Use Case Considerations for
Extending DSS with
Local Sighature Computations

E.J. Van Nigtevecht
Sonnenglanz Consulting BV

Version June 9, 2011

Goal

 Enable DSS for use cases where the (secure) signature
creation device Is not part of the DSS service itself.

« Allow the client to specify the hash algorithm to be used.

Assumptions

The OASIS DSS Core is used.

A (Secure) Signature Creation Device is connected to a User-Agent
or a (separate) User-Device.

A User-Agent or User-Device may be equipped with a gradual set of
signature-creation related functionality. For example ranging
between:

— APDU (ISO 7816);
— IFD-Client (ISO/IEC 24727 | CEN 15480);
— Full OASIS DSS(-X) profiles;

A User-Agent or User-Device may have limited software &
performance capabilities and hence may be supported by a Digital
Signature Service to handle the complexities of the signature
creation if it cannot manipulate the document itself.

Assumptions

« A User-Agent or User-Device will always initiate the transaction and
acts as an HTTP-client.

« A document may remain on the client or server side or transferred
from one side to the other.

 The default Use Case of DSS will not be shown (DSS req/resp with
document as a parameter). Variants of the default Use Case are
explored instead.

Some Terminology

e Terminology

userlD: a way to identify a user;

docRef: a reference to a document (url) for retrieval;

» Currently, DSS only supports a reference to the document inside the request
structure. Therefore, a docRef only makes sense if the document is located
elsewhere (not on the requesting client or DSS server).

doclID: a way to identify a document by a user, in a user friendly
manner;

digest: the hash of the document used for the signature creation (the
calculation of the hash value depends on the type of document, for
instance XML, PDF or ‘binary’);

digestSignature: the ‘raw’ signature of the digest;
hashAlg: the hash algorithm to be used (or that has been used);

Use Case 1

Actor
— An End-User.

System

— A User-Agent (the ‘client’) with a (secure) signature creation device,
(S)SCD, connected to a Service (the ‘server’).

Basic Restriction(s)

— Communication between the client (the User-Agent) and the server (the
Service) is always initiated by the client.

Goal

— By using a Digital Signature Service an end-user signs a document
(located at the client or at the server) with the (S)SCD at the User-
Agent.

Use Case 1

 Basic Flow
— The End-User calls a Service by means of the User-Agent.
— The End-User selects a document by means of the Service.

— The End-User requests a signing operation for the document by means
of the Service.

— The User-Agent asks the user for a PIN or Password.
— The End-User enters the PIN or Password.

— The User-Agent creates the signature using the (Secure) Signature
Creation Device.

— The User-Agent shows the signed document.

« Example

— A user signs a document, opened in a web browser (running at a PC) by
means of a web application, using a smartcard/usb-token connected to
the PC.

— A user signs a document with an app on the iPhone using a certificate
installed on the SIM-card at the same iPhone.

Variants Use Case 1

« Use Case la — Smart User-Agent
— The User-Agent implements a Digital Signature Service.
— The document is at the server.

e Use Case 1b — Simple User-Agent

— The User-Agent is NOT capable of implementing a Digital Signature
Service. Instead, the User Agent implements an IFD or an APDU
interface.

— A server that is used by the User-Agent (the client) for ‘business’
functionality and for Digital Signature Service functionality.

— The document is at the client (User-Agent) and is transferred to server.

 Use Case 1c — Simple User-Agent
— Like Use Case 1b, but the document stays at the client.

Seguence Diagram Use Case la — Smart User-Agent

Server

A 4

A 4

: User |
| (S)SCD ;
; Agent |
S _‘L __________ i
Select document(userlD, docRef)
Sign document(userlD, docRef, docID)
:| Expecting DSS request
Authentication:
actu;lclyt/hae part < DSS-signRequest(userID, doc, doclID, hashAlqg)
middelware.
Calculate digest based on hashAlg
(as well as document type)
:| Show docID
User PIN Entry
__________ ___>
< Sign-APDU
Sign
digest
_______ PKCS#1-Signature__|)]
________________ DSS-signResponse _________________
P Signed Document__________________

Sequence Diagram Use Case 1b — Simple User-Agent (document transfer)

| User |:
| (S)SCD ; Server
; Agent |
e PP [— i
:l Sign document(userID, docRef, doclID)
DSS-signRequest(userID, doc, doclD, hashAlqg) >
Calculate
«detSignature(userID, doclID, digest) digest
| Show docID
YesrEl BT | [
«Sign-APDU
Sign
digest
------- PKCS#L-Signature o |~ getSignature response.........____ |,
€----o-oo_.____DSS-signResponse_______________
P Signed_Document

Seqguence Diagram Use Case 1c — Simple User-Agent (no document transfer)

Server

| User |:
! (S)SCD g
; Agent |
e PP [— i
:| Sign document(userID, docRef, docID)
:l Calculate digest
DSS-signRequest(userID, docID, hashAlg, digest),
< getSignature(userID, doclD, digest)
| Show docID
YesrEl BT | [
<« Sign-APDU
Sign
digest
------- PKCS#L-Signature o |~ getSignature response...........___ |,
€----o-oo_.____DSS-signResponse_______________
P Signed Document_____________________]
L T

Sequence Diagram Use Case 1d — Simple User-Agent (document elsewhere)

User PIN Enty
Sign-APDU

&
l

Sign
digest

>

doclD, hashAlg)

getSignature(userlID, doclD, digest)

getDocument(userID, >

5 User |
| (S)SCD : Server DMS
; Agent |
sy vy B E—
Select document(userID, docRef) #U
DSS-signRequest(userlD, docRef, o

docRef)

:| Calculate digest

<«—! Show docID

________________ getSignature response ______________|__,l
€----o-o_.___DSS-signResponse_______________
P Signed Document__________________

Use Case 2

Actor
— An End-User.

System

— A User-Agent without a signature creation device, connected to a
Service (the ‘server’). Another User-Device is used for the (secure)
signature creation device.

Basic Restriction(s)

— Communication between the client (the User-Agent) and the server (the
Service) is always initiated by the client.

Goal

— By using a Digital Signature Service an end-user signs a document
(located at the client or at the server) with the (S)SCD at the User-
Device.

Use Case 2

 Basic Flow

The End-User calls a Service by means of the User-Agent.

The End-User registers his/her User-Device at the Service (specifying
device type and address).

The End-User selects a document by means of the Service.

The End-User requests a signing operation for the document by means
of the Service. (The Service requests a signature creation operation at
the User-Device.)

The User-Device shows an identification of the request and asks the
user for a PIN or Password.

The End-User verifies if it is the right identification and enters the PIN or
Password at the User-Device.

The User-Device creates the signature using the (Secure) Signature
Creation Device.

The End-User views the signed document.

« Example

A user initiates a signature operation for a document with an app on
his/her iPad, using a certificate installed on the SIM-card at his/her
iPhone.

Variants Use Case 2

Use Case 2a — Smart User-Device
— The User-Device implements a Digital Signature Service.
— The document is at the server and transferred to the User-Device.

Use Case 2b: Like Use Case 2a, but the document stays at the server.

Use Case 2¢ — Simple User-Device

— The User-Device is NOT capable of implementing a Digital Signature
Service. Instead, the User-Device implements an IFD or an APDU
interface.

— A server that is used by the User-Agent (the client) for ‘business’
functionality and for Digital Signature Service functionality.

— The document is at the client (User-Agent) and is transferrer to the
server.

Use Case 2d: Like Use Case 2b, but the document stays at the client.

Seqguence Diagram Use Case 2a — Smart User-Device (document transfer)

User
Agent

1

Server a

Sign document(userID, docRef, dQc|D)

:l Get document

DSS-signRequest(userID, doc, doclD, Qa

5hAIg)

Calculate

:l digest

:| Show doclID

User PIN Entry

<

Sign
digest

Seqguence Diagram Use Case 2b — Smart User-Device (no document transfer)

User
Agent

1

Server a

Sign document(userID, docRef, dQc|D)

:| Get document

:| Calculate digest

DSS-signRequest(user!D, docID, hash,A

9,

digest)

:| Show doclID

User PIN Entry

<

Sign
digest

Sequence Diagram Use Case 2c — Simple User-Device (document transfer)

User User
Agent Server Device (S)SCD
T s s b s

DSS-signRequest(userID, doc, docID= hash

Alg)

Calculate

:' digest

getSignature(userID, doclID, digest) >

Show docID
User PIN Entry

Sign-APDU >

PKCS#1-Signature

Sign
digest

Sequence Diagram Use Case 2d — Simple User-Device (no document transfer)

User User
Agent Server Device (S)SCD
T s s b s

:| Calculate digest

DSS-signRequest(userID, doclD, hashAlq,

Higest)

getSignature(userlD, digest, doclD) >

Show docID
User PIN Entry

Sign-APDU >

PKCS#1-Signature

Sign
digest

Transport Bindings

A transport binding is ‘orthogonal’ to the actual DSS
protocol.

Point of attention:
— Handling a request/response from the server to the client.

Possible Transport Bindings:

— PAOS, reverse SOAP. Two separate HTTP Reqg/Res (from client to
server) encapsulate a single Reg/Resp from the server to the client.

— AS4 / ebMS v3, using the PULL-mode.
— REST

Next slides use the Use Case sequence diagrams,
addressing the transport binding.

PAOS

e Basic Flow (Client)

User-Agent Server

Y

1. Initial request
PAQOS: someService
Reverse-Request <

_ 2 ﬁcsponsc (PAOS Request)
Content-Type: application/vnd.paos+xml]
<S:Envelope=.....

/'
3. Request wsa:ReplyTo (PAOS Responsg)
Content-Type: application/vnd.paos+xml
Reverse-Response < <S:Envelope=.....
~— 4. Response to mnitial request

Content-Type: ...

ebMS “PULL”"

e Basic Flow

Client

Reverse-Request

Reverse-Response

MSH

PULL()

Server

MSH

PUSH(Response)

REST QO
O

e Basic Flow

Client Server

Reverse-Request D

Reverse-Response [‘J

O
Q
O

Use of PAOS / ebMSv3

 Both PAOS and ebMSv3 enable the use of
reverse reg/resp between client and
server.

 The next slides indicate the location of
these ‘reverse’ request/response (being
PAOS or ebMSv3).

Seguence Diagram Use Case la — Smart User-Agent

| User |
| (S)SCD ; Server
; Agent |
e S [— i
Select document(userlD, docRef) >
Sign document(userlD, docRef) >
:| Expecting DSS request
<LSS-signRequest(userlD, doc)
Reverse-Request
Calculate
< Hash
User PIN Entry
.......... _->
< Sign-APDU
Sign
Hash
_______ PKCS#1-Signature__| __,
________________ DSS-signResponse ____________________,
Reverse-Response
P Signed Document_____________________] T

Sequence Diagram Use Case 1b — Simple User-Agent

| User |:
| (S)SCD a Server
; Agent |
T OSSR _‘L __________ i
Select document(userlD, docRef) >
DSS-signRequest(userlD, doc) >
Calculate
< getSignature(userlD, docRef, hash) Hash
U_s_e_r_FzI[\I_I_Er_wt_r)_/" Reverse-Request
« Sign-APDU
Sign
Hash
------- PKCS#L-Signature o | getSignature response.........____ |54
Reverse-Response
€----o-oo_.____DSS-signResponse_______________
P Signed Document_____________________] T

Seqguence Diagram Use Case 2a — Smart User-Device

User | user
Agent Server Device (S)SCD
T e i

Sign document(userID, docRef)

:| Notification?

DSS-signRequest(userID, doc)
Reverse-Request

Y

Calculate
:' Hash

User PIN Entry

Sign
Hash

- --- == L —

Reverse-Response

Seguence Diagram Use Case 2b — Simple User-Device

User
Agent

Server a

1

Select document(userID, docRef)

DSS-signRequest(userID, doc)

Calculate
Hash

getSignature(userID, docRef, hash) >

:| Notification?

Reverse-Request

User PIN Entry

Sign-APDU |

Reverse-Response

Sign

PKCS#1-Signature

A

Hash

Finding 1

* In case of a full DSS implementation at the client-side
(user agent or user device) a reverse DSS
request/response binding Is required in case the
signature creation is initiated from the server-side.

— Bindings: PAOS, ebMSv3, REST.
— Use Cases 1a, 2a, 2b.

=» Should the reverse binding become part of the DSS
profiles?
— PAOS: Yes/No
— ebMSv3: Yes/No
— REST: Yes/No

Note:

If the whole process is initiated (from the client-side) by
means of a blocking http reqg/resp, the client must be
able to handle the reverse reqg/resp in parallel.

Finding 2

* In case of a full DSS implementation at the server-side a
reverse request/response binding is required for the
sighature creation request to the User-Agent or User-
Device.

— The signature creation request is not a DSS request; see the
‘getSignature’ in the use cases.

— The reverse binding is not part of the DSS reg/respbinding; it is used by
the DSS implementation.

 Does DSS know where to get the signature from?
— Bindings: PAOS, ebMSv3, REST.
— Use Cases 1b, 1c, 2c, 2d.

Therefore, can be left ‘out of scope’ regarding the DSS protocol.
But there is a need to specify how to get the signature.

=> Should the DSS sign request be extended to specify a
location for the signature creation device?
— Yes/No

Finding 3

 The Use Cases specify a number of arguments, not yet
part of the DSS sign request (such as hashAlg and
digest).

=» Should the following parameters be added to the DSS
core as part of the sign request (response)?

— hashAlg
- Yes/No

— digest
- Yes/No
— signatureValue
- Request: Yes/No; Response: Yes/No
— doclID
—2>Yes/No
— docRef
—2>Yes/No

Finding 4

 The Use Cases show the use of the ‘getSignature’
functionality. This can be any proprietary or already
standardized protocol, such as:

— ISO/IEC 24727 | CEN 15480 (based on DSS!)
— ISO/IEC 7816

=» Should the DSS (core) be extended to standardize the

‘getSignature’ functionality?
— Yes/No

Note:

If the DSS reqg/resp Is extended especially with the
sighatureValue in the response, it will standardise the
‘getSignature’ functionality...

Finding 5

 The Use Cases show the use of the ‘getSignature’
functionality. This can be any proprietary or already
standardized protocol, such as:

— ISO/IEC 24727 | CEN 15480 (based on DSS!)
— ISO/IEC 7816

=» Should the DSS (core) be extended to standardize the

‘getSignature’ functionality?
— Yes/No

Note:

If the DSS reqg/resp Is extended especially with the
sighatureValue in the response, it will standardise the
‘getSignature’ functionality...

