
Use Case Considerations for 
Extending DSS with 

Local Signature Computations 

E.J. Van Nigtevecht
Sonnenglanz Consulting BV

Version June 9, 2011



Goal
• Enable DSS for use cases where the (secure) signature 

creation device is not part of the DSS service itself.
• Allow the client to specify the hash algorithm to be used.



Assumptions
• The OASIS DSS Core is used.
• A (Secure) Signature Creation Device is connected to a User-Agent 

or a (separate) User-Device. 
• A User-Agent or User-Device may be equipped with a gradual set of 

signature-creation related functionality. For example ranging 
between:
– APDU (ISO 7816);
– IFD-Client (ISO/IEC 24727 / CEN 15480);
– Full OASIS DSS(-X) profiles;

• A User-Agent or User-Device may have limited software & 
performance capabilities and hence may be supported by a Digital
Signature Service to handle the complexities of the signature 
creation if it cannot manipulate the document itself.



Assumptions
• A User-Agent or User-Device will always initiate the transaction and 

acts as an HTTP-client.
• A document may remain on the client or server side or transferred 

from one side to the other.
• The default Use Case of DSS will not be shown (DSS req/resp with

document as a parameter). Variants of the default Use Case are 
explored instead.



Some Terminology
• Terminology

– userID: a way to identify a user;
– docRef: a reference to a document (url) for retrieval;

• Currently, DSS only supports a reference to the document inside the request 
structure. Therefore, a docRef only makes sense if the document is located 
elsewhere (not on the requesting client or DSS server).

– docID: a way to identify a document by a user, in a user friendly 
manner;

– digest: the hash of the document used for the signature creation (the 
calculation of the hash value depends on the type of document, for 
instance XML, PDF or ‘binary’);

– digestSignature: the ‘raw’ signature of the digest;
– hashAlg: the hash algorithm to be used (or that has been used);



Use Case 1
• Actor

– An End-User.

• System
– A User-Agent (the ‘client’) with a (secure) signature creation device, 

(S)SCD, connected to a Service (the ‘server’). 

• Basic Restriction(s)
– Communication between the client (the User-Agent) and the server (the 

Service) is always initiated by the client.

• Goal
– By using a Digital Signature Service an end-user signs a document 

(located at the client or at the server) with the (S)SCD at the User-
Agent.



Use Case 1
• Basic Flow

– The End-User calls a Service by means of the User-Agent.
– The End-User selects a document by means of the Service.
– The End-User requests a signing operation for the document by means 

of the Service.
– The User-Agent asks the user for a PIN or Password.
– The End-User enters the PIN or Password.
– The User-Agent creates the signature using the (Secure) Signature 

Creation Device.
– The User-Agent shows the signed document.

• Example
– A user signs a document, opened in a web browser (running at a PC) by 

means of a web application, using a smartcard/usb-token connected to 
the PC.

– A user signs a document with an app on the iPhone using a certificate 
installed on the SIM-card at the same iPhone.



Variants Use Case 1
• Use Case 1a – Smart User-Agent

– The User-Agent implements a Digital Signature Service.
– The document is at the server.

• Use Case 1b – Simple User-Agent
– The User-Agent is NOT capable of implementing a Digital Signature 

Service. Instead, the User Agent implements an IFD or an APDU 
interface.

– A server that is used by the User-Agent (the client) for ‘business’
functionality and for Digital Signature Service functionality.

– The document is at the client (User-Agent) and is transferred to server.

• Use Case 1c – Simple User-Agent
– Like Use Case 1b, but the document stays at the client.



Authentication: 
actually a part 

of the 
middelware.

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

Select document(userID, docRef)

DSS-signRequest(userID, doc, docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 1a – Smart User-Agent

Sign-APDU

PKCS#1-Signature

Sign
digest

Sign document(userID, docRef, docID)

Signed Document

Calculate digest based on hashAlg
(as well as document type)

Expecting DSS request

User PIN Entry
Show docID



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

DSS-signRequest(userID, doc, docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 1b – Simple User-Agent (document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

getSignature(userID, docID, digest)

getSignature response

Calculate
digest

Sign document(userID, docRef, docID)

Signed Document

User PIN Entry
Show docID



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

DSS-signRequest(userID, docID, hashAlg, digest)

DSS-signResponse

Sequence Diagram Use Case 1c – Simple User-Agent (no document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

getSignature(userID, docID, digest)

getSignature response

Calculate digest

Sign document(userID, docRef, docID)

Signed Document

User PIN Entry
Show docID



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

DSS-signRequest(userID, docRef, 
docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 1d – Simple User-Agent (document elsewhere)

Sign-APDU

PKCS#1-Signature

Sign
digest

getSignature(userID, docID, digest)

getSignature response

Signed Document

User PIN Entry
Show docID

DMS

Select document(userID, docRef)

getDocument(userID,
docRef)

Calculate digest



Use Case 2
• Actor

– An End-User.

• System
– A User-Agent without a signature creation device, connected to a 

Service (the ‘server’). Another User-Device is used for the (secure) 
signature creation device.

• Basic Restriction(s)
– Communication between the client (the User-Agent) and the server (the 

Service) is always initiated by the client.

• Goal
– By using a Digital Signature Service an end-user signs a document 

(located at the client or at the server) with the (S)SCD at the User-
Device.



Use Case 2
• Basic Flow

– The End-User calls a Service by means of the User-Agent.
– The End-User registers his/her User-Device at the Service (specifying 

device type and address).
– The End-User selects a document by means of the Service.
– The End-User requests a signing operation for the document by means 

of the Service. (The Service requests a signature creation operation at 
the User-Device.)

– The User-Device shows an identification of the request and asks the 
user for a PIN or Password.

– The End-User verifies if it is the right identification and enters the PIN or 
Password at the User-Device.

– The User-Device creates the signature using the (Secure) Signature 
Creation Device.

– The End-User views the signed document.

• Example
– A user initiates a signature operation for a document with an app on 

his/her iPad, using a certificate installed on the SIM-card at his/her 
iPhone.



Variants Use Case 2
• Use Case 2a – Smart User-Device

– The User-Device implements a Digital Signature Service.
– The document is at the server and transferred to the User-Device.

• Use Case 2b: Like Use Case 2a, but the document stays at the server.

• Use Case 2c – Simple User-Device
– The User-Device is NOT capable of implementing a Digital Signature 

Service. Instead, the User-Device implements an IFD or an APDU 
interface.

– A server that is used by the User-Agent (the client) for ‘business’
functionality and for Digital Signature Service functionality.

– The document is at the client (User-Agent) and is transferrer to the 
server.

• Use Case 2d: Like Use Case 2b, but the document stays at the client.



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, doc, docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 2a – Smart User-Device (document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

Calculate
digest

Sign document(userID, docRef, docID)

Signed Document

User
Device

User PIN Entry

Show docID

Get document



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signResponse

Sequence Diagram Use Case 2b – Smart User-Device (no document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

Calculate digest

Sign document(userID, docRef, docID)

Signed Document

User
Device

User PIN Entry

Show docID

Get document

DSS-signRequest(userID, docID, hashAlg, digest)



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, doc, docID, hashAlg)

DSS-signResponse

Sequence Diagram Use Case 2c – Simple User-Device (document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

Calculate
digest

User
Device

getSignature(userID, docID, digest)

getSignature response

User PIN Entry
Show docID



D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, docID, hashAlg, digest)

DSS-signResponse

Sequence Diagram Use Case 2d – Simple User-Device (no document transfer)

Sign-APDU

PKCS#1-Signature

Sign
digest

Calculate digest

User
Device

getSignature(userID, digest, docID)

getSignature response

User PIN Entry
Show docID



Transport Bindings
• A transport binding is ‘orthogonal’ to the actual DSS 

protocol.

• Point of attention:
– Handling a request/response from the server to the client.

• Possible Transport Bindings:
– PAOS, reverse SOAP. Two separate HTTP Req/Res (from client to 

server) encapsulate a single Req/Resp from the server to the client.
– AS4 / ebMS v3, using the PULL-mode.
– REST

• Next slides use the Use Case sequence diagrams, 
addressing the transport binding.



PAOS

• Basic Flow

Reverse-Request

Reverse-Response

(Client)



ebMS “PULL”

• Basic Flow
Client Server

PULL()

MSH MSH

Request

PUSH(Response)

Reverse-Request

Reverse-Response



REST

• Basic Flow
Client Server

Reverse-Request

Reverse-Response



Use of PAOS / ebMSv3

• Both PAOS and ebMSv3 enable the use of 
reverse req/resp between client and 
server.

• The next slides indicate the location of 
these ‘reverse’ request/response (being 
PAOS or ebMSv3).



Reverse-Response

Reverse-Request

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

Select document(userID, docRef)

DSS-signRequest(userID, doc)

DSS-signResponse

Sequence Diagram Use Case 1a – Smart User-Agent

Sign-APDU

PKCS#1-Signature

Sign
Hash

Sign document(userID, docRef)

Signed Document

Calculate
Hash

Expecting DSS request

User PIN Entry



Reverse-Response

Reverse-Request

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server(S)SCD

DSS-signRequest(userID, doc)

DSS-signResponse

Sequence Diagram Use Case 1b – Simple User-Agent

Sign-APDU

PKCS#1-Signature

Sign
Hash

getSignature(userID, docRef, hash)

getSignature response

Calculate
Hash

Select document(userID, docRef)

Signed Document

User PIN Entry



Reverse-Response

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, doc)

DSS-signResponse

Sequence Diagram Use Case 2a – Smart User-Device

Sign-APDU

PKCS#1-Signature

Sign
Hash

Calculate
Hash

Sign document(userID, docRef)

Signed Document

User
Device

User PIN Entry

Notification?

Reverse-Request



Reverse-Request

Reverse-Response

D
S

S
 Im

pl
em

en
ta

tio
n

User
Agent Server (S)SCD

DSS-signRequest(userID, doc)

DSS-signResponse

Sequence Diagram Use Case 2b – Simple User-Device

Sign-APDU

PKCS#1-Signature

Sign
Hash

Calculate
Hash

User
Device

getSignature(userID, docRef, hash)

getSignature response

User PIN Entry

Select document(userID, docRef)

Notification?



Finding 1
• In case of a full DSS implementation at the client-side 

(user agent or user device) a reverse DSS 
request/response binding is required in case the 
signature creation is initiated from the server-side. 
– Bindings: PAOS, ebMSv3, REST.
– Use Cases 1a, 2a, 2b.

 Should the reverse binding become part of the DSS 
profiles?
– PAOS: Yes/No
– ebMSv3: Yes/No
– REST: Yes/No

Note:
If the whole process is initiated (from the client-side) by 
means of a blocking http req/resp, the client must be 
able to handle the reverse req/resp in parallel.



Finding 2
• In case of a full DSS implementation at the server-side a 

reverse request/response binding is required for the 
signature creation request to the User-Agent or User-
Device.
– The signature creation request is not a DSS request; see the 

‘getSignature’ in the use cases.
– The reverse binding is not part of the DSS req/respbinding; it is used by 

the DSS implementation.
• Does DSS know where to get the signature from?

– Bindings: PAOS, ebMSv3, REST.
– Use Cases 1b, 1c, 2c, 2d.
Therefore, can be left ‘out of scope’ regarding the DSS protocol. 

But there is a need to specify how to get the signature.

 Should the DSS sign request be extended to specify a 
location for the signature creation device?
– Yes/No



Finding 3
• The Use Cases specify a number of arguments, not yet 

part of the DSS sign request (such as hashAlg and 
digest).

 Should the following parameters be added to the DSS 
core as part of the sign request (response)?
– hashAlg
 Yes/No

– digest
 Yes/No

– signatureValue
 Request: Yes/No; Response: Yes/No

– docID
Yes/No

– docRef
Yes/No



Finding 4
• The Use Cases show the use of the ‘getSignature’

functionality. This can be any proprietary or already 
standardized protocol, such as:
– ISO/IEC 24727 / CEN 15480 (based on DSS!)
– ISO/IEC 7816 

 Should the DSS (core) be extended to standardize the 
‘getSignature’ functionality? 
– Yes/No

Note:
If the DSS req/resp is extended especially with the 
signatureValue in the response, it will standardise the 
‘getSignature’ functionality...



Finding 5
• The Use Cases show the use of the ‘getSignature’

functionality. This can be any proprietary or already 
standardized protocol, such as:
– ISO/IEC 24727 / CEN 15480 (based on DSS!)
– ISO/IEC 7816 

 Should the DSS (core) be extended to standardize the 
‘getSignature’ functionality? 
– Yes/No

Note:
If the DSS req/resp is extended especially with the 
signatureValue in the response, it will standardise the 
‘getSignature’ functionality...


