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Goal

 Enable DSS for use cases where the (secure) signature
creation device Is not part of the DSS service itself.

« Allow the client to specify the hash algorithm to be used.



Assumptions

The OASIS DSS Core is used.

A (Secure) Signature Creation Device is connected to a User-Agent
or a (separate) User-Device.

A User-Agent or User-Device may be equipped with a gradual set of
signature-creation related functionality. For example ranging
between:

— APDU (ISO 7816);
— IFD-Client (ISO/IEC 24727 | CEN 15480);
— Full OASIS DSS(-X) profiles;

A User-Agent or User-Device may have limited software &
performance capabilities and hence may be supported by a Digital
Signature Service to handle the complexities of the signature
creation if it cannot manipulate the document itself.



Assumptions

« A User-Agent or User-Device will always initiate the transaction and
acts as an HTTP-client.

« A document may remain on the client or server side or transferred
from one side to the other.

 The default Use Case of DSS will not be shown (DSS req/resp with
document as a parameter). Variants of the default Use Case are
explored instead.



Some Terminology

e Terminology

userlD: a way to identify a user;

docRef: a reference to a document (url) for retrieval;

» Currently, DSS only supports a reference to the document inside the request
structure. Therefore, a docRef only makes sense if the document is located
elsewhere (not on the requesting client or DSS server).

doclID: a way to identify a document by a user, in a user friendly
manner;

digest: the hash of the document used for the signature creation (the
calculation of the hash value depends on the type of document, for
instance XML, PDF or ‘binary’);

digestSignature: the ‘raw’ signature of the digest;
hashAlg: the hash algorithm to be used (or that has been used);



Use Case 1

Actor
— An End-User.

System

— A User-Agent (the ‘client’) with a (secure) signature creation device,
(S)SCD, connected to a Service (the ‘server’).

Basic Restriction(s)

— Communication between the client (the User-Agent) and the server (the
Service) is always initiated by the client.

Goal

— By using a Digital Signature Service an end-user signs a document
(located at the client or at the server) with the (S)SCD at the User-
Agent.



Use Case 1

 Basic Flow
— The End-User calls a Service by means of the User-Agent.
— The End-User selects a document by means of the Service.

— The End-User requests a signing operation for the document by means
of the Service.

— The User-Agent asks the user for a PIN or Password.
— The End-User enters the PIN or Password.

— The User-Agent creates the signature using the (Secure) Signature
Creation Device.

— The User-Agent shows the signed document.

« Example

— A user signs a document, opened in a web browser (running at a PC) by
means of a web application, using a smartcard/usb-token connected to
the PC.

— A user signs a document with an app on the iPhone using a certificate
installed on the SIM-card at the same iPhone.



Variants Use Case 1

« Use Case la — Smart User-Agent
— The User-Agent implements a Digital Signature Service.
— The document is at the server.

e Use Case 1b — Simple User-Agent

— The User-Agent is NOT capable of implementing a Digital Signature
Service. Instead, the User Agent implements an IFD or an APDU
interface.

— A server that is used by the User-Agent (the client) for ‘business’
functionality and for Digital Signature Service functionality.

— The document is at the client (User-Agent) and is transferred to server.

 Use Case 1c — Simple User-Agent
— Like Use Case 1b, but the document stays at the client.



Seguence Diagram Use Case la — Smart User-Agent
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Sequence Diagram Use Case 1b — Simple User-Agent (document transfer)
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Seqguence Diagram Use Case 1c — Simple User-Agent (no document transfer)
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Sequence Diagram Use Case 1d — Simple User-Agent (document elsewhere)
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Use Case 2

Actor
— An End-User.

System

— A User-Agent without a signature creation device, connected to a
Service (the ‘server’). Another User-Device is used for the (secure)
signature creation device.

Basic Restriction(s)

— Communication between the client (the User-Agent) and the server (the
Service) is always initiated by the client.

Goal

— By using a Digital Signature Service an end-user signs a document
(located at the client or at the server) with the (S)SCD at the User-
Device.



Use Case 2

 Basic Flow

The End-User calls a Service by means of the User-Agent.

The End-User registers his/her User-Device at the Service (specifying
device type and address).

The End-User selects a document by means of the Service.

The End-User requests a signing operation for the document by means
of the Service. (The Service requests a signature creation operation at
the User-Device.)

The User-Device shows an identification of the request and asks the
user for a PIN or Password.

The End-User verifies if it is the right identification and enters the PIN or
Password at the User-Device.

The User-Device creates the signature using the (Secure) Signature
Creation Device.

The End-User views the signed document.

« Example

A user initiates a signature operation for a document with an app on
his/her iPad, using a certificate installed on the SIM-card at his/her
iPhone.



Variants Use Case 2

Use Case 2a — Smart User-Device
— The User-Device implements a Digital Signature Service.
— The document is at the server and transferred to the User-Device.

Use Case 2b: Like Use Case 2a, but the document stays at the server.

Use Case 2¢ — Simple User-Device

— The User-Device is NOT capable of implementing a Digital Signature
Service. Instead, the User-Device implements an IFD or an APDU
interface.

— A server that is used by the User-Agent (the client) for ‘business’
functionality and for Digital Signature Service functionality.

— The document is at the client (User-Agent) and is transferrer to the
server.

Use Case 2d: Like Use Case 2b, but the document stays at the client.



Seqguence Diagram Use Case 2a — Smart User-Device (document transfer)
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Seqguence Diagram Use Case 2b — Smart User-Device (no document transfer)

User
Agent

1

Server a

Sign document(userID, docRef, dQc|D)

:| Get document

:| Calculate digest

DSS-signRequest(user!D, docID, hash,A

9,

digest)

:| Show doclID

User PIN Entry

<

Sign
digest




Sequence Diagram Use Case 2c — Simple User-Device (document transfer)
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Sequence Diagram Use Case 2d — Simple User-Device (no document transfer)
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Transport Bindings

A transport binding is ‘orthogonal’ to the actual DSS
protocol.

Point of attention:
— Handling a request/response from the server to the client.

Possible Transport Bindings:

— PAOS, reverse SOAP. Two separate HTTP Reqg/Res (from client to
server) encapsulate a single Reg/Resp from the server to the client.

— AS4 / ebMS v3, using the PULL-mode.
— REST

Next slides use the Use Case sequence diagrams,
addressing the transport binding.
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Use of PAOS / ebMSv3

 Both PAOS and ebMSv3 enable the use of
reverse reg/resp between client and
server.

 The next slides indicate the location of
these ‘reverse’ request/response (being
PAOS or ebMSv3).



Seguence Diagram Use Case la — Smart User-Agent
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Sequence Diagram Use Case 1b — Simple User-Agent
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Seqguence Diagram Use Case 2a — Smart User-Device
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Seguence Diagram Use Case 2b — Simple User-Device
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Finding 1

* In case of a full DSS implementation at the client-side
(user agent or user device) a reverse DSS
request/response binding Is required in case the
signature creation is initiated from the server-side.

— Bindings: PAOS, ebMSv3, REST.
— Use Cases 1a, 2a, 2b.

=» Should the reverse binding become part of the DSS
profiles?
— PAOS: Yes/No
— ebMSv3: Yes/No
— REST: Yes/No

Note:

If the whole process is initiated (from the client-side) by
means of a blocking http reqg/resp, the client must be
able to handle the reverse reqg/resp in parallel.




Finding 2

* In case of a full DSS implementation at the server-side a
reverse request/response binding is required for the
sighature creation request to the User-Agent or User-
Device.

— The signature creation request is not a DSS request; see the
‘getSignature’ in the use cases.

— The reverse binding is not part of the DSS reg/respbinding; it is used by
the DSS implementation.

 Does DSS know where to get the signature from?
— Bindings: PAOS, ebMSv3, REST.
— Use Cases 1b, 1c, 2c, 2d.

Therefore, can be left ‘out of scope’ regarding the DSS protocol.
But there is a need to specify how to get the signature.

=> Should the DSS sign request be extended to specify a
location for the signature creation device?
— Yes/No



Finding 3

 The Use Cases specify a number of arguments, not yet
part of the DSS sign request (such as hashAlg and
digest).

=» Should the following parameters be added to the DSS
core as part of the sign request (response)?

— hashAlg
- Yes/No

— digest
- Yes/No
— signatureValue
- Request: Yes/No; Response: Yes/No
— doclID
—2>Yes/No
— docRef
—2>Yes/No



Finding 4

 The Use Cases show the use of the ‘getSignature’
functionality. This can be any proprietary or already
standardized protocol, such as:

— ISO/IEC 24727 | CEN 15480 (based on DSS!)
— ISO/IEC 7816

=» Should the DSS (core) be extended to standardize the

‘getSignature’ functionality?
— Yes/No

Note:

If the DSS reqg/resp Is extended especially with the
sighatureValue in the response, it will standardise the
‘getSignature’ functionality...



Finding 5

 The Use Cases show the use of the ‘getSignature’
functionality. This can be any proprietary or already
standardized protocol, such as:

— ISO/IEC 24727 | CEN 15480 (based on DSS!)
— ISO/IEC 7816

=» Should the DSS (core) be extended to standardize the

‘getSignature’ functionality?
— Yes/No

Note:

If the DSS reqg/resp Is extended especially with the
sighatureValue in the response, it will standardise the
‘getSignature’ functionality...



