designed to be adapted to any security model, method, or 291
infrastructure, as well as to any privacy policy or framework. XRIs never require sensitive data, 292
such as passwords or account numbers, to be included in an identifier. If a particular application 293
ever needs to include such data in an XRI, the syntax permits encryption and obfuscation of 294
identifier segments for enhanced security and privacy. 295

1.2.8 Extensibility 296

The XRI scheme is designed to provide the same interoperable extensibility for identifiers that 297
XML provides for markup languages. In other words, by design, the XRI scheme should be able 298
to be extended and specialized by various identifier authorities, and these extensions and 299
specializations should be interoperable. 300

1.3 Terminology and Notation 301

1.3.1 Keywords 302

The key words “MUST”,“MUST NOT”,“REQUIRED”,“SHALL”,“SHALL NOT”,“SHOULD”,“SHOULD 303
NOT”,“RECOMMENDED”,“MAY”, and “OPTIONAL” in this document are to be interpreted as 304

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 9 of 52

described in [RFC2119]. When these words are not capitalized in this document, they are meant 305
in their natural language sense. 306

1.3.2 Syntax Notation 307

This specification uses the syntax notation employed in [RFC2396]: Augmented Backus-Naur 308
Form (ABNF), defined in [RFC2234]. Although the ABNF defines syntax in terms of the US-ASCII 309
character encoding, XRI syntax should be interpreted in terms of the character that the ASCII-310
encoded octet represents, rather than the octet encoding itself, as explained in [RFC2396]. As 311
with URIs, the precise bit-and-byte representation of an XRI on the wire or in a document is 312
dependent upon the character encoding of the protocol used to transport it, or the character set of 313
the document that contains it. 314
The following core ABNF productions are used by this specification as defined by section 6.1 of 315
[RFC2234]: ALPHA, CR, CTL, DIGIT, DQUOTE, HEXDIG, LF, OCTET, and SP. The complete 316
XRI ABNF syntax is collected in Appendix A. 317
To simplify comparison between generic XRI syntax and generic URI syntax, the ABNF 318
productions that are unique to XRIs are shown with light green shading, while those inherited 319
from [RFC2396] or [RFC2396bis] are shown with light yellow shading. 320
 321

 This is an example of ABNF specific to XRI. 322
 323

 This is an example of generic URI ABNF from RFC 2396 or 2396bis. 324
 325
In addition, productions inherited from the IRI proposal [IRI] are prefixed with the letter “i” just as 326
they are in that document. 327

1.3.3 Glossary 328

The following definitions are central to this specification. Note that this glossary supercedes the 329
glossary in [XRIReqs]. 330
 331
Absolute Identifier 332

An identifier that refers to a resource independent of the current context, i.e., one that 333
establishes a global context. Mutually exclusive with “Relative Identifier.” 334

Abstract Identifier 335
An identifier that is not directly resolvable to a resource, but is either: 336

a) a self-reference because it completely represents a non-network resource and is not 337
further resolvable (see “Self-Reference”), or 338

b) an indirect reference to a resource because it must first be resolved to another 339
identifier (either another abstract identifier or a concrete identifier.) 340

A URN as described in [RFC2141] is an example of an abstract identifier. Abstract 341
identifiers provide additional levels of indirection in referencing resources, which can be 342
useful for a variety of purposes, including persistence, equivalence, human-friendliness, 343
and data protection. 344

Authority (or Identifier Authority) 345
A resource that assigns identifiers to other resources. Note that in URI syntax as defined 346
in [RFC2396] and [RFC2396bis], the “authority” production refers explicitly to the top-347
level authority identified by a DNS name or an IP address. Since XRI syntax supports 348
unlimited delegation, the term “authority” can technically refer to an identifier authority at 349

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 10 of 52

any level. However, in the XRI “authority-path” production (section 2.1.1), it explicitly 350
refers to the top-level identifier authority. 351

Base Identifier 352
An absolute identifier that identifies the current context for a relative identifier. See 353
“Relative Identifier.” 354

Canonical Form 355
The state of an identifier after applying transformation rules for the purpose of 356
determining equivalence. See also “Normal Form”. 357

Community (or Identifier Community) 358
The set of resources that share a common identifier authority, often (but not always) a 359
common root authority. Technically, the set of resources whose identifiers form a directed 360
graph or tree. 361

Concrete Identifier 362
An identifier that can be directly resolved to a resource or resource representation, rather 363
than to another identifier. Examples include the MAC address of a networked computer, a 364
phone number that rings directly to a specific device, and a postal address that is not a 365
forwarding address. All concrete identifiers are intended to be resolvable identifiers. 366
Contrast with “Abstract Identifier.” 367

Context (or Identifier Context) 368
The resource of which an identifier is an attribute. For example, in the string of identifiers 369
“a/b/c”, the context of the identifier “b” is the resource identified by “a/”, and the context of 370
the identifier “c” is the resource identified by “a/b/”. Since multiple resources may assign 371
an identifier for a target resource, the resource can be said to be identified in multiple 372
contexts. For absolute identifiers, the context is global, i.e., there is a known starting 373
point. For relative identifiers, the context is implicit. 374

Cross-reference 375
An identifier assigned in one context that is reused in another context. Cross-references 376
are used primarily to identify logically equivalent resources in different domains or 377
physical locations. For example, a cross-reference may be used to identify the same 378
logical invoice stored in two accounting systems (the originating system and the receiving 379
system), the same logical Web page stored on multiple proxy servers, the same datatype 380
used in multiple databases or XML schemas, or the same abstract concept used in 381
multiple taxonomies or ontologies. 382
 383
In XRI syntax, cross-references are syntactically delimited by enclosing them in 384
parentheses. This syntax has a direct analogy in the English language when a word or 385
phrase is enclosed in quotes to indicate that the author is referring to this word or phrase 386
independent of the current context. For example, the phrase “love bird” is quoted in this 387
sentence to indicate its meaning independent of this context. 388

Delegated Identifier 389
A multi-segment identifier in which some segments are assigned by different identifier 390
authorities. Mutually exclusive with “Local Identifier.” 391

Federated Identifier 392
A delegated identifier that spans multiple independent identifier authorities. See also 393
“Delegated Identifier.” 394

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 11 of 52

Human-Friendly Identifier (HFI) 395
An identifier containing words or phrases intended to convey meaning in a specific 396
human language and thus be easy for people to remember and use. Contrast with 397
"Machine-Friendly Identifier." 398

Identifier 399
Per [RFC2396bis], anything that “embodies the information required to distinguish what 400
is being identified from all other things within its scope of identification.” In UML terms, an 401
identifier is an attribute of a resource (the identifier context) that forms an association with 402
another resource (the identifier target). The general term “identifier” does not specify 403
whether the identifier is abstract or concrete, absolute or relative, persistent or 404
reassignable, human-friendly or machine-friendly, delegated or local, or resolvable or 405
self-referential. 406

Local Identifier 407
Any identifier, or any set of segments in a multi-segment identifier, that is assigned by the 408
same identifier authority. Each of these segments is “local” to that authority. Mutually 409
exclusive with “Delegated Identifier.” 410

Machine-Friendly Identifier (MFI) 411
An identifier containing digits, hex values, or other character sequences optimized for 412
efficient machine indexing, searching, routing, caching, and resolvability. MFIs generally 413
do not contain human semantics. Compare with "Human-Friendly Identifier." 414

Normal Form 415
The character-by-character format of an identifier after encoding, escaping, or other 416
character transformation rules have been applied in order to satisfy syntactic 417
requirements. Four normal forms are defined for XRIs—escaped normal form, IRI normal 418
form, anyURI normal form, and URI normal form. See section 2.2.4 for details. See also 419
“Canonical Form”. 420

Persistent Identifier 421
An identifier that is permanently assigned to a resource and is intended never to be 422
reassigned to another resource, even if the original resource goes off the network, is 423
terminated, or no longer exists. A URN as described in [RFC2141] is an example of a 424
persistent identifier. Persistent identifiers tend to be machine-friendly identifiers, since 425
human-friendly identifiers typically reflect human semantic relationships that may change 426
over time. Mutually exclusive with “Reassignable Identifier.” 427

Reassignable Identifier 428
An identifier that may be reassigned from one resource to another. Example: the domain 429
name “example.com” may be reassigned from ABC Company to XYZ Company, or the 430
email address “john@example.com” may be reassigned from John Smith to John Jones. 431
Reassignable identifiers tend to be human-friendly identifiers because they often 432
represent the potentially transitory mapping of human semantic relationships onto 433
network resources or resource representations. Mutually exclusive with “Persistent 434
Identifier.” 435

Relative Identifier 436
An identifier that refers to a resource only in relationship to the current context (for 437
example, the current community, the current document, or the current position in a 438
delegated identifier). A relative identifier can be converted into an absolute identifier by 439
combining it with a base identifier (an absolute identifier that identifies the current context 440
of the relative identifier.) See “Base Identifier”. Mutually exclusive with “Absolute 441
Identifier.” 442

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 12 of 52

Resolvable Identifier 443
An identifier that references a network resource or resource representation and that can 444
be resolved into a network endpoint for communicating with the target resource. Mutually 445
exclusive with “Self-Reference.” 446

Resource 447
Per [RFC2396bis], “anything that can be named or described.” Resources are of two 448
types: network resources (those that are network addressable) and non-network 449
resources (those that exist entirely independent of a network). Network resources are 450
themselves of two types: direct resources (resources which are their entire embodiment) 451
or resource representations (see “Resource Representation”). 452

Resource Representation 453
A network resource that represents the attributes of another resource. A resource 454
representation may represent either another network resource (such as a machine or an 455
application) or a non-network resource (such as a person, organization, or concept). 456

Segment 457
Any syntactically delimited portion of an identifier. In generic URI syntax, all segments 458
after the authority portion are delimited by forward slashes (“/segment1/segment2/…”). In 459
XRI syntax, slash segments can be further subdivided into sub-segments called dot 460
segments (for reassignable identifiers) and colon segments (for persistent identifiers). 461
See section 2.1.2. XRI also supports another type of segment called cross-references, 462
which are enclosed in parentheses. See “Cross-Reference”. 463

Self-Reference (or Self-Referential Identifier) 464
An identifier which is itself the representation of the resource it references. Self-465
references are typically used to represent abstract non-network resources (e.g., “love”, 466
“Paris”, “the planet Jupiter”) in contexts where this identifier is not intended to be resolved 467
to a separate network representation of that resource. The primary purpose of self-468
references is to establish equivalence across contexts (see “Cross-References”). 469
Mutually exclusive with “Resolvable Identifier.” 470

Target (or Identifier Target) 471
The resource referenced by an identifier. A target may be either a network resource 472
(including a resource representation) or a non-network resource. 473

XRI Reference 474
A term that includes both absolute and relative XRIs. Used the same way as “URI 475
reference” and “IRI reference”. Note that to transform an XRI reference into an XRI, it 476
must be converted into its absolute form. 477

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 13 of 52

2 Syntax 478

2.1 Syntax Components 479

Generic XRI syntax builds on generic URI syntax. However because it includes syntactic 480
elements and characters outside the range allowed by [RFC2396], this specification does not 481
technically define a new URI scheme. Instead, it follows the example of [IRI] and defines a new 482
identifier scheme, along with a specification for transforming XRIs into generic URIs or IRIs for 483
applications that expect them (see section 2.2.4.3). 484
As with URIs, an XRI may be either absolute or relative. 485
 486

 XRI = absolute-xri / relative-xri 487
 488
An absolute XRI consists of the scheme name “xri:” followed by the same set of hierarchical 489
components as an absolute URI – authority, path, query, and fragment. 490
 491

 absolute-xri = "xri:" global-path 492
 global-path = authority-path [local-path] 493
 local-path = "/" relative-path 494
 relative-path = [xri-segments] ["?" xri-query] 495
 ["#" xri-fragment] 496

 497
A relative XRI consists of either a local path or a relative path. 498
 499

 relative-xri = local-path / relative-path 500
 501
Finally, in certain contexts such as cross-references (section 2.1.1.4), the “xri:” scheme name is 502
redundant. These contexts can use the xri-value production, which includes all levels of XRI 503
paths. 504
 505

 xri-value = global-path / local-path / relative-path 506
 507

2.1.1 Authority 508

XRI syntax supports the same types of authorities as generic URI syntax, called URI authorities. 509
In addition, it supports XRI authorities that provide two other mechanisms for specifying the global 510
context of an identifier, as defined in section 2.1.1.2. 511
 512

 authority-path = URI-authority / XRI-authority 513
 514

2.1.1.1 URI Authority 515

In the context of an XRI, a URI authority is distinguished by an initial double slash (“//”). 516
 517

 URI-authority = "//" [userinfo "@"] host [":" port] 518

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 14 of 52

 519
The syntax following this starting delimiter is inherited directly from [RFC2396bis], which 520
simplifies the syntax in [RFC2396] and includes support for IPv6 addresses defined in 521
[RFC2732]. First, the “userinfo” sub-component permits identifying a user in the context of a host. 522
 523

 userinfo = *(unreserved / escaped / ";" / 524
 ":" / "&" / "=" / "+" / "$" / ",") 525

 526
Next, the “host” sub-component has three options for identifying the host: a domain name, an 527
IPv4 address, or an IPv6 literal. 528
 529

 host = [hostname / IPv4address / IPv6reference] 530
 531
Note that the host identifier may be omitted. This is because in generic URI syntax, a default may 532
be defined by the semantics of a particular URI scheme. No default is specified for the XRI 533
scheme; this allows a default to be inherited from the particular protocol used to resolve the XRI. 534
A hostname, after the transformation described in step 4 of section 2.2.4.3, MUST meet the rules 535
defined in section 3.2.2 of [RFC2396]. The productions for idomainlabel, qualified, and hostname, 536
therefore, have additional restrictions not reflected in the ABNF. See section 2.2.4.3. 537
 538

 hostname = idomainlabel qualified 539
 qualified = *("." idomainlabel) ["."] 540
 idomainlabel = (ALPHA / ucschar) *(alphanum / ucschar / "-") 541
 542
 alphanum = ALPHA / DIGIT 543

 544
 IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet 545
 dec-octet = DIGIT ; 0-9 546
 / %x31-39 DIGIT ; 10-99 547
 / "1" 2DIGIT ; 100-199 548
 / "2" %x30-34 DIGIT ; 200-249 549
 / "25" %x30-35 ; 250-255 550

 551
Support for an IPv6 address literal was added by [RFC2396bis] following the syntax originally 552
specified in [RFC2732]. Because IPv6 literals use colons as delimiters, they must be 553
encapsulated within square brackets. 554
 555

 IPv6reference = "[" IPv6address "]" 556
 IPv6address = 6(h4 ":") ls32 557
 / "::" 5(h4 ":") ls32 558
 / [h4] "::" 4(h4 ":") ls32 559
 / [*1(h4 ":") h4] "::" 3(h4 ":") ls32 560
 / [*2(h4 ":") h4] "::" 2(h4 ":") ls32 561
 / [*3(h4 ":") h4] "::" h4 ":" ls32 562
 / [*4(h4 ":") h4] "::" ls32 563
 / [*5(h4 ":") h4] "::" h4 564
 / [*6(h4 ":") h4] "::" 565
 ls32 = (h4 ":" h4) / IPv4address 566
 ; least-significant 32 bits of address 567
 h4 = 1*4HEXDIG 568

 569

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 15 of 52

Finally, a host identifier can be followed by an optional port number. Because XRIs are abstract 570
identifiers, the XRI syntax specification does not define a default port. It is expected that the 571
default port will be inherited from the resolution protocol, such as the HTTP/HTTPS protocol 572
specified in section 3. Therefore, if the port is omitted in an XRI, it is undefined. 573
 574

 port = *DIGIT 575
 576

2.1.1.2 XRI Authority 577

In addition to the authorities supported in generic URI syntax, XRIs support two other 578
mechanisms for specifying the global context of an identifier. The first is the global context symbol 579
(GCS), and the second is the cross-reference (abbreviated in the ABNF as xref). 580
 581

 XRI-authority = (gcs-char [xri-segment]) / xref-authority 582
 583

2.1.1.3 Global Context Symbols (GCS) 584

To support the abstraction and human-friendly identifier (HFI) requirements, XRIs offer a simple, 585
compact syntax for indicating the logical global context of an identifier: a single prefix character. 586
 587

 gcs-char = "+" / "=" / "@" / "$" / "*" / "!" 588
 589
The global context symbol characters were selected from the set of symbol characters that are 590
valid in a URI under [RFC2396] to represent the global contexts shown in Table 2: 591
 592

Symbol
Character

Authority
Type

Establishes global context for

+ General public Identifiers for generic concepts for which there is no
specific authority, i.e., that are established by public
convention. (In the English language, for example,
these would be the generic nouns.)

= Person Identifiers that represent an individual person.

@ Organization Identifiers that represent an organization of any kind.

$ OASIS XRI
Metadata

Specification

Special identifiers established by the “XRI Metadata
Specification” [XRIMetadata] for interoperable
identifier metadata (e.g., language, version, type,
query syntax, etc.).

* User-relative Identifiers for which the authority is relative to the
current user (“shortcut XRIs”). See section 3.2.6.

! XRI author Identifiers used only for human-readable annotations
of XRIs (ignored by machine processing.)

Table 2: XRI global context symbols. 593

Note that because a global context symbol may precede an xri-segment, and an xri-segment may 594
start with a cross-reference (below), a global context symbol can be used to express the abstract 595

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 16 of 52

logical context of a conventional URI authority. For example: 596
 597

 xri:=(http://www.my-website.com)/favorites.html 598
 --expresses that this resource represents an individual 599

 600

2.1.1.4 Cross-References 601

Cross-references are the primary extensibility mechanism in XRIs. They allow an identifier 602
assigned in one context to be reused in another context, permitting identifiers to be shared across 603
contexts to simplify identifying logically equivalent resources. To syntactically delimit a cross-604
reference, it is enclosed in parentheses the same way an IPv6 literal is encapsulated in square 605
brackets as specified in [RFC2732] (see section 2.1.1.1). A cross-reference may contain either 606
an XRI value or an absolute URI. 607
 608

 xref-authority = xref ("." sub-segment / ":" sub-segment) 609
 *("." sub-segment / ":" sub-segment) 610
 xref = "(" (xri-value / URI) ")" 611

 612
It is important that the value of a cross-reference be syntactically unambiguous, whether it is an 613
absolute URI or one of the various forms of an XRI value. Therefore special attention must be 614
paid to relative XRIs to avoid ambiguity, as discussed in 2.3.3. 615
A cross-reference may appear at any node of any XRI except within a URI authority segment. 616
The use of cross-references as the very first segment in an XRI enables any globally-unique 617
identifier in any URI scheme (e.g., an HTTP URI, mailto URI, URN, etc.) to specify a global 618
authority. 619
 620

 xri:(mailto:john.doe@example.com)/favorites/home 621
 --example of using a URI as an XRI global authority 622

 623

2.1.1.5 Self-References 624

Cross-reference syntax is also the means by which an XRI can express that it is not intended for 625
resolution, but only for the purpose of establishing equivalence across contexts. Such an XRI is 626
called a self-reference. To express a self-reference, the entire XRI value is enclosed in 627
parentheses—in essence, it becomes a global cross-reference. This is the XRI equivalent of the 628
English language convention of putting a word or phrase in quotes to express that the author is 629
referring to the word or phrase itself and not to its normal meaning. (In linguistics and philosophy, 630
this is called the “use-mention distinction.”) For example: 631
 632

 The term "user-friendly" is used frequently in computing. 633
 --English-language usage of a quoted term 634
 635
 xri:(+user-friendly) 636
 --XRI syntax for expressing a self-reference 637

 638

2.1.2 Path 639

As with URIs, the XRI path component is a hierarchal sequence of path segments separated by 640
slash (“/”) characters and terminated by the first question-mark (“?”) or number sign (“#”) 641
character, or by the end of the XRI. The key difference is that while a URI path segment is 642

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 17 of 52

considered opaque by a generic URI processor, an XRI path segment can be parsed by an XRI 643
processor into two types of sub-segments: dot segments and colon segments after their leading 644
characters (“.” and “:”). 645
 646

 xri-segments = xri-segment-val *("/" [xri-segment-val]) 647
 xri-segment-val = xri-segment / "." / ".." 648
 xri-segment = (["."] sub-segment / ":" sub-segment) 649
 *("." sub-segment / ":" sub-segment) 650
 sub-segment = 1*xri-pchar / xref 651

 652
Dot segments are used to specify reassignable identifiers—identifiers that may be reassigned by 653
an identifier authority to represent a different resource at some future date. Colon segments 654
(following the lead of URN syntax in [RFC2141]) are used to specify persistent identifiers—655
identifiers that are permanently assigned to a resource and will not be reassigned at a future 656
date. The default is a dot segment, so no leading dot is required if this is the first (or only) sub-657
segment. 658
Note that for compatibility with URI syntax, the ABNF allows two special values of an XRI 659
segment—a single dot and a double dot. These can be used as the leading characters in a 660
relative XRI to indicate its relationship to a base XRI as specified in [RFC2396]. 661
Other than these special uses of the dot (“.”) and the colon (“:”) characters, an XRI path segment 662
can contain the same characters as a URI path segment plus the expanded UCS character set 663
(section 2.2.3). If a dot or colon is used, it will be interpreted as a delimiter. If this interpretation is 664
not desired for these characters, or for any other special XRI delimiters, these characters MUST 665
be escaped when they appear in the path segment. See section 2.2.4, “Escaped Characters”. 666
 667

 xri-pchar = xri-unreserved / escaped / ";" / "!" / "*" 668
 "@" / "&" / "=" / "+" / "$" / "," 669

 670

With the exception of dot and colon sub-segments, an XRI path segment is considered opaque 671
by generic XRI syntax. As with URIs in general, XRI extensions or generating applications may 672
define special meanings for other URI reserved characters for the purpose of delimiting 673
extension-specific or generator-specific sub-components. For example, section 3.4 of [RFC2396] 674
specifies the set of URI reserved characters that can be used within a query segment. 675

2.1.3 Query 676

The XRI query component is identical to the URI query component as described in section 3.4 of 677
[RFC2396], except that it allows the full XRI character range and it may begin with a cross-678
reference. The latter feature permits the incorporation of XRI metadata describing the query string 679
syntax. See the “XRI Metadata Specification” [XRIMetadata] for more about query syntax 680
metadata. 681
 682

 xri-query = [xref] * (xri-pchar / "." / ":" / "/" / "?") 683
 684

2.1.4 Fragment 685

XRI syntax also supports fragments as described in section 4.1 of [RFC2396], except that it 686
allows the full XRI character range and may begin with a cross-reference. 687
 688

 xri-fragment = [xref] * (xri-pchar / "." / ":" / "/" / "?") 689

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 18 of 52

 690
Since XRI syntax can directly address attributes or secondary representations of a primary 691
resource to any depth, fragments are supported primarily for compatibility with generic URI 692
syntax. XRIs can also employ cross-references to identify media types or other alternative 693
representations of a resource. See section 3.4.4 for an example. 694

2.2 Characters 695

The character set and encoding of an XRI is primarily inherited from generic URI syntax as 696
defined in [RFC2396] and clarified in [RFC2396bis]. However, it also includes the expanded 697
character set defined in [IRI]. 698
All XRI characters fall into the same three subsets as URI characters. 699
 700

 xri-characters = xri-reserved / xri-unreserved / escaped 701

2.2.1 Character Encoding 702

The basic character encoding of XRI is UTF-8, as recommended by [RFC2718]. When an XRI is 703
presented as a human readable identifier, the representation of the XRI in the underlying 704
document should use the character encoding of the underlying document. However, this string 705
must be converted to UTF-8 before any processing external to the underlying document. 706
Note that not all ASCII sequences can be derived from UTF-8 sequences. A valid XRI character 707
sequence MUST be derivable by unescaping an equivalent UTF-8 sequence. For example, the 708
ASCII sequence '%FC', which would represent U+00FC LATIN SMALL LETTER U WITH 709
DIAERESIS in an iso-8859-1 encoding, when unescaped will not result in a valid UTF-8 710
sequence. 711

2.2.2 Reserved Characters 712

Because additional characters are used to delimit XRI syntax components not present in URIs, 713
the XRI reserved character set is a superset of the URI reserved character set. Specifically, five 714
characters have been added: opening parenthesis (“(“), closing parenthesis (“)”), dot (“.”), asterisk 715
(“*”), and exclamation point (“!”). 716
 717

 xri-reserved = "/" / "?" / "#" / "[" / "]" / "(" / ")" / ";" / ":" / 718
 "," / "." / "&" / "@" / "=" / "+" / "*" / "$" / "!" 719

 720
If the use of an unescaped XRI reserved character as a data character would cause the 721
interpretation of the XRI to be ambiguous, the character MUST be escaped as per the rules in 722
section 2.2.4, “Escaped Characters”, and particularly section 2.2.4.4. 723

2.2.3 Unreserved Characters 724

Aside from the expanded UCS character set for internationalization, the unreserved character set 725
for XRIs is the same as that of URIs after the subtraction of the five characters noted above (all of 726
which are in of the “mark” production of [RFC2396] and [RFC2396bis]). 727
 728

 xri-unreserved = ALPHA / DIGIT / ucschar / xri-mark 729
 xri-mark = "-" / "_" / "~" / "'" 730

 731
The principal difference between XRI and URI unreserved character sets is the inclusion of the 732
UCS character set. 733

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 19 of 52

 734
 ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF / 735
 %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD / 736
 %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD / 737
 %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD / 738
 %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD / 739
 %xD0000-DFFFD / %xE1000-EFFFD 740

 741
Escaping unreserved characters in an XRI does not impact what resource is identified by that 742
XRI. However, it may change the result of an XRI comparison (see section 2.4, “Normalization 743
and Comparison”), so unreserved characters should not be escaped unless necessary. 744

2.2.4 Escaped Characters 745

XRIs follow the same rules for escaping characters as URIs. That is, any data in an XRI MUST be 746
escaped if: a) it does not have a representation using an unreserved character, and b) using a 747
reserved character could cause the XRI to be misinterpreted. 748
An XRI thus escaped is said to be in escaped normal form. This does not imply that it is 749
necessarily a valid IRI or URI. Rules for converting an XRI into a valid IRI or URI are discussed in 750
section 2.2.4.3. An XRI is in escaped normal form if it is unambiguous per the ABNF provided in 751
this document, but it is a valid IRI or URI only after it is escaped according to the transformation 752
described in section 2.2.4.3. 753

2.2.4.1 Escaped Encoding 754

XRIs use the same percent-encoding as URIs, described in section 2.4.1 of [RFC2396]. An 755
escaped octet is encoded as a character triplet consisting of the percent character “%” followed 756
by the two hexadecimal digits representing that octet's numeric value. 757
 758

 escaped = "%" HEXDIG HEXDIG 759
 760
The uppercase hexadecimal digits “A” through “F” are equivalent to the lowercase digits “a” 761
through “f”, respectively. XRIs that differ only in the case of hexadecimal digits used in escaped 762
octets are equivalent. For consistency, uppercase digits SHOULD be used by XRI generators and 763
normalizers. 764
Note that the % symbol used by itself in an XRI must be escaped as described in section 2.2.5. 765

2.2.4.2 Encoding XRI Metadata 766

In some cases, the transformation from an identifier in its native language and display format into 767
an XRI in escaped normal form may lose information that cannot be retained through character 768
escaping. For example, in certain languages displaying the glyph of a UTF-8 encoded character 769
requires additional language and font information not available in UTF-8. The loss of this 770
information during UTF-8 encoding could cause the resulting XRI to be ambiguous. 771
Another case is when the normalization or canonicalization rules of a particular identifier authority 772
do not permit the inclusion of whitespace, mixed case letters, or certain punctuation in an XRI 773
segment even when escaped, yet the authority would like to retain this metadata for purposes of 774
presentation. XRI syntax offers an option for encoding this metadata using a cross-reference 775
beginning with the GCS “$” symbol. As defined in section 2.1.1.3, the top level authority for these 776
identifiers is the “XRI Metadata Specification” [XRIMetadata]. It defines special identifiers for 777
UTF-8 metadata, presentation metadata, and other standard types of identifier metadata together 778
with the rules governing their interpretation. 779

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 20 of 52

2.2.4.3 Transforming XRIs into IRIs and URIs 780

Although XRIs are intended to be used by applications that understand them natively, it may also 781
be desirable to use them: 782
• In contexts that expect a fully-conformant URI reference as defined by [RFC2396]. 783
• In contexts where there is already a predefined escaping procedure for characters that would 784

otherwise be illegal in a URI under [RFC2396], for example the “anyURI” datatype defined in 785
[XMLSchema2]. 786

• In contexts where it is desirable to use an Internationalized Resource Identifier as described 787
in [IRI]. Note that while [IRI] defines the process for converting an IRI to a URI, this 788
conversion differs slightly from the conversion defined for “anyURI” in [XMLSchema2] in that 789
it includes an algorithm appropriate for internationalized domain names. 790

This section specifies a progression of steps for transforming an XRI into: 791
• A valid IRI (steps 1 – 3 below), 792
• A valid anyURI (steps 1 – 4 below), and 793
• A valid generic URI (steps 1 – 5 below). 794
Except for transformations specific to XRI syntax, these steps closely follow the algorithm 795
proposed in [IRI]. 796
Applications MUST transform XRIs to IRIs, anyURIs, or generic URIs using the following steps (or 797
an equivalent process that achieves exactly the same result). These steps assume that the XRI is 798
already in escaped normal form as defined in section 2.2.4. 799

1. If the XRI is not encoded in UTF-8, convert the XRI to a sequence of characters encoded 800
in UTF-8, normalized according to Normalization Form C (NFC) as defined in [UTR15]. 801

2. If necessary, add XRI metadata using cross-references as defined in section 2.2.4.2. 802
Note that the addition of XRI metadata may change the resulting IRI or URI for the 803
purposes of comparison. The significance or insignificance of specific types of XRI 804
metadata is defined in the “XRI Metadata Specification” [XRIMetadata]. 805

3. Apply the special XRI escaping rules defined in section 2.2.4.4. Note that this step is not 806
idempotent (i.e., each time this step is applied, it may yield different results), so it is very 807
important that implementers not apply this step more than once to avoid changing the 808
semantics of the identifier. At the completion of this step, the escaped XRI may be used 809
as an IRI. This is referred to as IRI normal form. 810

4. If the XRI has a “hostname” component, replace it with the “hostname” component 811
converted using the “ToASCII” operation defined in section 4.1 of [RFC3490], with the 812
“UseSTD3ASCIIRules” flag set to true and the “AllowUnassigned” flag set to false. At this 813
point the XRI may be used as an anyURI as defined in [XMLSchema2] or in a 814
comparable context. This is referred to as anyURI normal form. 815

5. Replace each character that is disallowed in URI references with escaped triplet(s) as 816
described in section 2.2.4.1, one escaped triplet for each octet in the UTF-8 encoding of 817
the disallowed character. At this point the XRI may be used as a generic URI. This is 818
referred to as URI normal form. 819

The form of the XRI that results from each step in this transformation is equivalent to the result of 820
any other step. Applying this conversion does not change the equivalence of the identifier, with 821
the exception of the addition of XRI metadata as discussed in Step 2. 822
In general, an application SHOULD use the least escaped version appropriate for the context in 823
which the identifier appears. For example, if the context allows an XRI directly, the identifier 824
SHOULD be an XRI in escaped normal form as described in section 2.2.4. If the context allows 825
an IRI but not an XRI, the identifier SHOULD be in IRI normal form, and so on. 826

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 21 of 52

2.2.4.4 Special Escaping Rules for XRI Syntax 827

This section defines special rules for preventing misinterpretation of XRI syntax when an XRI is 828
evaluated by a non-XRI aware processor. 829
The first rule deals with cross-references as explained in section 2.1.1.4. Since a cross-reference 830
contains either a URI or an XRI value (which itself may contain further nested URIs or XRIs), it 831
may include characters that, if not escaped, would cause misinterpretation when the entire XRI is 832
transformed according to the steps in section 2.2.4.3. Consider the following XRI: 833
 834

xri:@example/(xri:@example2/abc?id=1) 835
 836
The generic parsing algorithm described in [RFC2396] would separate the above XRI into the 837
following components: 838
 839

scheme = xri 840
authority = <undefined> 841
path = @example/(xri:@example2/abc 842
query = id=1) 843

 844
The desired separation is: 845
 846

scheme = xri 847
authority = <undefined> 848
path = @example/(xri:@example2?id=1) 849
query = <undefined> 850

 851
To avoid this type of misinterpretation, certain characters in a cross-reference must be escaped 852
when transforming an XRI into IRI, anyURI, or URI normal form. In particular, the question mark 853
“?” character must be escaped as “%3F” and the number sign “#” character must be escaped as 854
“%28”. 855
Following this rule, the above example would be expressed as: 856
 857

xri:@example/(xri:@example2%3Fid=1) 858
 859
In addition, the slash “/” character in a cross-reference may also be misinterpreted by a non-XRI 860
aware processor. Consider: 861
 862

xri://example.com/(@example/abc) 863
 864
If this were used as a base URI as defined in section 5 of [RFC2396], the algorithm described in 865
section 5.2 of [RFC2396] would append a relative-path reference to: 866
 867

xri://example.com/(@example/ 868
 869
instead of the intended: 870
 871

xri://example.com/ 872

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 22 of 52

 873
This is because the algorithm is defined in terms of the last (right-most) slash character. This 874
problem is avoided by escaping slashes within cross-references as “%2F”. Following this rule, the 875
above example would now be expressed as: 876
 877

xri://example.com/(@example%2Fabc) 878
 879
Ambiguity is also possible if an XRI in escaped normal form contains characters that have been 880
escaped to indicate that they should not be interpreted in their normal syntactical sense. For 881
example, consider the following XRI in escaped normal form: 882
 883

xri://example.com/(@example/abc%2Fd/ef) 884
 885
This slash character between “c” and “d” is escaped to show that it’s not a syntactical element of 886
the XRI, i.e., that it should be interpreted literally and not as a path separator. To preserve this 887
type of distinction when converting an XRI to an IRI or URI, the percent “%” character must be 888
escaped as “%25”. Following this rule, the above example fully converted would be: 889
 890

xri://example.com/(@example%2Fabc%252Fd%2Fef) 891
 892
To summarize, the following four special escaping rules MUST be applied during Step 3 of 893
section 2.2.4.3. Before applying these rules, the XRI MUST be in escaped normal form and all 894
URIs in cross-references MUST be in an escaped form appropriate to their schemes. 895

1. Escape all percent “%” characters as “%25” across the entire XRI. 896
2. Escape all number sign “#” characters that appear within a cross-reference as “%23”. 897
3. Escape all question mark “?” characters that appear within a cross-reference as “%3F”. 898
4. Escape all slash “/” characters that appear within a cross-reference as “%2F”. 899

2.2.4.5 Transforming URIs and IRIs Back into XRIs 900

Transformation of an XRI in IRI, anyURI, or URI normal form into an XRI in escaped normal form 901
MUST use the following steps (or an equivalent process that achieves the same result). Except 902
for the steps specific to XRI syntax, this procedure very closely follows the algorithm defined in 903
[IRI]. 904
If the XRI is in URI normal form, perform this sequence of steps: 905

1. If the identifier is not encoded in US-ASCII, convert it to a sequence of octets in US-906
ASCII. 907

2. If the identifier has a “hostname” component, replace it with the UTF-8 encoded 908
“hostname” component converted using the “ToUnicode” operation defined in section 4.2 909
of [RFC3490], with the “UseSTD3ASCIIRules” flag set to true and the “AllowUnassigned” 910
flag set to false. 911

3. Convert all escaped characters (as defined in section 2.2.4) with their corresponding 912
octets, except for the percent “%” character, those characters in the “reserved” 913
production of [RFC2396] and US-ASCII characters disallowed in URIs by section 2.4.3 of 914
[RFC2396]. 915

4. Re-escape any octet produced in step 3 that is not part of a strictly legal UTF-8 octet 916
sequence. 917

5. Perform the following special conversions for XRI syntax: 918
a. Convert all escaped slash “/” characters to their corresponding octets. 919

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 23 of 52

b. Convert all escaped question mark “?” characters to their corresponding octets. 920
c. Convert all escaped number sign “#” characters to their corresponding octets. 921
d. Convert all escaped percent “%” characters to their corresponding octets. 922

6. Encode the resulting sequence in UTF-8 (except for that portion already converted by 923
step 3). 924

If the XRI is in anyURI normal form, perform this sequence of steps: 925
1. If the XRI is not encoded in UTF-8, convert the XRI to a sequence of characters encoded 926

in UTF-8, normalized according to Normalization Form C (NFC) as defined in [UTR15]. 927
2. Perform Step 2 above. 928
3. Perform Step 5 above. 929

If the XRI is in IRI normal form, perform the same steps as with an XRI in anyURI normal form, 930
except skip the second step. 931

2.2.5 Excluded Characters 932

XRI syntax excludes the same characters as URI syntax for the same reasons as described in 933
section 2.5 of [RFC2396] and [RFC2396bis]. Data octets corresponding to these characters 934
MUST be escaped in order to be represented within an XRI. 935
 936

 excluded = invisible / delims / unwise 937
 invisible = CTL / SP / %x80-FF 938
 delims = "<" / ">" / "%" / DQUOTE 939
 unwise = "{" / "}" / "|" / "\" / "^" / "`" 940

 941
As with IRIs, infrastructure responsible for accepting or presenting XRIs MAY deal with 942
characters in the "excluded" set above, escaping them on input and/or unescaping them prior to 943
rendering as described in section 2.2.4. A string that contains these characters in an unescaped 944
form, however, is not technically a valid XRI. 945
Note that in certain contexts, presenting "space" or other whitespace characters in unescaped 946
form may present special risks for several reasons. First, it is often difficult to visually determine 947
the number of spaces or other characters composing a block of whitespace, leading to 948
transcription errors. Second, the space character is often used to delimit an XRI, so unescaped 949
spaces or whitespace characters can make it difficult or impossible to determine where the 950
identifier ends. Finally, unescaped spaces or whitespace can be used to maliciously construct 951
subtly different identifiers intended to mislead the reader. For these reasons, unescaped spaces 952
or whitespace characters SHOULD be avoided in presentation. 953
[IRI] provides the following guidance concerning other characters that should be avoided. This 954
guidance applies to XRIs as well. 955

The UCS also contains many areas of characters for which there are strong 956
visual look-alikes. Because of the likelihood of transcription errors, these also 957
should be avoided in IRIs. These include the full-width equivalents of ASCII 958
characters, half-width Katakana characters for Japanese, and many others. This 959
also includes many look-alikes of "space", "delims", and "unwise", characters 960
excluded in [RFC3491]. 961

Additional information is available from [UniXML]. [UniXML] is written in the 962
context of running text rather than in the context of identifiers. Nevertheless, it 963
discusses many of the categories of characters not appropriate for IRIs. 964

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 24 of 52

2.3 Relative XRI References 965

The authority component of an XRI may be either a URI-authority (section 2.1.1.1) or an XRI-966
authority (section 2.1.1.2). In this section, “authority” should be understood as defined by section 967
2.1.1 of this specification and not in the narrower sense of section 3.2 of [RFC2396]. 968
For a relative XRI reference whose base XRI contains an authority component matching the URI-969
authority production, the rules for resolving relative references defined in section 5.2 of 970
[RFC2396] apply. However, for a relative XRI reference whose base XRI contains an authority 971
component matching the XRI-authority production, the rules defined in section 5.2 of [RFC2396] 972
need modification because an XRI authority is considered opaque by generic URI syntax. 973
The following sections, therefore, define the process for resolving a relative XRI reference into a 974
fully qualified XRI regardless of the type of authority involved. 975

2.3.1 Establishing a Base XRI 976

A base XRI is established according to the rules defined in section 5.1 of [RFC2396]. Applying 977
these rules, however, may require the conversion of the XRI into URI normal form as described in 978
section 2.2.4.3. Once in URI normal form, there is no difference between establishing a base XRI 979
and establishing the base of any URI. 980

2.3.2 Obtaining the Referenced XRI 981

Section 5.2 of [RFC2396] describes rules for resolving relative references to absolute forms of 982
URIs. For XRIs, these rules apply with the following modifications: 983
• In step 1, the XRI reference is parsed using an XRI aware parser such that the “authority” 984

component is interpreted as the “authority-path” production defined in section 2.1.1 of this 985
specification. 986

• Step 4 states, “If the ‘authority’ component is defined, then the reference is a ‘network-path’ 987
and we skip to step 7”. For XRIs, the presence of an “authority” component does not imply 988
that the reference is a “network-path” as defined by [RFC2396] because it may be an “XRI-989
authority” component. However, the instruction to skip to step 7 is still valid for XRIs. In other 990
words, the processing instruction is correct, but the inference as to the type of reference is 991
invalid. 992

• In step 4, the base XRI is parsed using an XRI-aware parser such that the “authority” 993
component is interpreted as the “authority-path” production defined in section 2.1.1 of this 994
specification. 995

• In step 7, the block that reads: 996
if authority is defined then 997
 append "//" to result 998
 append authority to result 999

 is replaced by 1000
if authority is defined then 1001
 if type-of(authority) == URI-authority 1002
 append "//" to result 1003
 append authority to result 1004

 1005
It is important to note that the algorithm described in section 5.2 of [RFC2396] will generally 1006
produce incorrect results when applied to relative XRI references where the authority component 1007
matches the “XRI-authority” production. This type of relative XRI reference, therefore, should only 1008
be used in contexts in which the algorithm specified in this section is known to be employed. 1009

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 25 of 52

The following are examples of resolving relative XRI references. These examples closely follow 1010
the examples for resolving relative references in URIs in appendix C of [RFC2396]. Staring with a 1011
base XRI of: 1012
 xri:@a.b.c/d.e/f;p?q 1013
the following relative XRIs would be resolved as shown: 1014
 .g:h = xri:@a.b.c/d.e/.g:h 1015
 ./g:h = xri:@a.b.c/d.e/g:h 1016
 g:h = g:h (see section 2.3.3 below) 1017
 g = xri:@a.b.c/d.e/g 1018
 ./g = xri:@a.b.c/d.e/g 1019
 g/ = xri:@a.b.c/d.e/g/ 1020
 /g = xri:@a.b.c/g 1021
 ?y = xri:@a.b.c/d.e/?y 1022
 g?y = xri:@a.b.c/d.e/g?y 1023
 #s = (current document)#s 1024
 g#s = xri:@a.b.c/d.e/g#s 1025
 g?y#s = xri:@a.b.c/d.e/g?y#s 1026
 ;x = xri:@a.b.c/d.e/;x 1027
 g;x = xri:@a.b.c/d.e/g;x 1028
 g;x?y#s = xri:@a.b.c/d.e/g;x?y#s 1029
 . = xri:@a.b.c/d.e/ 1030
 ./ = xri:@a.b.c/d.e/ 1031
 .. = xri:@a.b.c/ 1032
 ../ = xri:@a.b.c/ 1033
 ../g = xri:@a.b.c/g 1034
As with URIs, the “..” syntax cannot be used to change the authority component of an XRI. 1035
 ../.. = xri:@a.b.c/../ 1036
 ../../ = xri:@a.b.c/../ 1037
 ../../g = xri:@a.b.c/../g 1038

2.3.3 Leading Segments Containing a Colon 1039

[RFC2396] points out that relative URI references with an initial segment containing a colon may 1040
be subject to two interpretations: 1041

Authors should be aware that a path segment that contains a colon character 1042
cannot be used as the first segment of a relative URI path (e.g., “this:that”), 1043
because it would be mistaken for a scheme name. 1044

It is therefore necessary to precede such segments with other segments (e.g., 1045
“./this:that”) in order for them to be referenced as a relative path. 1046

Relative XRI references can be similarly misinterpreted. Therefore if any segment prior to the first 1047
forward slash (“/”) character in a relative XRI reference contains a colon, the relative XRI 1048
reference must be rewritten to begin either with a “.” or a “./”. Thus, “foo:bar” becomes “.foo:bar” 1049
or “./foo:bar” and “foo.bar:baz” becomes “.foo.bar:baz” or “./foo.bar:baz”. Note that by the rules of 1050
sections 2.3.2 and 2.4.3, this transformation does not affect equivalence. 1051

2.4 Normalization and Comparison 1052

In general, the normalization and comparison rules for generic URIs specified in [RFC2396] apply 1053
to XRIs in URI normal form, namely that the scheme and hostname are case insensitive. This 1054
section describes a number of additional XRI-specific rules for normalization and comparison. 1055
To reduce the requirements imposed upon a minimally conforming processor, the majority of 1056
these rules are RECOMMENDED rather than REQUIRED. An implementation that fails to 1057
observe them, however, may frequently treat two XRIs as non-equal when in fact they are equal. 1058

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 26 of 52

In addition to these rules, Section 6 of [RFC2396bis] offers advice on more aggressive strategies 1059
for normalization. Although entirely non-normative, implementers may find this information useful 1060
in developing a strategy for establishing equivalence, particularly with respect to XRIs containing 1061
cross-references to URIs. 1062
Finally, each application that uses XRIs MAY define additional equivalence rules as appropriate. 1063
Due to the level of abstraction XRIs provide, such higher-order equivalence rules may be based 1064
on indirect comparisons or specified XRI-to-XRI mappings (for example, mappings of 1065
reassignable XRIs to persistent XRIs). 1066

2.4.1 Case 1067

The following rules regarding case sensitivity SHOULD be applied in XRI comparisons. 1068
• Comparison of the scheme component of XRIs and all URIs used as cross-references is 1069

case-insensitive. 1070
• Comparison of URI authority components as defined in section 2.1.1.1 is case-insensitive as 1071

defined in [RFC2396]. 1072
• Comparison of XRI authority components as defined in section 2.1.1.2 is case-insensitive. 1073

Specifically, because an XRI authority component can contain a wide range of Unicode 1074
characters, two XRI authority components are equivalent if they match according to the 1075
compatibility caseless match operation defined in section 3.13 of [Unicode] after applying 1076
steps 1 and 3 of the transformation described in section 2.2.4.3. 1077

• As specified in section 2.2.4.1, comparison of percent-encoded characters is case-insensitive 1078
for the hexadecimal digits “A” through “F”. 1079

2.4.2 Encoding, Escaping, and Transformations 1080

• Two XRIs MUST be considered equivalent if they are character-for-character equivalent. 1081
Therefore, they are also equivalent if they are byte-for-byte equivalent and use the same 1082
character encoding. 1083

• Two XRIs that differ only in escaped unreserved characters SHOULD be considered 1084
equivalent. If one XRI escapes one or more unreserved characters, and another XRI is 1085
different only in that the same characters are not escaped, they are equivalent. 1086

• All forms of an XRI during the transformation process described in section 2.2.4.3 SHOULD 1087
be considered equivalent, assuming the same XRI metadata is inserted as described in 1088
section 2.2.4.2. 1089

2.4.3 Optional Syntax 1090

• An xri-segment (section 2.1.2) that omits the optional leading dot (“.”)is equivalent to the 1091
same xri-segment prefixed with the leading dot. For example the segment “/foo.bar” is 1092
equivalent to the segment “/.foo.bar”. 1093

• A cross-reference (section 2.1.1.4) that begins with the GCS symbol for annotations (“!”) AND 1094
the delimiter that precedes the cross-reference SHOULD be ignored entirely for purposes of 1095
comparision. For example, “xri:@:A6B4.(!www.example.org):5E32” is equivalent to 1096
“xri:@:A6B4:5E32”. Note that because XRI annotations are explicitly designed to be ignored 1097
by XRI processors, failure to observe this rule will cause XRIs that are intended to be 1098
equivalent to be incorrectly evaluated. 1099

2.4.4 Cross-References 1100

• If an XRI contains a cross-reference, the rules in this section SHOULD be applied recursively 1101
to each cross-reference. For example, the following two XRIs should be considered 1102
equivalent: 1103

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 27 of 52

 1104
 xri:@example/(+example/(+foo)) 1105
 xri:@example/(+Example/(+FOO)) 1106

 1107
• From the standpoint of XRI syntax, all cross-references beginning with the GCS “$” symbol 1108

SHOULD be considered significant unless stated otherwise in the “XRI Metadata 1109
Specification” [XRIMetadata]. See section 2.2.4.2. 1110

2.4.5 Canonicalization 1111

In general, XRIs do not have a single canonical form. This is particularly true for XRIs that contain 1112
URI cross-references, since many URI schemes, including the HTTP scheme, do not define a 1113
canonical form. Additionally, the authority for a particular segment of an XRI may define its own 1114
rules with respect to case-sensitivity, optional or implicit syntax, etc., making canonicalization of 1115
those segments outside the scope of this specification. 1116
Nevertheless it is valuable to define guidelines for making XRIs reasonably canonical. XRIs that 1117
follow these guidelines will be more consistent in presentation, simpler to process, less prone to 1118
false-negative comparisons, and more easily cached. To that end, unless there is a compelling 1119
reason to do otherwise, XRIs should be provided them in a form in which: 1120

• The optional xri scheme is added, 1121
• The scheme is provided in lowercase, 1122
• The authority component is provided in lowercase, 1123
• Percent-escaping uses uppercase A through F, 1124
• If optional, the leading dot in xri-segments is omitted, 1125
• Unnecessary escaping is removed, 1126
• /./ and /../ are absent in absolute XRIs, and 1127
• Cross-references are reasonably canonical with respect to their schemes. 1128

 1129
Table 3 illustrates the application of these rules. Although the XRIs in the first and second 1130
columns are equivalent, the form in the second column is recommended. 1131
 1132

Avoid Recommended Comment

@example xri:@example Add optional scheme

XRI:@example xri:@example Lowercase scheme

xri:@Example xri:@example Lowercase authority

xri:@example%2f xri:@example%2F Uppercase percent escaping

xri:@example/.abc xri:@example/abc Remove optional leading dot

xri:@ex%61mple xri:@example Remove unnecessary escaping

xri:@example/./abc xri:@example/abc Avoid /./ and /../ in absolute XRIs

Table 3: Examples of XRI canonicalization recommendations. 1133

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 28 of 52

3 Resolution 1134

3.1 Introduction 1135

XRI resolution is the process of dereferencing an XRI to a network endpoint in order to 1136
communicate with the resource identified by the XRI. Because XRIs may be used across a wide 1137
variety of communities and applications, including as database keys, filenames, directory keys, 1138
object IDs, and XML IDs, no single resolution mechanism may be appropriate for all XRIs. 1139
However, in the interest of promoting interoperability, this specification defines a simple, flexible 1140
resolution protocol that relies exclusively on HTTP/HTTPS for network transport. 1141
Identifier management policies are defined on a community-by-community basis. With XRIs, the 1142
authoritative community is specified by the authority segment of the XRI (section 2.1.1). When a 1143
community chooses to create a new identifier authority, it SHOULD define a policy for assigning 1144
and managing identifiers under this authority. Furthermore, it SHOULD define what resolution 1145
protocol(s) can be used for resolving identifiers assigned by the authority. 1146

3.1.1 Assumptions 1147

This resolution protocol makes several minimal assumptions about the XRIs being resolved: 1148
• The endpoints representing the top-level authority for any globally unique XRI are 1149

identified with the “URI-authority” or “XRI-authority” segment of the XRI as defined in 1150
section 2.1.1. If the endpoint identified by an XRI authority begins with a cross-reference 1151
to another URI scheme (for example, the URN scheme), this cross-reference must be 1152
resolved by that XRI authority. (Although other protocols could be specified by that XRI 1153
authority to resolve such URI cross-references, such protocols are outside the scope of 1154
this specification.) 1155

• Only absolute XRIs are resolved using this protocol. To resolve a relative XRI, it must be 1156
converted into an absolute XRI using the procedure in section 2.3. 1157

• The XRI being resolved has been converted into URI normal form, following the rules in 1158
section 2.2.4.3. 1159

• Data or metadata associated with a single XRI may be retrieved or manipulated by 1160
multiple protocols at multiple endpoints. 1161

• Each endpoint may present a different subset, type, or representation of data or 1162
metadata associated with the identified resource. 1163

3.1.2 Phases of Resolution 1164

The XRI resolution protocol is designed to be as simple and flexible as possible given the 1165
assumptions above. Based on the structure of XRIs, it consists of two phases: 1166

• Authority resolution 1167
• Local access 1168

Authority resolution is the process of finding the endpoint or endpoints representing the top-level 1169
identifier authority for the XRI. The result of authority resolution is a list of local access endpoints 1170
identified by one or more URIs and supporting at least one local access protocol. An XRI resolver 1171
chooses one of these endpoints and then accesses it using the desired local access protocol. 1172
Figure 1 illustrates these two phases of XRI resolution: 1173
 1174

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 29 of 52

Authority
Endpoint

Authority
Endpoint

Local Access
Endpoint

Resolving Client
(xri:=example.home/foo)

1) What is the identifier
authority for =example?

2) What is the local acess for
home (relative to =example)

3) What is the resource
representation associated with
=example.home/foo?

Authority Resolution

Local Access

 1175
Figure 1: Phases of Resolution 1176

3.1.3 URI vs. XRI Authorities 1177

As described in sections 2.1.1.1 and 2.1.1.2, URI and XRI authorities have different syntactic 1178
structures, partially due to the higher layer of abstraction represented by XRI authorities. For this 1179
reason, XRI authorities are resolved sub-segment by sub-segment as described in section 3.2, 1180
while URI authorities, since they are based on DNS names or IP addresses, are resolved by 1181
transforming the XRI to a HTTP URI as described in section 3.3. 1182

3.1.4 XRI Metadata Reserved for XRI Resolution 1183

As defined in section 2.1.1.3, the GCS symbol “$” is reserved for XRI metadata, i.e., special 1184
identifiers assigned by this specification or the “XRI Metadata Specification” [XRIMetadata] to 1185
describe or resolve other identifiers. 1186
Within the “$” namespace, the identifier “$r” is reserved for identifiers assigned by this resolution 1187
specification. Table 4 summarizes these identifiers. 1188
 1189

Identifier Use See Section

$r.s XML namespace for XRI resolution schemas 3.2.2

$r.a Namespace for local access protocol types 3.4.1

$r.t Namespace for resource representation types 3.4.4

Table 4: Special identifiers reserved for XRI resolution. 1190

3.2 XRI Authority Resolution 1191

3.2.1 Overview 1192

XRI authority resolution is an iterative process that resolves the qualified sub-segments within the 1193
XRI authority segment from left to right. A qualified sub-segment is either: a) a global context 1194
symbol as defined in section 2.1.1.3, or b) a sub-segment as defined in section 2.1.2 together 1195

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 30 of 52

with its preceding syntax delimiter (“.” or “:”). Note that in the latter case a qualified sub-segment 1196
always includes the syntax delimiter even if it was optionally omitted in the original XRI. 1197
Each qualified sub-segment is resolved in the context of the qualified sub-segment immediately to 1198
the left. The first (or leftmost) qualified sub-segment specifies the root of the identifier community. 1199
Each XRI community provides, by definition, one or more network endpoints (HTTP or HTTPS 1200
URIs) that answer resolution requests at the root level. This starting point is further discussed in 1201
section 3.2.3. 1202
After the starting HTTP/HTTPS URI is determined, the resolution process proceeds to the next 1203
qualified sub-segment to the right. Each qualified sub-segment is resolved to an XRI Descriptor 1204
as defined in section 3.2.2. This XML instance provides the data and metadata necessary to 1205
construct the URI for the next XRI authority as described in section 3.2.4. Once the final XRI 1206
authority is reached, the XRI Descriptor provides the available local access service protocol(s) as 1207
discussed in section 3.4. In addition, the XRI Descriptor can provide a mapping of other XRIs 1208
equivalent to the resolved XRI. 1209
All three options—next authority, local access, or mapping—may be available at every iteration. 1210
For example, the XRI authority identifier “@a.b.c” may be the prefix to another XRI authority with 1211
the XRI “@a.b.c.d”. Or “@a.b.c” may be a local access endpoint itself, in which case its XRI 1212
Descriptor will contain references to local access services. Finally, this XRI Descriptor can also 1213
assert that the identifier “xri:@a.b.c” maps to the identifier “xri:@:1:2:3” in order to provide 1214
resolvers or caches with an equivalent persistent XRI. 1215

3.2.2 XRI Descriptors 1216

To provide a straightforward, flexible resolution mechanism, XRI authority endpoints are 1217
described using a simple XML document with a very flexible content model. Its purpose is only to 1218
provide the data and metadata necessary to support delegated resolution and access of XRI-1219
identified authorities and resources. 1220
The formal XML Schema definition of an XRI Descriptor is provided in Appendix B. The following 1221
example illustrates the fields defined in this schema: 1222
 1223

<XRIDescriptor xmlns=”xri:$r.s/XRIDescriptor”> 1224
 <Resolved>.foo</Resolved> 1225
 <XRIAuthority> 1226
 <URI>http://xri.example.com</URI> 1227
 <URI>https://xri.example.com</URI> 1228
 </XRIAuthority> 1229
 <LocalAccess> 1230
 <Service> xri:$r.a/X2R</Service> 1231
 <Type>application/rddl+xml</Type> 1232
 <URI>http://xri.example.com</URI> 1233
 </LocalAccess> 1234
 <LocalAccess> 1235
 <Service> xri:$r.a/X2R</Service> 1236
 <Type>image/jpeg</Type> 1237
 <URI>http://pictures.xri.example.com</URI> 1238
 </LocalAccess> 1239
 <Mapping>xri:@:1:2:3</Mapping> 1240
</XRIDescriptor> 1241

 1242
All schema elements are in the XML namespace “xri:$r.s/XRIDescriptor”. Following are the 1243
elements and attributes that comprise the XRIDescriptor document type: 1244
/XRIDescriptor 1245

Required. The outer element of the XRIDescriptor document. 1246

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 31 of 52

/XRIDescriptor/Expires 1247
0 or 1. The UTC time at which this document MUST no longer be relied upon. A resolver 1248
MAY discard this document before the time indicated in this result. If the HTTP transport 1249
caching semantics specify an expiry time which is earlier than the time expressed in this 1250
attribute, then the “XRIDescriptor” document MUST no longer be relied upon after the 1251
expiry time declared in the HTTP headers per section 13.2 of [RFC2616]. 1252

/XRIDescriptor/Resolved 1253
0 or 1. Expresses the qualified sub-segment whose resolution results in this 1254
XRIDescriptor document. This field can be used in conjunction with Digital Signatures to 1255
provide secure resolution (functionality that is not specified in this document, but which 1256
will be part of a future deliverable of the OASIS XRI TC). This field may also be useful for 1257
debugging or auditing purposes. 1258

/XRIDescriptor/XRIAuthority 1259
0 or 1. Indicates the next XRI authority to query if the resolved qualified sub-segment 1260
represents another XRI authority. If the resolved qualified sub-segment does not identify 1261
another XRI authority, but rather a resource in the context of the current XRI authority, 1262
then this element may not be present. 1263

/XRIDescriptor/XRIAuthority/URI 1264
1 or more. Required if “XRIAuthority” element is present. Indicates the transport level URI 1265
where the next XRI authority can be contacted. Required by this specification to be an 1266
HTTP or HTTPS URI. Future extensions may use other transport protocols. 1267

/XRIDescriptor/LocalAccess 1268
0 or more. Indicates that the resolved qualified sub-segment specifies a identifier 1269
authority where local access service is available. 1270

/XRIDescriptor/LocalAccess/Service 1271
0 or 1. Indicates the type of local access service. The service type is specified by a URI 1272
(including the URI normal form of an XRI). This specification defines one service: “X2R” 1273
which is identified with the URI “xri:$r.a/X2R” (see section 3.4.1.) An X2R service 1274
converts the XRI into a digital representation of that resource. No more specific 1275
semantics are defined. If this element is absent, then the service associated with this 1276
local access endpoint is X2R. 1277

/XRIDescriptor/LocalAccess/Type 1278
0 or more. The media type of content available at this service. If this element is not 1279
present, then no assumption can be made about the type of data available at this 1280
endpoint. The content of this attribute must be of the form of a media type as defined in 1281
[RFC2046]. This element may appear multiple times to indicate multiple media types 1282
available through this local access service. 1283

/XRIDescriptor/LocalAccess/URI 1284
1 or more. Required if “LocalAccess” element is present. Indicates the transport-level URI 1285
at which the local access service can be requested. 1286

/XRIDescriptor/Mapping 1287
0 or more. Represents an equivalent XRI to the described XRI. Must be an absolute XRI 1288
(“absolute-xri” in the ABNF, section 2.1.) 1289
XRI mapping may be used, for example, to assert that a XRI authority known by a 1290
reassignable XRI may also be known by one or more persistent XRIs, or by a different 1291
reassignable XRI than the one that is being resolved. Both cases may be particularly 1292
useful in populating or querying a cache. 1293
 1294

mailto:/NamingAuthority/LocalAccess/@service
mailto:/NamingAuthority/LocalAccess/@type

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 32 of 52

XRI Descriptor documents have an “open schema” that allows other elements and attributes from 1295
other namespaces to be added throughout. These points of extensibility can be used to deploy 1296
new identifier authority or local access resolution schemes. 1297
Another possible extension is the attachment of XML Digital Signatures and SAML assertions to 1298
support secure resolution. The current protocol does not specify such security features, although 1299
a secure resolution protocol is a future deliverable of the OASIS XRI TC. 1300

3.2.3 Initiating Resolution 1301

With an XRI authority, the first qualified sub-segment corresponding to the community root may 1302
be a global context symbol (GCS) or a cross-reference. In either case, the associated community 1303
must have published an XRI Descriptor that contains one or more HTTP or HTTPS URIs 1304
declaring the root resolvers for the community. This XRI Descriptor is known a priori and is part of 1305
the configuration of a resolver, not unlike the configuration of root DNS servers in a DNS resolver. 1306
It is important to note that if the sub-segment following the GCS does not begin with a colon 1307
(meaning it is not a persistent identifier), then a dot is implied, and a dot must be added when 1308
constructing the qualified sub-segment. Table 5 and Table 6 demonstrate the parsing of such a 1309
sub-segment in the case of a GCS and a cross-reference, respectively. 1310
 1311

XRI xri:@example.internal/foo

XRI Authority @example.internal

Identifier Community @

First Qualified Sub-segment Resolved .example

Table 5: Parsing the first sub-segment of an XRI that begins with a global context symbol. 1312

 1313

XRI xri:(http://www.example.com).internal/foo

XRI Authority (http://www.example.com).internal

Identifier Community (http://www.example.com)

First Qualified Sub-segment Resolved .internal

Table 6: Parsing the first sub-segment of an XRI that begins with a cross-reference. 1314

 1315

3.2.4 Iterating Resolution 1316

Once the XRI Descriptor representing the community root authority is known, the resolution 1317
process begins an iteration by constructing the Next Resolution URI. With each iteration, the Next 1318
Resolution URI is constructed from the same two parts: 1319

1. The XRI Authority URI extracted from the XRI Descriptor corresponding to the current 1320
context, 1321

2. The next qualified sub-segment, which always begins with an XRI syntax delimiter (“.” or 1322
“:”) (see the clarification regarding cross-references in section 3.2.6). 1323
 1324

The URI which forms the base of the Next Resolution URI is the value of a URI element found at 1325
element path /XRIDescriptor/XRIAuthority/URI in the XRI Descriptor. If the path portion of this 1326
URI does not end with a “/” character, one must be appended before proceeding. The URI normal 1327

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 33 of 52

form (section 2.2.4.3) of the qualified sub-segment being resolved is then appended to the path 1328
portion of the URI. As noted above, if there is no separator character preceding the sub-segment, 1329
a “.” MUST be added when creating the qualified sub-segment. 1330
For example, when resolving the “c” sub-segment of “xri:@a.b.c”, if the XRI Authority URI 1331
resulting from the resolution of “xri:@a.b” is “http://example.com/xri-authority/”, then the Next 1332
Resolution URI is the concatenation of “http://example.com/xri-authority/” with “.c”, yielding 1333
“http://example.com/xri-authority/.c”. An HTTP request is made to this URI, and the next XRI 1334
Descriptor for the context “xri:@a.b.c” is retrieved. 1335
Construction of the Next Resolution URI is more formally described in this pseudo-code: 1336
 1337

xa-uri = xri-authority-uri 1338
 1339
if (path portion of xa-uri doesn’t end in “/”): 1340
 append “/” to path portion of xa-uri 1341
 1342
if (current-sub-segment isn’t preceded with “.” or “:” separator): 1343
 xa-uri = xa-uri + “.” 1344
else: 1345
 xa-uri = xa-uri + separator 1346
 1347
xa-uri = append uri-escape(sub-segment) to path portion of xa-uri 1348

 1349
Once the Next Resolution URI is constructed, an HTTP or HTTPS GET request is made using 1350
this URI. Each GET request results in a 2XX or 304 HTTP response. The HTTP/HTTPS response 1351
should either contain the next XRI Descriptor or, with a 304 response, signify that the cached 1352
version on the client is still valid (depending on the client’s HTTP request). HTTP caching 1353
semantics should be leveraged as much as possible to support the efficiency and scalability of 1354
this HTTP-based resolution system. The recommended use of HTTP caching headers is 1355
described in more detail in section 3.5.1. 1356
Any ultimate response besides a HTTP 2XX or 304 should be considered an error in the 1357
resolution process. There is no restriction on intermediate redirects (i.e., 3XX result codes) or 1358
other result codes (e.g., a 100 HTTP response) that eventually result in a 2XX or 304 response 1359
through normal operation of [RFC2616]. The content of this ultimate response will be a new XRI 1360
Descriptor for the context of the qualified sub-segment being resolved. 1361
If there are more sub-segments in the XRI authority segment, the process iterates with the next 1362
sub-segment. If there are no more sub-segments, the final context (as described by the final XRI 1363
Descriptor retrieved) can be used for local access services as described in section 3.4. 1364

3.2.5 Examples 1365

Following is an example of resolving the authority portion of this XRI: 1366
 xri:=example.home.base/foo.bar 1367

Assume that the URI for the “=” global context symbol is “http://equals.example.org/xri-resolve” 1368
(found in /XRIDescriptor/XRIAuthority/URI of the XRI Descriptor for this community). As 1369
explained in 3.2.3, this information, which provides a starting point for resolution, is known a priori 1370
and is part of the configuration of the resolver. 1371
 1372

1373

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 34 of 52

Resolving “=example” 1373
The following HTTP request is made to “equals.example.org”: 1374

GET /xri-resolve/.example HTTP/1.1 1375
If-Modified-Since: Fri, 31 Oct 2003 19:43:31 GMT 1376
 1377
<other HTTP headers> 1378

 1379
The following HTTP response is received from “equals.example.org” (the content has changed 1380
since “Fri, 31 Oct 2003 19:43:31 GMT”): 1381

200 OK HTTP/1.1 1382
Content-Type: application/xrid+xml 1383
Expires: Fri, 7 Nov 2003 19:43:31 GMT 1384
<other HTTP headers> 1385
 1386
<XRIDescriptor xmlns=”…”> 1387
<Resolved>.example</Resolved> 1388
<XRIAuthority> 1389
<URI> 1390
http://xri.example.com/xri-resolve/ 1391
</URI> 1392
</XRIAuthority> 1393
<LocalAccess>…</LocalAccess> 1394
 1395
</XRIDescriptor> 1396

 1397
Resolving “=example.home” 1398
Appending the next qualified sub-segment “.home” to the URI “http://xri.example.com/xri-resolve/” 1399
yields the URI “http://xri.example.com/xri-resolve/.home”, and the following HTTP request is 1400
made to xri.example.com: 1401

GET /xri-resolve/.home HTTP/1.1 1402
<other HTTP headers> 1403

 1404
The following HTTP response is received from xri.example.com: 1405

200 OK HTTP/1.1 1406
Content-Type: application/xrid+xml 1407
If-Modified-Since: Fri, 31 Oct 2003 19:43:32 GMT 1408
<other HTTP headers> 1409
 1410
<XRIDescriptor xmlns=”…”> 1411
<Resolved>.home</Resolved> 1412
<XRIAuthority> 1413
<URI> 1414
http://xri.example.com/xri-resolve/.home/ 1415
</URI> 1416
</XRIAuthority> 1417
<LocalAccess>…</LocalAccess> 1418
… 1419
</XRIDescriptor> 1420

 1421
Resolving “=example.home.base” 1422
Appending the next qualified sub-segment “.base” to the URI 1423
“http://xri.example.com/xri-resolve/.home/” gives the URI 1424
“http://xri.example.com/xri-resolve/. home/.base”: 1425
 1426

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 35 of 52

GET /xri-resolve/.home/.base HTTP/1.1 1427
If-Modified-Since: Fri, 31 Oct 2003 19:43:32 GMT 1428
 1429
<other HTTP headers> 1430

 1431
The following HTTP response is received from xri.example.com: 1432

200 OK HTTP/1.1 1433
Content-type: application/xrid+xml 1434
Expires: Fri, 7 Nov 2003 19:43:33 GMT 1435
 1436
<other HTTP headers> 1437
 1438
<XRIDescriptor xmlns=”…”> 1439
<Resolved>.base</Resolved> 1440
<LocalAccess> 1441
<URI> 1442
http://xri.example.com/xri-local/base/ 1443
</URI> 1444
<URI> 1445
https://xri.example.com/xri-local/base/ 1446
</URI> 1447
</LocalAccess> 1448
… 1449
</XRIDescriptor> 1450

 1451
The result of the final XRI authority resolution step is the set of HTTP and HTTPS URIs shown in 1452
the “LocalAccess” element above that can be used for local access services. 1453

3.2.6 Resolving Cross-References in XRI Authorities 1454

A sub-segment within an XRI authority segment may be a cross-reference (see sections 2.1.1.4 1455
and 2.1.2). Resolving a cross-reference is identical to resolving any other sub-segment because, 1456
from the standpoint of generic XRI resolution, the cross-reference is considered opaque. In other 1457
words, the value of the cross-reference (including the parentheses) is the literal value of the sub-1458
segment for the purpose of constructing the Next Resolution URI as described in section 3.2.4. 1459
An exception to the above is a cross-reference that begins with the GCS symbol for annotations 1460
(“!”). Such a cross-reference and the delimiter that precedes it MUST be ignored entirely during 1461
resolution. 1462
Table 7 provides several examples. In each of these examples, sub-segment “b” resolves to an 1463
XRI Authority URI of “http://example.com/xri-authority/”. 1464
 1465

Cross-reference
type

Example XRI Next Resolution URI after resolving
“xri:@:a:b”

Absolute XRI xri:@:a:b:(@:1:2:3).e/f http://example.com/xri-
authority/:(@:1:2:3)

Absolute URI xri:@:a:b.(mailto:jd@example.com).e/f http://example.com/xri-
authority/.(mailto:jd@example.com)

Relative XRI xri:@:a:b:(c.d).e/f http://example.com/xri-
authority/:(c.d)

Table 7: Examples of the Next Authority URIs constructed using different types of cross-references. 1466

Note that specific identifier communities may specify special resolution rules for specific types of 1467
cross-references, but such extensions are out of scope for this specification. 1468

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 36 of 52

3.2.7 User Relative XRIs 1469

A special case of XRI authority resolution is the user-relative context symbol ("*"). This symbol 1470
means the XRI authority is defined by the user of the XRI rather than specified in the XRI itself. 1471
For example, frequent XRI users could use the "*" symbol to enter their own XRI "shortcuts" or 1472
"speed names" which are resolved by the user’s preferred XRI authority. These XRIs are not 1473
resolvable without the a priori mapping of the "*" symbol to the base XRI specified by the user. 1474
An XRI beginning with the user-relative context symbol MUST be transformed into an absolute 1475
XRI that does not begin with a user-relative context symbol before it can be resolved using the 1476
resolution protocol defined in this specification. To perform this transformation, the XRI value 1477
following the “*” symbol MUST be treated as a relative XRI reference and resolved relative to a 1478
base XRI as defined in section 2.3. The mapping of the “*” symbol to this base XRI is 1479
implementation-dependent; however, the configuration of such mapping SHOULD be easily 1480
available to the user. 1481
Note that in most cases, mapping requires simply replacing the “*” character with a prefix 1482
corresponding to a pre-configured base XRI. For example, if the pre-configured user-relative base 1483
XRI is “@employer/Mary”, then the XRI “xri:*workstation” would be converted into 1484
“xri:@employer/Mary/workstation”. 1485

3.3 URI Authority Resolution 1486

A URI-authority segment (section 2.1.1.1) includes either a DNS name or an IP address that 1487
specifies the location of the endpoint with which to perform local access. This simplifies the 1488
process for converting XRIs with URI authorities into local access URIs. First, the XRI must be 1489
converted into URI-escaped form (section 2.2.4.3). Then the scheme is converted from “xri:” to 1490
“http:”, and an HTTP request is performed on the resulting URI, as described in section 3.4, 1491
“Local Access”, below. 1492
For example, the XRI “xri://www.example.com/foo.bar” is transformed to the HTTP URI 1493
“http://www.example.com/foo.bar”. 1494
The use of URI authorities provides backwards compatibility with the large installed base of DNS- 1495
and IP-identifiable resources. However because URI authorities do not support the additional 1496
layer of abstraction and extensibility represented by XRI authority syntax, URI authorities are not 1497
recommended for new deployments of XRI identifiers. 1498

3.4 Local Access 1499

Local access is the process of interacting with a network endpoint to retrieve a representation of a 1500
network resource identified by an XRI. 1501

3.4.1 Local Access Service Types 1502

Any number of protocols may be used for local access. This specification defines an 1503
HTTP/HTTPS local access protocol. An LDAP or DSML local access protocol could be defined by 1504
specifying the appropriate transformation of the XRI local part into an LDAP distinguished name 1505
(including normalization of the XRI local path to the LDAP distinguished name syntax.) 1506
Work on such protocols is left to future specifications. To accommodate such work, this 1507
specification reserves a namespace, “$r.a”, for enumerating local access service types. One 1508
enumeration, “X2R”, is defined in section 3.2.2 under “/XRIDescriptor/LocalAccess/Service”. 1509

3.4.2 HTTP/HTTPS Local Access 1510

The HTTP/HTTPS local access protocol does not specify the semantics of the local access 1511
interaction, nor the form of the local access requests. The only semantics defined are those in 1512
[RFC2616]. Special attention should be paid to the semantics of the four main HTTP verbs: GET, 1513

mailto:/NamingAuthority/LocalAccess/@service

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 37 of 52

PUT, POST, and DELETE. For example, clients performing local access typically would use GET 1514
when wishing to retrieve representations of a resource on the network. 1515
This specification does not impose particular semantics beyond what is defined in [RFC2616], but 1516
users of this specification are encouraged to review the [REST] architecture when building 1517
applications using XRIs. Local access is not limited to the REST model of interaction, however. 1518
For example, HTTP local access could be leveraged for the delivery of SOAP messages over 1519
HTTP POST, or via use of the GET HTTP verb as a generic read-only resolution infrastructure. 1520
The HTTP/HTTPS local access binding defined in this section is flexible enough to be used for a 1521
variety of resources. It makes no assumptions about the type of resource identified by the XRI 1522
being resolved. The resource type must be established through the context in which the XRI was 1523
originally used (e.g. an XML document) or discovered through use of the HTTP local access 1524
protocol (e.g., through the HTTP Content-Type header). 1525

3.4.3 Constructing a Local Access HTTP/HTTPS URI 1526

This section defines the construction of URIs for local access to resources identified with XRI 1527
authorities. The construction of URIs for local access to resources identified with URI authorities 1528
is defined in section 3.3. 1529
The HTTP/HTTPS URI with which to perform local access is constructed by concatenating the 1530
Local Access URI from the XRI Descriptor (section 3.2.2) with the local part of the XRI. 1531
Specifically, the URI from the element identified with by the element path 1532
/XRIDescriptor/LocalAccess/URI in the XRIDescriptor is concatenated with the URI normal form 1533
(section 2.2.4.3) version of the remaining relative-path (section 2.1). If the LocalAccess URI does 1534
not terminate in a “/”, one MUST be inserted before the relative-path. 1535
The following pseudocode describes the process for creating the concrete HTTP/HTTPS URI to 1536
which a local access request is made: 1537

concrete-http-uri = localaccess-uri 1538
 1539
if (localaccess-uri does not end in “/”): 1540
 concrete-http-uri = localaccess-uri + “/” 1541
 1542
concrete-http-uri = localaccess-uri + uri-escape(relative-path) 1543

 1544
The verb used in the resulting HTTP/HTTPS request may be any of the verbs defined in 1545
[RFC2616], though not all verbs may be supported at every endpoint. All local access endpoints 1546
SHOULD support at least the GET verb, and this should return either a representation of the 1547
identified resource or metadata about the resource. 1548
The full suite of HTTP content negotiation features is available to clients when performing local 1549
access. For example, if the local access service URI is “http://xri.example.com/xri-local”, then the 1550
following local access HTTP request for “xri:=example.home/foo.bar” could be made to 1551
“xri.example.com”: 1552

GET /xri-local/foo.bar HTTP/1.1 1553
If-Modified-Since: Fri, 31 Oct 2003 19:43:33 GMT 1554
<other HTTP headers> 1555
 1556

 1557
The following HTTP response should then be received from xri.example.com: 1558

200 OK HTTP/1.1 1559
Expires: Sat, 1 Nov 2003 19:43:33 GMT 1560
Content-Type: text/plain 1561
<other HTTP headers> 1562
 1563
This is the result of a local access request. 1564

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 38 of 52

3.4.4 Using a Cross-Reference to Specify a Representation Type 1565

A cross-reference MAY be used to specify a desired resource representation type when 1566
performing local access. The namespace “$r.t” is reserved for this purpose. This specification 1567
does not enumerate such types; they are further defined in the “XRI Metadata Specification” 1568
[XRIMetadata]. 1569
To specify a particular resource representation type using “$r.t” metadata, a “$r.t” cross-reference 1570
is appended to the XRI during a local access request. For example, an RDDL document could be 1571
specified by appending the cross-reference “($r.t/RDDL)”. 1572
The following example illustrates this technique. Assuming the original XRI being resolved is 1573
“xri:=example.home/foo.bar” and the local access URI is “http://xri.example.com/xri-local/”, the 1574
following HTTP request would request the RDDL document describing this resource: 1575

GET /xri-local/foo.bar/%28$r.t%2FRDDL%29 HTTP/1.1 1576
<other HTTP headers> 1577

 1578
Note that the cross-reference is escaped per the rules for the URI normal form of an XRI in 1579
section 2.2.4.3. 1580
The resulting HTTP response would be: 1581

200 OK HTTP/1.1 1582
<cache-headers> 1583
<other HTTP headers> 1584
 1585
<content of representation of RDDL for xri:=example.home/foo.bar> 1586

 1587

3.5 HTTP Headers 1588

3.5.1 Caching 1589

The full caching capabilities of [RFC2616] should be leveraged during both identifier authority 1590
resolution and local access. Specifically, implementations of XRI resolution SHOULD implement 1591
the caching model described section 13 of [RFC2616]. In particular, the “Expiration Model” of 1592
section 13.2 SHOULD be used, as this requires the fewest round-trip network connections. 1593
All servers providing identifier authority lookup responses SHOULD send the Cache-Control or 1594
Expires headers per section 13.2 of [RFC2616], unless there are overriding security or policy 1595
reasons that dictate otherwise. 1596

3.5.2 Location 1597

During identifier authority resolution, “Location” headers may be present per the [RFC2616] 1598
specification (i.e., during 3XX redirects). Redirects SHOULD be made cacheable through 1599
appropriate HTTP headers. 1600
During the local access phase, redirects may be returned, and the “Location” field may contain an 1601
HTTP/HTTPS URI or an XRI in URI normal form. This use of redirects constitutes a mapping 1602
facility that allows one XRI to resolve into another during local access. If the local access server is 1603
aware of the HTTP/HTTPS URI where the XRI may be accessed, it can provide a “Location” 1604
header containing an HTTP/HTTPS URI. In this case, it SHOULD provide an “X-XRI-Canonical” 1605
header (see below) to describe the XRI to which the redirection is targeting. If the local access 1606
server knows only of the target XRI, then it MUST return a redirection header (3XX code) with the 1607
“Location” field containing an XRI. 1608

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 39 of 52

3.5.3 Content-Location 1609

“Content-Location” may be used during local access where the resource being accessed is an 1610
“attribute” or “view” of another resource. This usually would occur in the case where metadata is 1611
being accessed using a trailing cross reference to an XRI value under the “$r.t” namespace (see 1612
section 3.4.4). Such a “Content-Location” header would specify where the resource itself may be 1613
accessible (rather than the metadata). This is not required and MUST NOT be required by 1614
resolving clients for proper operation. The content-location SHOULD be an HTTP/HTTPS URI if 1615
the local access server is aware of the HTTP/HTTPS location, otherwise it MAY be an XRI. 1616

3.5.4 Content-Type 1617

“Content-type” is required in the HTTP/HTTPS response during identifier authority resolution, 1618
both when returning an XRI Descriptor and for the HTTP/HTTPS responses during local access. 1619
The “Content-type” header in the 2XX responses in identifier authority resolution for each sub-1620
segment MUST contain the value “application/xrid+xml”, specifying that the content is an XRI 1621
Descriptor (section 3.2.2). 1622
In local access, clients and servers MAY negotiate content type using standard HTTP content 1623
negotiation features. Whether or not this feature is used, however, the server MUST respond with 1624
an appropriate media type in the “Content-type” header. 1625

3.5.5 X-XRI-Canonical 1626

This header is present only in HTTP/HTTPS redirects from local access servers. Its purpose is to 1627
notify a resolving client that the redirect is occurring because the original XRI is a mapping to 1628
another XRI. The value of this header is the target XRI in URI normal form (section 2.2.4.3). This 1629
header MAY be present even when the Location: header is present and contains an XRI. This 1630
header SHOULD be present when the Location: header is present and contains a HTTP/HTTPS 1631
or other URI. 1632
Form: 1633

X-XRI-Canonical: <xri-in-uri-normal-form> 1634

3.6 Other HTTP Features 1635

HTTP provides a number of other features including transfer-coding, proxying, validation-model 1636
caching, etc. All of these features may be used insofar as they do not conflict with the required 1637
uses of HTTP described in this document. 1638

3.7 Caching and Efficiency 1639

Resolution clients are encouraged to perform caching above the HTTP level in addition to at the 1640
HTTP level. For best results, however, resolution clients SHOULD be conservative with caching 1641
expiration semantics, including cache expiration dates. This implies that in a series of HTTP 1642
redirects, for example, the results of the entire process should only be cached as long as the 1643
shortest period of time allowed by any of the intermediate HTTP responses. 1644
Because not all HTTP client libraries expose caching expiration to applications, identifier 1645
authorities and local access servers SHOULD NOT use cacheable redirects with expiration times 1646
which are relatively short compared to the expiration times of other HTTP responses in the 1647
resolution or local access chain. In general, all XRI deployments should be mindful of limitations 1648
in current HTTP clients and proxies. 1649
For XRI Descriptors, the cache expiration time may also be shortened by the expiration time 1650
provided in the XRI Descriptor at /XRIDescriptor/Expires (if present). That is, if the expiration 1651
time in /XRIDescriptor/Expires is sooner than the expiration time calculated from the HTTP 1652

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 40 of 52

caching semantics, then the XRI Descriptor SHOULD be discarded before the expiration time in 1653
/XRIDescriptor/Expires. 1654
With both application-level and HTTP-level caching, the resolution process is designed to have 1655
minimal overhead. In particular, because each qualified sub-segment of an XRI authority is 1656
resolved separately, each step of that resolution is a completely independent, cacheable HTTP 1657
request. For this reason, resolution of top-level (leftmost) qualified sub-segments, which are 1658
common to more identifiers, will naturally result in a greater number of cache hits than resolution 1659
of qualified sub-segments further to the right. 1660

3.8 Points of Extensibility 1661

The XRI resolution scheme described here is leverages extensible mechanisms such as HTTP 1662
and XML to provide maximum flexibility. Specifically, changes or additions can be made at the 1663
following points of extensibility: 1664

• HTTP negotiation of content types, language, encoding, etc. 1665
• Use of HTTP verbs such as POST, PUT and DELETE during local access. 1666
• Use of HTTP redirects (3XX) or other response codes during identifier authority 1667

resolution or local access. 1668
• Insertion of new elements or attributes in the XRI Descriptor. 1669
• Use of cross-references within XRIs, particularly for associating new types of metadata 1670

with a resource (see section 3.4.4 for an example). 1671
 1672

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 41 of 52

4 Security and Data Protection 1673

4.1 Secure Resolution 1674

The resolution protocol described in section 3 is not intrinsically trustworthy. It is expected that, in 1675
practice, some combination of DNSSEC, SSL, TLS, and other existing technologies will be 1676
employed to increase the security of the resolution process. 1677
While such enhancements are outside the scope of this specification, an XRI Secure Resolution 1678
Specification is a future deliverable of the OASIS XRI TC. Additional follow-on work is also 1679
expected to define best practices and facilitate inoperability. 1680

4.2 XRI Metadata 1681

The use of cross-references employing the GCS “$” symbol for encoding XRI metadata in an XRI 1682
(section 2.2.4.2) may involve other security and data protection considerations that are outside 1683
the scope of this specification. These considerations are addressed in the “XRI Metadata 1684
Specification” [XRIMetadata]. 1685

4.3 XRI Usage in Legacy Infrastructure 1686

Where XRIs are used within the Internet and other computing infrastructure, the security and data 1687
protection considerations are similar to those of other URI schemes. In this context the material in 1688
[RFC2396bis], section 7, Security Considerations, is particularly informative. It includes a 1689
discussion of the following topics: 1690
• Reliability and Consistency 1691
• Malicious Construction 1692
• Rare IP Address Formats 1693
• Sensitive Information 1694
• Semantic Attacks 1695
This material notes that “a URI does not in itself pose a direct security threat.” In the case of 1696
XRIs, this statement remains true only in legacy environments. As noted below, it may not be true 1697
for new infrastructure that builds on the extensibility of XRI architecture. Such applications must 1698
be developed with independent security reviews for the specific scenarios in which XRIs are 1699
used. 1700

4.4 XRI Usage in Evolving Infrastructure 1701

As XRIs are adopted as abstract identifiers, it is anticipated that new services will be developed 1702
that take advantage of their extensibility. In particular, XRIs may enable new solutions to security 1703
and data protection problems that are not possible using existing URI schemes. 1704
For example, XRI cross-reference syntax permits the inclusion of identifier metadata such as an 1705
encrypted or integrity-checked path, query, or fragment. Cross-references can also be used to 1706
indicate methods of obfuscating, proxying, or redirecting resolution to prevent the exposure of 1707
private or sensitive data. These capabilities may enable new security and data protection features 1708
at the fundamental level of resource identifiers. 1709
A complete discussion of this topic is beyond the scope of this document. However, as a 1710
consequence of XRI extensibility, it is not possible to make definitive statements regarding 1711
security and data protection considerations relating to XRIs. 1712

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 42 of 52

5 References 1713

5.1 Normative 1714

[RFC1737] K. Sollins, L. Masinter, Functional Requirements for Uniform Resource Names, 1715
http://www.ietf.org/rfc/rfc1737.txt, RFC 1737, December 1994. 1716
[RFC2046] N. Borenstein, N. Freed, Multipurpose Internet Mail Extensions (MIME) Part Two: 1717
Media Types, http://www.ietf.org/rfc/rfc2046.txt, RFC 2046, November 1996. 1718
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 1719
http://www.ietf.org/rfc/rfc2119.txt, RFC 2119, March 1997. 1720
[RFC2141] R. Moats, URN Syntax, http://www.ietf.org/rfc/rfc2141.txt, IETF RFC 2141, May 1721
1997. 1722
[RFC2234] D. H. Crocker and P. Overell, Augmented BNF for Syntax Specifications: ABNF, 1723
http://www.ietf.org/rfc/rfc2234.txt, RFC 2234, November 1997. 1724
[RFC2396] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifiers (URI): 1725
Generic Syntax, http://www.ietf.org/rfc/rfc2396.txt, RFC 2396, August 1998. 1726
[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, 1727
Hypertext Transfer Protocol -- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt, RFC 2616, June 1728
1999. 1729
[RFC2718] L. Masinter, H. Alvestrand, D. Zigmond, R. Petke, Guidelines for New URL 1730
Schemes, http://www.ietf.org/rfc/rfc2718.txt, RFC 2718, November 1999. 1731
[RFC2732] R. Hinden, B. Carpenter, L. Masinter, Format for Literal IPv6 Addresses in URL's, 1732
http://www.ietf.org/rfc/rfc2732.txt, RFC 2732, December, 1999. 1733
[RFC3066] H. Alvestrand, Tags for the Identification of Languages, 1734
http://www.ietf.org/rfc/rfc3066.txt, RFC 3066, January, 2001. 1735
[RFC3305] M. Mealing, R. Denenberg, Uniform Resource Identifiers (URIs), URLs, and 1736
Uniform Resource Names (URNs): Clarifications and Recommendations, 1737
http://www.ietf.org/rfc/rfc3305.txt, RFC 3305, August 2002. 1738
[RFC3490] P. Faltstrom, P. Hoffman, A. Costello, Internationalizing Domain Names in 1739
Applications (IDNA), http://www.ietf.org/rfc/rfc3490, RFC 3490, March 2003. 1740
[RFC3491] P. Hoffman, M. Blanchet, Nameprep: A Stringprep Profile for Internationalized 1741
Domain Names (IDN), http://www.ietf.org/rfc/rfc3491, RFC 3491, March 2003. 1742
[UML] Object Management Group, Unified Modeling Language (UML) Version 1.5, 1743
http://www.omg.org/technology/documents/formal/uml.htm, March 1, 2003. 1744
[Unicode] The Unicode Consortium. The Unicode Standard, Version 4.0.0, defined by: The 1745
Unicode Standard, Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1) 1746
[UniXML] Duerst, M. and A. Freytag, Unicode in XML and other Markup Languages, 1747
Unicode Technical Report #20, World Wide Web Consortium Note, February 2002. 1748
[UTR15] M. Davis, M. Duerst, Unicode Normalization Forms, 1749
http://www.unicode.org/unicode/reports/tr15/tr15-23.html, April 17, 2003. 1750
[XML] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, Extensible Markup Language 1751
(XML) 1.0 (Second Edition) W3C Recommendation, http://www.w3.org/TR/REC-xml, October 1752
2000. 1753
[XMLSchema2] P. Biron, A. Malhotra, XML Schema Part 2: Datatypes W3C 1754
Recommendation, http://www.w3.org/TR/xmlschema-2/, May 2001. 1755

http://www.ietf.org/rfc/rfc1737.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2234.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.zvon.org/tmRFC/RFC2616/Output/index.html
http://www.ietf.org/rfc/rfc2718.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3305.txt
http://www.ietf.org/rfc/rfc3490
http://www.ietf.org/rfc/rfc3491
http://www.ietf.org/rfc/rfc2141.txt
http://www.unicode.org/unicode/reports/tr15/tr15-23.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-2/

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 43 of 52

5.2 Informative 1756

[IRI] M. Duerst, M. Suignard, Internationalized Resource Identifiers (IRIs), 1757
http://www.ietf.org/internet-drafts/draft-duerst-iri-05.txt, Work-In-Progress, October 2003. 1758
[REST] http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage 1759
[RFC2396bis] R. Fielding, Uniform Resource Identifiers (URI): Generic Syntax, Internet Draft 1760
draft-fielding-uri-rfc2396bis-03, http://www.apache.org/~fielding/uri/rev-2002/rfc2396bis.html, 1761
Work-In-Progress, June 2003. 1762
[XRIMetadata] OASIS XRI Technical Committee, Extensible Resource Identifier (XRI) 1763
Metadata Specification, http://www.oasis-open.org/committees/xri/xri-metadata-1.0, Work-In-1764
Progress, January 2003. 1765
[XRIReqs] G. Wachob, D. Reed, M. Le Maitre, D. McAlpin, D. McPherson, Extensible 1766
Resource Identifier (XRI) Requirements and Glossary v1.0, http://www.oasis-1767
open.org/apps/org/workgroup/xri/download.php/2523/xri-requirements-and-glossary-v1.0.doc, 1768
June 2003. 1769
 1770

http://www.ietf.org/internet-drafts/draft-duerst-iri-05.txt
http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage
http://www.apache.org/~fielding/uri/rev-2002/rfc2396bis.html
http://www.oasis-open.org/committees/xri
http://www.oasis-open.org/apps/org/workgroup/xri/download.php/2523/xri-requirements-and-glossary-v1.0.doc
http://www.oasis-open.org/apps/org/workgroup/xri/download.php/2523/xri-requirements-and-glossary-v1.0.doc

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 44 of 52

Appendix A. Collected ABNF for XRI (Normative) 1771

This section contains the complete ABNF for XRI syntax, which includes the complete ABNF for 1772
URI from [RFC2396bis] of which XRI syntax is a superset. XRI productions use green shading, 1773
and productions inherited from URI use yellow shading. A valid XRI MUST conform to this ABNF. 1774
 1775

 1776
 abs-path = "/" path-segments 1777
 1778
 absolute-xri = "xri:" global-path 1779
 1780
 alphanum = ALPHA / DIGIT 1781
 1782
 authority = [userinfo "@"] host [":" port] 1783
 1784
 authority-path = URI-authority / XRI-authority 1785
 1786
 dec-octet = DIGIT ; 0-9 1787
 / %x31-39 DIGIT ; 10-99 1788
 / "1" 2DIGIT ; 100-199 1789
 / "2" %x30-34 DIGIT ; 200-249 1790
 / "25" %x30-35 ; 250-255 1791
 1792
 delims = "<" / ">" / "%" / DQUOTE 1793
 1794
 escaped = "%" HEXDIG HEXDIG 1795
 1796
 excluded = invisible / delims / unwise 1797
 1798
 fragment = *(pchar / "/" / "?") 1799
 1800
 gcs-char = "+" / "=" / "@" / "$" / "*" / "!" 1801
 1802
 global-path = authority-path [local-path] 1803
 1804
 h4 = 1*4HEXDIG 1805
 1806
 hier-part = net-path / abs-path / rel-path 1807
 1808
 host = [hostname / IPv4address / IPv6reference] 1809
 1810
 hostname = idomainlabel qualified 1811
 1812
 idomainlabel = (ALPHA / ucschar) *(alphanum / ucschar / "-") 1813
 1814
 invisible = CTL / SP / %x80-FF 1815
 1816
 IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet 1817
 1818
 IPv6address = 6(h4 ":") ls32 1819
 / "::" 5(h4 ":") ls32 1820
 / [h4] "::" 4(h4 ":") ls32 1821
 / [*1(h4 ":") h4] "::" 3(h4 ":") ls32 1822
 / [*2(h4 ":") h4] "::" 2(h4 ":") ls32 1823
 / [*3(h4 ":") h4] "::" h4 ":" ls32 1824
 / [*4(h4 ":") h4] "::" ls32 1825
 / [*5(h4 ":") h4] "::" h4 1826
 / [*6(h4 ":") h4] "::" 1827

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 45 of 52

 1828
 IPv6reference = "[" IPv6address "]" 1829
 1830
 local-path = "/" relative-path 1831
 1832
 ls32 = (h4 ":" h4) / IPv4address 1833
 ; least-significant 32 bits of address 1834
 1835
 mark = "-" / "_" / "." / "!" / "~" / "*" / "'" / "(" / ")" 1836
 1837
 net-path = "//" authority [abs-path] 1838
 1839
 path-segments = segment *("/" segment) 1840
 1841
 pchar = unreserved / escaped / ";" / 1842
 ":" / "@" / "&" / "=" / "+" / "$" / "," 1843
 1844
 port = *DIGIT 1845
 1846
 qualified = *("." idomainlabel) ["."] 1847
 1848
 query = *(pchar / "/" / "?") 1849
 1850
 relative-path = [xri-segments] ["?" xri-query] 1851
 ["#" xri-fragment] 1852
 1853
 relative-xri = local-path / relative-path 1854
 1855
 rel-path = path-segments 1856
 1857
 reserved = "/" / "?" / "#" / "[" / "]" / ";" / 1858
 ":" / "@" / "&" / "=" / "+" / "$" / "," 1859
 1860
 scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".") 1861
 1862
 segment = *pchar 1863
 1864
 sub-segment = 1*xri-pchar / xref 1865
 1866
 ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF / 1867
 %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD / 1868
 %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD / 1869
 %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD / 1870
 %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD / 1871
 %xD0000-DFFFD / %xE1000-EFFFD 1872
 1873
 unreserved = ALPHA / DIGIT / mark 1874
 1875
 unwise = "{" / "}" / "|" / "\" / "^" / "`" 1876
 1877
 URI = scheme ":" hier-part ["?" query] ["#" fragment] 1878
 1879
 URI-authority = "//" [userinfo "@"] host [":" port] 1880
 1881
 uric = reserved / unreserved / escaped 1882
 1883
 userinfo = *(unreserved / escaped / ";" / 1884
 ":" / "&" / "=" / "+" / "$" / ",") 1885
 1886
 xref = "(" (xri-value / URI) ")" 1887
 1888
 xref-authority = xref ("." sub-segment / ":" sub-segment) 1889
 *("." sub-segment / ":" sub-segment) 1890

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 46 of 52

 1891
 XRI = absolute-xri / relative-xri 1892
 1893
 XRI-authority = (gcs-char [xri-segment]) / xref-authority 1894
 1895
 xri-characters = xri-reserved / xri-unreserved / escaped 1896
 1897
 xri-fragment = [xref] * (xri-pchar / "." / ":" / "/" / "?") 1898
 1899
 xri-mark = "-" / "_" / "~" / "'" 1900
 1901
 xri-pchar = xri-unreserved / escaped / ";" / "!" / "*" 1902
 "@" / "&" / "=" / "+" / "$" / "," 1903
 1904
 xri-query = [xref] * (xri-pchar / "." / ":" / "/" / "?") 1905
 1906
 xri-reserved = "/" / "?" / "#" / "[" / "]" / "(" / ")" / ";" / ":" / 1907
 "," / "." / "&" / "@" / "=" / "+" / "*" / "$" / "!" 1908
 1909
 xri-segment-val = xri-segment / "." / ".." 1910
 1911
 xri-segment = (["."] sub-segment / ":" sub-segment) 1912
 *("." sub-segment / ":" sub-segment) 1913
 1914
 xri-segments = xri-segment-val *("/" [xri-segment-val]) 1915
 1916
 xri-unreserved = ALPHA / DIGIT / ucschar / xri-mark 1917
 1918
 xri-value = global-path / local-path / relative-path 1919
 1920

 1921

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 47 of 52

Appendix B. XML Schema for XRI Descriptor 1922

(Normative) 1923

<xs:schema targetNamespace="xri:$r.s/XRIDescriptor" xmlns:xs="http://www.w3.org/2001/XMLSchema" 1924
xmlns="xri:$r.s/XRIDescriptor" elementFormDefault="qualified" attributeFormDefault="unqualified"> 1925
 <xs:complexType name="XRIDescriptorType"> 1926
 <xs:sequence> 1927
 <xs:element name="Resolved" type="ResolvedType" minOccurs="0" maxOccurs="unbounded"/> 1928
 <xs:element name="Expires" type="ExpiresType" minOccurs="0"/> 1929
 <xs:element name="XRIAuthority" type="XRIAuthorityType" minOccurs="0"/> 1930
 <xs:element name="LocalAccess" type="LocalAccessType" minOccurs="0" maxOccurs="unbounded"/> 1931
 <xs:element name="Mapping" type="MappingType" minOccurs="0" maxOccurs="unbounded"/> 1932
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> 1933
 </xs:sequence> 1934
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1935
 </xs:complexType> 1936
 <xs:complexType name="XRIAuthorityType"> 1937
 <xs:sequence> 1938
 <xs:element name="URI" type="URIType" maxOccurs="unbounded"/> 1939
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> 1940
 </xs:sequence> 1941
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1942
 </xs:complexType> 1943
 <xs:complexType name="LocalAccessType"> 1944
 <xs:sequence> 1945
 <xs:element name="Service" type="ServiceType" minOccurs="0"/> 1946
 <xs:element name="Type" type="TypeType" minOccurs="0" maxOccurs="unbounded"/> 1947
 <xs:element name="URI" type="URIType" maxOccurs="unbounded"/> 1948
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> 1949
 </xs:sequence> 1950
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1951
 </xs:complexType> 1952
 <xs:element name="XRIDescriptor" type="XRIDescriptorType"/> 1953
 <xs:complexType name="ResolvedType"> 1954
 <xs:simpleContent> 1955
 <xs:extension base="xs:string"> 1956
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1957
 </xs:extension> 1958
 </xs:simpleContent> 1959
 </xs:complexType> 1960
 <xs:complexType name="URIType"> 1961
 <xs:simpleContent> 1962
 <xs:extension base="xs:anyURI"> 1963
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1964
 </xs:extension> 1965
 </xs:simpleContent> 1966
 </xs:complexType> 1967
 <xs:complexType name="ExpiresType"> 1968
 <xs:simpleContent> 1969
 <xs:extension base="xs:dateTime"> 1970
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1971
 </xs:extension> 1972
 </xs:simpleContent> 1973
 </xs:complexType> 1974
 <xs:complexType name="ServiceType"> 1975
 <xs:simpleContent> 1976
 <xs:extension base="xs:anyURI"> 1977
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1978
 </xs:extension> 1979
 </xs:simpleContent> 1980
 </xs:complexType> 1981

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 48 of 52

 <xs:complexType name="TypeType"> 1982
 <xs:simpleContent> 1983
 <xs:extension base="xs:string"> 1984
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1985
 </xs:extension> 1986
 </xs:simpleContent> 1987
 </xs:complexType> 1988
 <xs:complexType name="MappingType"> 1989
 <xs:simpleContent> 1990
 <xs:extension base="xs:string"> 1991
 <xs:anyAttribute namespace="##other" processContents="lax"/> 1992
 </xs:extension> 1993
 </xs:simpleContent> 1994
 </xs:complexType> 1995
</xs:schema> 1996
 1997

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 49 of 52

Appendix C. Transforming HTTP URIs to XRIs 1998

(Non-Normative) 1999

To leverage existing infrastructure, it may sometimes be useful to convert HTTP URIs into XRIs. 2000
Because XRI syntax is, for the most part, a superset of generic URI syntax, the majority of HTTP 2001
URIs can be converted to valid XRIs simply by replacing the scheme “http” with “xri”. Special 2002
consideration, however, must be given to HTTP URIs employing the characters in the “xri-2003
reserved” production of this specification that differ from those in the “reserved” production of 2004
[RFC2396] (as amended by [RFC2732]). These include opening parenthesis (“(“), closing 2005
parenthesis (“)”), dot (“.”), asterisk (“*”), and exclamation point (“!”). 2006
Typically, characters in the “reserved” production of [RFC2396] that appear in an HTTP URI as 2007
normal characters (i.e. not as syntactic delimiters) are escaped encoded. However, this is not 2008
required in all cases. [RFC2396] says 2009

“Characters in the ‘reserved’ set are not reserved in all contexts. The set of characters 2010
actually reserved within any given URI component is defined by that component. In general, a 2011
character is reserved if the semantics of the URI changes if the character is replaced with its 2012
escaped US-ASCII encoding.” 2013

Characters in the “xri-reserved” set that are properly left un-escaped in an HTTP URI may be 2014
semantically significant when the HTTP URI is converted to an XRI. For example, 2015

http://www.example.com/example1:example2 2016
is a valid HTTP URI even though it contains an unescaped reserved character – a colon (“:”) – 2017
because section 3.3 of [RFC2396] explicitly omits this character from the reserved set for “path” 2018
components. The same unescaped character in an XRI, however, will be interpreted as a 2019
delimiter. If the colon character should not be understood as a delimiter in the resulting XRI, it 2020
must be escaped during conversion. The same applies to the other characters mentioned above. 2021
Generally, any character not in the “xri-pchar” set that appears in the “abs_path”, “query”, or 2022
“fragment” components of the HTTP URI will need to be escaped when converting to an XRI. This 2023
avoids misinterpretation in the resulting XRI following the guidance in section 2.2.4 of this 2024
specification. 2025
Exceptions are possible. For example, if the author of the above HTTP URI intended the colon 2026
character to be interpreted as described in this specification, or if its use would not be 2027
misinterpreted, then it may be left in its unescaped form. 2028
In addition, it may be beneficial to escape other characters like the percent (“%”) character, 2029
particularly if it may be necessary to convert the resulting XRI back to an HTTP URI. Whether 2030
such additional escaping is desirable or not depends on the intended use of the resulting XRI, the 2031
context in which it will appear, how it is intended to be resolved, etc. 2032
It is worth noting that some rare forms of HTTP URIs can result in XRIs that are misleading to the 2033
reader. For example, the following unusual HTTP URI is valid per [RFC2396]. 2034

http://@example.com/example1 2035
When converted to an XRI, as 2036

xri://@example.com/example1 2037
a casual reader could easily misinterpret the “uri-authority” component as an “xri-authority”. 2038
Similarly, a URI with an authority segment like 2039

http://=bob@example.com/example1 2040
could be similarly misinterpreted. 2041
 2042

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 50 of 52

Appendix D. Acknowledgments 2043

The editors would also like to thank the following people who participated in the XRI TC and/or 2044
provided input and review of this specification (affiliations listed for OASIS members): 2045
 2046
Thomas Bikeev (EAN International), Winston Bumpus (formerly of Novell), James Bryce Clark 2047
(OASIS), Matthey Dovey (Individual), Lars Marius Garshol, Steve Green (Epok), Lance Hood 2048
(Epok), Phillipe LeBlanc (GemPlus), Marc LeMaitre (OneName), Rajeev Maria (Visa 2049
International), Adarbad Master (Epok), John McGarvey (IBM), Davis McPherson (Epok), Mike 2050
Mealling (Verisign), Reva Modi (Infosys), Joseph Moeller (EDS), Brian Nimmo (Epok), Mary 2051
Nishikawa (Individual), Eamonn Neylon (Individual), Masaki Nishitani (NRI), Norman Paskin, 2052
Krishnan Rajagopalan (Novell), Chetan Sabnis (Epok), Jim Schreckengast (formerly of Gemplus), 2053
Tomonori Seki (NRI), Xavier Serret (Gemplus), Terence Spielman (Visa International), Marc 2054
Stephenson (TSO), Geoffrey Strongin (AMD), Bernard Vatant, John Veizades (Visa 2055
International), Bill Washburn (XNSORG), Tetsu Watanabe (NRI), Dave Wentker (Visa 2056
International), Loren West (Epok), and Michael Willett (Wave Systems). 2057
 2058
A special acknowledgement to Jerry Kindall (Epok) for a full editorial review. 2059
 2060
Also, the authors of and contributors to the following documents and specifications are 2061
acknowledged for the intellectual foundations of the XRI specification: 2062

• RFC 1737 2063
• RFC 2396 (and RFC 2396bis) 2064
• RFC 2616 2065
• RFC 2718 2066
• RFC 3401-3405 (DDDS) 2067
• REST Architecture 2068
• IRI – Internationalized Resource Identifiers draft 2069
• XNS 2070

 2071

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 51 of 52

Appendix E. Revision History 2072

Rev Date By Whom What

1.0-cd 2003-12-09 All Editors Initial document.

 2073

xri-syntax-resolution-1.0-cd 12 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 52 of 52

Appendix F. Notices 2074

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 2075
that might be claimed to pertain to the implementation or use of the technology described in this 2076
document or the extent to which any license under such rights might or might not be available; 2077
neither does it represent that it has made any effort to identify any such rights. Information on 2078
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 2079
website. Copies of claims of rights made available for publication and any assurances of licenses 2080
to be made available, or the result of an attempt made to obtain a general license or permission 2081
for the use of such proprietary rights by implementors or users of this specification, can be 2082
obtained from the OASIS Executive Director. 2083
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 2084
applications, or other proprietary rights which may cover technology that may be required to 2085
implement this specification. Please address the information to the OASIS Executive Director. 2086
Copyright © OASIS Open 2004. All Rights Reserved. 2087
This document and translations of it may be copied and furnished to others, and derivative works 2088
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 2089
published and distributed, in whole or in part, without restriction of any kind, provided that the 2090
above copyright notice and this paragraph are included on all such copies and derivative works. 2091
However, this document itself does not be modified in any way, such as by removing the 2092
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 2093
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 2094
Property Rights document must be followed, or as required to translate it into languages other 2095
than English. 2096
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 2097
successors or assigns. 2098
This document and the information contained herein is provided on an “AS IS” basis and OASIS 2099
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 2100
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 2101
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 2102
PARTICULAR PURPOSE. 2103

	Introduction
	Overview of XRIs
	Generic Syntax
	Examples
	URI, URL, URN, and XRI

	Design Considerations
	Abstraction and Independence
	Persistence and Reassignability
	Human-Friendliness and Machine-Friendliness
	Internationalization
	Cross-Context Identification
	Authority, Delegation, and Federation
	Security and Privacy
	Extensibility

	Terminology and Notation
	Keywords
	Syntax Notation
	Glossary

	Syntax
	Syntax Components
	Authority
	URI Authority
	XRI Authority
	Global Context Symbols (GCS)
	Cross-References
	Self-References

	Path
	Query
	Fragment

	Characters
	Character Encoding
	Reserved Characters
	Unreserved Characters
	Escaped Characters
	Escaped Encoding
	Encoding XRI Metadata
	Transforming XRIs into IRIs and URIs
	Special Escaping Rules for XRI Syntax
	Transforming URIs and IRIs Back into XRIs

	Excluded Characters

	Relative XRI References
	Establishing a Base XRI
	Obtaining the Referenced XRI
	Leading Segments Containing a Colon

	Normalization and Comparison
	Case
	Encoding, Escaping, and Transformations
	Optional Syntax
	Cross-References
	Canonicalization

	Resolution
	Introduction
	Assumptions
	Phases of Resolution
	URI vs. XRI Authorities
	XRI Metadata Reserved for XRI Resolution

	XRI Authority Resolution
	Overview
	XRI Descriptors
	Initiating Resolution
	Iterating Resolution
	Examples
	Resolving Cross-References in XRI Authorities
	User Relative XRIs

	URI Authority Resolution
	Local Access
	Local Access Service Types
	HTTP/HTTPS Local Access
	Constructing a Local Access HTTP/HTTPS URI
	Using a Cross-Reference to Specify a Representation Type

	HTTP Headers
	Caching
	Location
	Content-Location
	Content-Type
	X-XRI-Canonical

	Other HTTP Features
	Caching and Efficiency
	Points of Extensibility

	Security and Data Protection
	Secure Resolution
	XRI Metadata
	XRI Usage in Legacy Infrastructure
	XRI Usage in Evolving Infrastructure

	References
	Normative
	Informative

