
OData Extension for XML Data

A Directional White Paper

Introduction
This paper documents some use cases, initial requirements, examples and design
principles for an OData extension for XML data. It is non-normative and is intended to
seed discussion in the OASIS OData TC for the development of an OASIS standard
OData extension defining retrieval and manipulation of properties representing XML
documents in OData.
XML has achieved widespread adoption since it was published as a W3C
Recommendation in 1998. XML documents were initially stored in databases as character
strings, character large objects (CLOBs), or shredded into numerous rows in several
related tables. Many databases now have native support for XML documents. Support for
XML was added to SQL in 2003 and then extended in 2008.

XML properties are not currently supported in OData. We suggest that an OData
extension be defined to add this support. Properties that contain XML documents will be
identified as such, and additional operations will be made available on such properties.

Status
Version 1.0 (May 18, 2012)

Authors
Andrew Eisenberg, IBM
Ralf Handl, SAP
Michael Pizzo, Microsoft

Background
SQL/XML allows XML columns to be defined in tables:
CREATE TABLE employees
 (empid INTEGER PRIMARY KEY,
 lastname VARCHAR(30) NOT NULL,
 resume XML)

The XMLQUERY function can be used to evaluate an XQuery expression on an XML
document and return an XML document as a result:
SELECT XMLQUERY ('<jobs> {$r/resume/jobHistory} </jobs>'
 PASSING resume AS "r")
FROM employees
WHERE empid='166549'

OData Extension for XML Data – Direction Document

XMLCAST can be used to cast a value of an XML type into an SQL type:
SELECT XMLCAST (XMLQUERY ('($r/resume/jobHistory)[1]/jobTitle'
 PASSING resume AS "r")
 AS VARCHAR(30))
FROM employees
WHERE empid='166549'

XMLEXISTS can be used to evaluate an XQuery expression, returning true if the result
contains any nodes (elements, attributes, etc.).
SELECT empid
FROM employees
WHERE XMLEXISTS ('$r/resume/jobHistory[contains(., "Marketing")]'
 PASSING resume AS "r")

Some products have extended SQL/XML with a function that allows an XML document
to be transformed using an XSLT stylesheet.
SELECT XSLTRANSFORM (resume USING SELECT stylesheet
 FROM stylsheets
 WHERE xsltid='res_summary')
FROM employees
WHERE empid='166549'

Motivation
An OData service might publish an Employees entity set, with a resume property
providing an XML document:
<Schema xmlns="http://schemas.microsoft.com/ado/2008/09/edm"
 Namespace="Personnel">
 <EntityContainer Name="MyCompany">
 <EntitySet Name="Employees" EntityType="Employee"/>
 </EntityContainer>
 <EntityType Name="Employee">
 <Key>
 <PropertyRef Name="empid"/>
 </Key>
 <Property Name="empid" Type="Edm.Int32" Nullable="false"/>
 <Property Name="lastname" Type="Edm.String" Nullable="false"
 MaxLength="30" FixedLength="false" Unicode="true"/>
 <Property Name="resume" Type="Edm.Stream" Nullable="true"
 MaxLength="Max" FixedLength="false"/>
 </EntityType>
</Schema>

A client might wish to query this entity set in a number of ways.

1. Retrieve only those employees that have “Marketing” in the job history located in
their resume.

2. Return every employee, ordering the result based on the state in which they live,
where that state is located in their resume.

3. Return the name and phone number of every employee, where the phone number
has been taken from his or her resume.

 2

OData Extension for XML Data – Direction Document

4. Replace an old resume with a new resume for a specific employee.

5. Return a summarized resume for each employee.

Requirements
The following capabilities must be supported in this extension to OData:

• An OData Stream data type may be annotated to represent an XML data type

• XML properties may be returned separately from non-XML properties

• Entities may be filtered based on the content of their XML properties

• XML values that have been derived from XML properties may be retrieved

• Scalar values that have been derived from XML properties may be retrieved

• XMLQUERY, XMLEXISTS, and XMLCAST operations may be applied to
XML properties

• The values of XML properties may be updated

Examples
The following examples describe possible annotations and extensions to OData to
support XML data. Although concrete annotations, functions, and behavior are described,
they are intended to be purely illustrative and not prescriptive. The Employees entity set
might now be published as:
<Schema xmlns="http://schemas.microsoft.com/ado/2008/09/edm"
 Namespace="Personnel">
 <EntityContainer Name="MyCompany">
 <EntitySet Name="Employees" EntityType="Employee"/>
 </EntityContainer>
 <EntityType Name="Employee">
 <Key>
 <PropertyRef Name="empid"/>
 </Key>
 <Property Name="empid" Type="Edm.Int32" Nullable="false"/>
 <Property Name="lastname" Type="Edm.String" Nullable="false"
 MaxLength="30" FixedLength="false" Unicode="true"/>
 <Property Name="resume" Type="Edm.Stream" Nullable="true"
 MaxLength="Max" FixedLength="false">
 <ValueAnnotation Term="OData.ContentType" String="text/xml"/>
 </Property>
 </EntityType>
</Schema>

To retrieve a single employee, one might submit:
http://www.example.com/mycompany/Employees(166549)

 3

OData Extension for XML Data – Direction Document

The might return the following entry:
<entry xml:base=http://www.example.com/mycompany/Employees ...>
 <id>http://www.example.com/mycompany/Employees(166549)</id>
 <link
 rel=http://schemas.microsoft.com/ado/2007/08
 /dataservices/mediaresource/resume
 type="application/xml"
 title="resume"
 href="resume166549.xml"/>
 <link
 rel=http://schemas.microsoft.com/ado/2007/08
 /dataservices/edit-media/resume
 type="application/xml"
 title="resume"
 href="resume166549.xml"/>
 <m:properties>
 <d:empid>166549</d:empid>
 <d:lastname>Heinlein</d:lastname>
 </m:properties>
</entry>

To retrieve only those employees that have “Marketing” in the job history located in their
resume, one might submit:
http://www.example.com/mycompany/Employees
?$filter=resume/XML.XMLEXISTS
 (query = '$r//jobHistory[contains(., "Marketing")]',
 vname= 'r')

Or, if the variable name can be defaulted to “it”:
http://www.example.com/mycompany/Employees
?$filter=resume/XML.XMLEXISTS
 (query = '$it//jobHistory
 [contains(., "Marketing")]')

To return every employee, ordering the result based on the state in which they live, where
that state is located in their resume, one might submit:
http://www.example.com/mycompany/Employees
?$orderby=resume/XML.XMLQUERY_STRING
 (query = '$r/resume/address/state',
 vname = 'r')

To return the name and phone number of every employee, where the phone number has
been taken from his or her resume, one might submit:
http://www.example.com/mycompany/Employees
?$select=lastname,
 resume/XML.XMLQUERY_STRING
 (query = '$r/resume/phone',
 vname = 'r')

This query would require an extension to OData, allowing an expression to appear in a
$select query option.

 4

OData Extension for XML Data – Direction Document

To replace an old resume with a new resume for a specific employee, one might submit:
PUT /resume166549.xml HTTP/1.1
Host: host
Content-Type: application/xml
DataServiceVersion: 1.0
MaxDataServiceVersion: 3.0
If-Match: ...Etag...
Content-Length: ####

<resume>
 <ssn>1234</ssn>
 <lastname>Handl</lastname>
 <address>
 <street>ABC St.</street>
 <zipcode>10022</zipcode>
 </address>
 <experience>excellent</experience>
</resume>

To return a summarized resume for each employee, one might submit:
http://www.example.com/mycompany/Employees
 /resume/XML.XMLQUERY
 (query = '<summary>
 { $r/lastname,
 <experience>
 { $r/jobHistory/company }
 </experience>
 }
 </summary>',
 vname = 'r',
 version='1.0',
 XMLDeclaration=true)

With defaults for the variable name and serialization parameters, this could be shortened
to:
http://www.example.com/mycompany/Employees
 /resume/XML.XMLQUERY
 (query = '<summary>
 { $it/lastname,
 <experience>
 { $it/jobHistory/company }
 </experience>
 }
 </summary>')

OData implementations should be able to analyze a query and raise an error if one of
these XML functions is applied to a property that does not have a content type of text/xml
or application/xml.

 5

OData Extension for XML Data – Direction Document

Design Principles
OData is an application-level protocol for interacting with data via RESTful web services.
An OData Service’s contract is defined by simple, well-defined conventions and
semantics applied to the data model exposed by the service, providing a high level of
semantic interoperability between loosely coupled clients and services.

The design principles of OData are to:

• Make it easy to implement and consume a basic OData service over a variety of
data sources. Rather than try and expose the full functionality of all stores, define
common features for core data retrieval and update scenarios and incremental,
optional features for more advanced scenarios.

• Leverage Data Models to guide clients through common interaction patterns
rather than force clients to write complex queries against raw data

• Define consistency across the protocol and a single way to express each piece of
functionality

The design principles of OData extensions are to:

• Ensure extensions do not violate the core semantics of OData

• Avoid defining different representations for common concepts across extensions

• Ensure independent extensions compose well

• Ensure clients can ignore extended functionality and still query and consume data
correctly

Technical Direction
The design of this extension to OData should take the following direction:

• An OData vocabulary for XML shall be defined.

• An annotation from a common vocabulary defining the content type should be
applied to a Stream property that represents XML documents.

• The XML vocabulary will define functions that can be applied to XML properties.

• These functions will be based on functions found in SQL/XML:2011, and by
extension will be based on XQuery 1.0.

Open questions, issues and work items
• Support may be provided for transforming an XML property by applying an

XSLT stylesheet.

• The XML annotation may contain additional properties describing the XML
document. These properties might include the location of the schema used to
validate the document.

• Support may be provided for updating only a portion of an XML property.

 6

OData Extension for XML Data – Direction Document

• XML operations could define a default variable name for the document being
processed. The document could be assigned as the context item for that query.

• OData could be extended to allow expressions in the $select query option,
allowing derived values to be returned along with the properties of an entity.

• OData could be extended with an operator that returns the content of a Stream as
either a String or Binary value.

• The OData.ContentType value annotation could be defined to allow multiple
content types as its value.

• Support for a function similar to XSLTRANSFORM could be added.

References
1. Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation,

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,
26 November 2008, http://www.w3.org/TR/xml/.

2. ISO/IEC 9075-14:2003 Information technology - Database languages - SQL - Part
14: XML-Related Specifications, (SQL/XML).

3. ISO/IEC 9075-14:2008 Information technology - Database languages - SQL - Part
14: XML-Related Specifications, (SQL/XML).

4. ISO/IEC 9075-14:2011 Information technology - Database languages - SQL - Part
14: XML-Related Specifications, (SQL/XML).

5. XQuery 1.0: An XML Query Language (Second Edition), W3C Recommendation,
14 December 2010, Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela
Florescu, Jonathan Robie, Jérôme Siméon, http://www.w3.org/TR/xquery/.

6. XSL Transformations (XSLT) Version 2.0, W3C Recommendation, Michael Kay,
23 January 2007, http://www.w3.org/TR/xslt20/.

 7

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt20/

	OData Extension for XML Data
	A Directional White Paper
	Introduction
	Status
	Authors
	Background
	Motivation
	Requirements
	Examples
	Design Principles
	Technical Direction
	Open questions, issues and work items
	References

