
Use Case Considerations for 
Extending DSS with 

Local Signature Computations 

E.J. Van Nigtevecht
Sonnenglanz Consulting BV

Version June 9, 2011



Goal
• Enable DSS for use cases where the (secure) signature 

creation device is not part of the DSS service itself.
• Allow the client to specify the hash algorithm to be used.



Assumptions
• The OASIS DSS Core is used.
• A (Secure) Signature Creation Device is connected to a User-Agent 

or a (separate) User-Device. 
• A User-Agent or User-Device may be equipped with a gradual set of 

signature-creation related functionality. For example ranging 
between:
– APDU (ISO 7816);
– IFD-Client (ISO/IEC 24727 / CEN 15480);
– Full OASIS DSS(-X) profiles;

• A User-Agent or User-Device may have limited software & 
performance capabilities and hence may be supported by a Digital
Signature Service to handle the complexities of the signature 
creation if it cannot manipulate the document itself.



Assumptions
• A User-Agent or User-Device will always initiate the transaction and 

acts as an HTTP-client.
• A document may remain on the client or server side or transferred 

from one side to the other.
• The default Use Case of DSS will not be shown (DSS req/resp with

document as a parameter). Variants of the default Use Case are 
explored instead.



Some Terminology
• Terminology

– userID: a way to identify a user;
– docRef: a reference to a document (url) for retrieval;

• Currently, DSS only supports a reference to the document inside the request 
structure. Therefore, a docRef only makes sense if the document is located 
elsewhere (not on the requesting client or DSS server).

– docID: a way to identify a document by a user, in a user friendly 
manner;

– digest: the hash of the document used for the signature creation (the 
calculation of the hash value depends on the type of document, for 
instance XML, PDF or ‘binary’);

– digestSignature: the ‘raw’ signature of the digest;
– hashAlg: the hash algorithm to be used (or that has been used);



Use Case 1
• Actor

– An End-User.

• System
– A User-Agent (the ‘client’) with a (secure) signature creation device, 

(S)SCD, connected to a Service (the ‘server’). 

• Basic Restriction(s)
– Communication between the client (the User-Agent) and the server (the 

Service) is always initiated by the client.

• Goal
– By using a Digital Signature Service an end-user signs a document 

(located at the client or at the server) with the (S)SCD at the User-
Agent.



Use Case 1
• Basic Flow

– The End-User calls a Service by means of the User-Agent.
– The End-User selects a document by means of the Service.
– The End-User requests a signing operation for the document by means 

of the Service.
– The User-Agent asks the user for a PIN or Password.
– The End-User enters the PIN or Password.
– The User-Agent creates the signature using the (Secure) Signature 

Creation Device.
– The User-Agent shows the signed document.

• Example
– A user signs a document, opened in a web browser (running at a PC) by 

means of a web application, using a smartcard/usb-token connected to 
the PC.

– A user signs a document with an app on the iPhone using a certificate 
installed on the SIM-card at the same iPhone.



Variants Use Case 1
• Use Case 1a – Smart User-Agent

– The User-Agent implements a Digital Signature Service.
– The document is at the server.

• Use Case 1b – Simple User-Agent
– The User-Agent is NOT capable of implementing a Digital Signature 

Service. Instead, the User Agent implements an IFD or an APDU 
interface.

– A server that is used by the User-Agent (the client) for ‘business’
functionality and for Digital Signature Service functionality.

– The document is at the client (User-Agent) and is transferred to server.

• Use Case 1c – Simple User-Agent
– Like Use Case 1b, but the document stays at the client.



Authentication: 
actually a part 

of the 
middelware.

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

Select document(userID, docRef)

DSS-signRequest(userID, doc, docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 1a – Smart User-Agent

Sign-APDU

PKCS#1-Signature

Sign
digest

Sign document(userID, docRef, docID)

Signed Document

Calculate digest based on hashAlg
(as well as document type)

Expecting DSS request

User PIN Entry
Show docID



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

DSS-signRequest(userID, doc, docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 1b – Simple User-Agent (document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

getSignature(userID, docID, digest)

getSignature response

Calculate
digest

Sign document(userID, docRef, docID)

Signed Document

User PIN Entry
Show docID



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

DSS-signRequest(userID, docID, hashAlg, digest)

DSS-signResponse

Sequence Diagram Use Case 1c – Simple User-Agent (no document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

getSignature(userID, docID, digest)

getSignature response

Calculate digest

Sign document(userID, docRef, docID)

Signed Document

User PIN Entry
Show docID



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

DSS-signRequest(userID, docRef, 
docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 1d – Simple User-Agent (document elsewhere)

Sign-APDU

PKCS#1-Signature

Sign
digest

getSignature(userID, docID, digest)

getSignature response

Signed Document

User PIN Entry
Show docID

DMS

Select document(userID, docRef)

getDocument(userID,
docRef)

Calculate digest



Use Case 2
• Actor

– An End-User.

• System
– A User-Agent without a signature creation device, connected to a 

Service (the ‘server’). Another User-Device is used for the (secure) 
signature creation device.

• Basic Restriction(s)
– Communication between the client (the User-Agent) and the server (the 

Service) is always initiated by the client.

• Goal
– By using a Digital Signature Service an end-user signs a document 

(located at the client or at the server) with the (S)SCD at the User-
Device.



Use Case 2
• Basic Flow

– The End-User calls a Service by means of the User-Agent.
– The End-User registers his/her User-Device at the Service (specifying 

device type and address).
– The End-User selects a document by means of the Service.
– The End-User requests a signing operation for the document by means 

of the Service. (The Service requests a signature creation operation at 
the User-Device.)

– The User-Device shows an identification of the request and asks the 
user for a PIN or Password.

– The End-User verifies if it is the right identification and enters the PIN or 
Password at the User-Device.

– The User-Device creates the signature using the (Secure) Signature 
Creation Device.

– The End-User views the signed document.

• Example
– A user initiates a signature operation for a document with an app on 

his/her iPad, using a certificate installed on the SIM-card at his/her 
iPhone.



Variants Use Case 2
• Use Case 2a – Smart User-Device

– The User-Device implements a Digital Signature Service.
– The document is at the server and transferred to the User-Device.

• Use Case 2b: Like Use Case 2a, but the document stays at the server.

• Use Case 2c – Simple User-Device
– The User-Device is NOT capable of implementing a Digital Signature 

Service. Instead, the User-Device implements an IFD or an APDU 
interface.

– A server that is used by the User-Agent (the client) for ‘business’
functionality and for Digital Signature Service functionality.

– The document is at the client (User-Agent) and is transferrer to the 
server.

• Use Case 2d: Like Use Case 2b, but the document stays at the client.



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, doc, docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 2a – Smart User-Device (document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

Calculate
digest

Sign document(userID, docRef, docID)

Signed Document

User
Device

User PIN Entry

Show docID

Get document



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signResponse

Sequence Diagram Use Case 2b – Smart User-Device (no document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

Calculate digest

Sign document(userID, docRef, docID)

Signed Document

User
Device

User PIN Entry

Show docID

Get document

DSS-signRequest(userID, docID, hashAlg, digest)



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, doc, docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 2c – Simple User-Device (document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

Calculate
digest

User
Device

getSignature(userID, docID, digest)

getSignature response

User PIN Entry
Show docID



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, docID, hashAlg, digest)

DSS-signResponse

Sequence Diagram Use Case 2d – Simple User-Device (no document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

Calculate digest

User
Device

getSignature(userID, digest, docID)

getSignature response

User PIN Entry
Show docID



Transport Bindings
• A transport binding is ‘orthogonal’ to the actual DSS 

protocol.

• Point of attention:
– Handling a request/response from the server to the client.

• Possible Transport Bindings:
– PAOS, reverse SOAP. Two separate HTTP Req/Res (from client to 

server) encapsulate a single Req/Resp from the server to the client.
– AS4 / ebMS v3, using the PULL-mode.
– REST

• Next slides use the Use Case sequence diagrams, 
addressing the transport binding.



PAOS

• Basic Flow

Reverse-Request

Reverse-Response

(Client)



ebMS “PULL”

• Basic Flow
Client Server

PULL()

MSH MSH

Request

PUSH(Response)

Reverse-Request

Reverse-Response



REST

• Basic Flow
Client Server

Reverse-Request

Reverse-Response



Use of PAOS / ebMSv3

• Both PAOS and ebMSv3 enable the use of 
reverse req/resp between client and 
server.

• The next slides indicate the location of 
these ‘reverse’ request/response (being 
PAOS or ebMSv3).



Reverse-Response

Reverse-Request

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

Select document(userID, docRef)

DSS-signRequest(userID, doc)

DSS-signResponse

Sequence Diagram Use Case 1a – Smart User-Agent

Sign-APDU

PKCS#1-Signature

Sign
Hash

Sign document(userID, docRef)

Signed Document

Calculate
Hash

Expecting DSS request

User PIN Entry



Reverse-Response

Reverse-Request

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

DSS-signRequest(userID, doc)

DSS-signResponse

Sequence Diagram Use Case 1b – Simple User-Agent

Sign-APDU

PKCS#1-Signature

Sign
Hash

getSignature(userID, docRef, hash)

getSignature response

Calculate
Hash

Select document(userID, docRef)

Signed Document

User PIN Entry



Reverse-Response

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, doc)

DSS-signResponse

Sequence Diagram Use Case 2a – Smart User-Device

Sign-APDU

PKCS#1-Signature

Sign
Hash

Calculate
Hash

Sign document(userID, docRef)

Signed Document

User
Device

User PIN Entry

Notification?

Reverse-Request



Reverse-Request

Reverse-Response

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, doc)

DSS-signResponse

Sequence Diagram Use Case 2b – Simple User-Device

Sign-APDU

PKCS#1-Signature

Sign
Hash

Calculate
Hash

User
Device

getSignature(userID, docRef, hash)

getSignature response

User PIN Entry

Select document(userID, docRef)

Notification?



Finding 1
• In case of a full DSS implementation at the client-side 

(user agent or user device) a reverse DSS 
request/response binding is required in case the 
signature creation is initiated from the server-side. 
– Bindings: PAOS, ebMSv3, REST.
– Use Cases 1a, 2a, 2b.

 Should the reverse binding become part of the DSS 
profiles?
– PAOS: Yes/No
– ebMSv3: Yes/No
– REST: Yes/No

Note:
If the whole process is initiated (from the client-side) by 
means of a blocking http req/resp, the client must be 
able to handle the reverse req/resp in parallel.



Finding 2
• In case of a full DSS implementation at the server-side a 

reverse request/response binding is required for the 
signature creation request to the User-Agent or User-
Device.
– The signature creation request is not a DSS request; see the 

‘getSignature’ in the use cases.
– The reverse binding is not part of the DSS req/respbinding; it is used by 

the DSS implementation.
• Does DSS know where to get the signature from?

– Bindings: PAOS, ebMSv3, REST.
– Use Cases 1b, 1c, 2c, 2d.
Therefore, can be left ‘out of scope’ regarding the DSS protocol. 

But there is a need to specify how to get the signature.

 Should the DSS sign request be extended to specify a 
location for the signature creation device?
– Yes/No



Finding 3
• The Use Cases specify a number of arguments, not yet 

part of the DSS sign request (such as hashAlg and 
digest).

 Should the following parameters be added to the DSS 
core as part of the sign request (response)?
– hashAlg
 Yes/No

– digest
 Yes/No

– signatureValue
 Request: Yes/No; Response: Yes/No

– docID
Yes/No

– docRef
Yes/No



Finding 4
• The Use Cases show the use of the ‘getSignature’

functionality. This can be any proprietary or already 
standardized protocol, such as:
– ISO/IEC 24727 / CEN 15480 (based on DSS!)
– ISO/IEC 7816 

 Should the DSS (core) be extended to standardize the 
‘getSignature’ functionality? 
– Yes/No

Note:
If the DSS req/resp is extended especially with the 
signatureValue in the response, it will standardise the 
‘getSignature’ functionality...



Finding 5
• The Use Cases show the use of the ‘getSignature’

functionality. This can be any proprietary or already 
standardized protocol, such as:
– ISO/IEC 24727 / CEN 15480 (based on DSS!)
– ISO/IEC 7816 

 Should the DSS (core) be extended to standardize the 
‘getSignature’ functionality? 
– Yes/No

Note:
If the DSS req/resp is extended especially with the 
signatureValue in the response, it will standardise the 
‘getSignature’ functionality...


