1

Digital Signature Service Overview

3 4	Document identifier: oasis-dss-1.0-overview.doc			
5 6	Technical Committee: OASIS Digital Signature Services TC			
7 8 9	Chair(s): Nick Pope, Thales eSecurity Juan Carlos Cruellas, Centre d'aplicacions avançades d'Internet (UPC)			
10 11 12	Editors: Nick Pope, Thales eSecurity Juan Carlos Cruellas, Centre d'aplicacions avançades d'Internet (UPC)			
13 14 15	Abstract: This document provides an overview of the set of specifications for "Digital Signature Services".			
16 17	For the DSS specifications and further papers on DSS see the DSS TC web page at: http://www.oasis-open.org/committees/dss.			
18				
19 20	Status: This is a document for information produced by the OASIS DSS Technical Committee.			

Table of Contents

22	1	Introduction	3
23		1.1 Overview of DSS	3
24		1.2 DSS Specifications	3
25	2	Current DSS Profiles	5
26		2.1 Time-stamp Profile	5
27		2.1.1 Overview	5
28		2.1.2 Relationship to other Profiles	5
29		2.2 Asynchronous Profile	5
30		2.2.1 Overview	5
31		2.2.2 Relationship to other Profiles	5
32		2.3 Code-Signing Profile	5
33		2.3.1 Overview	5
34		2.3.2 Relationship to other Profiles	5
35		2.4 J2ME code-signing profile	6
36		2.4.1 Overview	6
37		2.4.2 Relationship to other Profiles	6
38		2.5 Entity Seal Profile	6
39		2.5.1 Overview	6
40		2.5.2 Relationship to other Profiles	6
41		2.6 Electronic Postmark (EPM) Profile	
42		2.6.1 Overview	6
43		2.6.2 Relationship to other Profiles	6
44		2.7 German Signature Law Profile	7
45		2.7.1 Overview	7
46		2.7.2 Relationship to other Profiles	7
47		2.8 AdES Profile	7
48		2.8.1 Overview	7
49		2.8.2 Relationship to other Profiles	7
50		2.9 Signature Gateway Profile	7
51		2.9.1 Overview	7
52		2.9.2 Relationship to other Profiles	7
53	3	References	8
54		3.1 DSS Specifications	8
55		3.2 Other Specifications	8
56	Αį	ppendix A. Notices Error! Bookmark not define	d.
57			

1 Introduction

- 59 The OASIS Digital Signature Services (DSS) TC has produced a number of specification
- 60 documents. This document attempts to provide an overview of DSS and the roles played by the
- 61 various specifications.

58

62

83

89

90 91

92

1.1 Overview of DSS

- 63 The DSS specifications describe two XML-based request/response protocols a signing protocol
- 64 and a verifying protocol. Through these protocols a client can send documents to a server and
- 65 receive back a signature on the documents; or send documents and a signature to a server, and
- receive back an answer on whether the signature verifies the documents.
- 67 These operations could be useful in a variety of contexts for example, they could allow clients to
- 68 access a single corporate key for signing press releases, with centralized access control,
- 69 auditing, and archiving of signature requests. They could also allow clients to create and verify
- 70 signatures without needing complex client software and configuration.
- 71 The signing and verifying protocols are chiefly designed to support the creation and verification of
- 72 XML signatures [XMLSig], , and CMS signatures [RFC3369]. These protocols can also be used
- 73 to create and verify time-stamps, either in binary format as defined in [RFC3161] or to an XML
- time-stamp structure as defined in DSS. These protocols may also be extensible to other types of
- signatures and timestamps, such as PGP signatures.
- 76 It is expected that the signing and verifying protocols will be *profiled* to meet many different
- 77 application scenarios. In anticipation of this, these protocols have only a minimal set of required
- 78 elements, which deal with transferring "input documents" and signatures back and forth between
- 79 client and server.
- 80 The current DSS specifications and published papers about DSS are available via the DSS
- 81 Technical Committee web site at:
- 82 http://www.oasis-open.org/committees/dss

1.2 DSS Specifications

- The DSS specification consist of a "Core Protocols, Elements, and Bindings" specification (the
- 85 Core) and a number of profiles.
- The Core specification provide the basic protocols and elements which are adapted to support specific use cases in the DSS profiles. The Core consists of:
- 88 Skeleton protocols for signing and verifying
 - Optional elements that can be "mixed in" to the skeleton protocols to support the requirements of the different profiles. This includes an XML timestamp and elements to control a range of approaches to creation and verification of signatures,
 - A range of transport and security bindings that selected as required by profiles.
- The DSS profiles specify the options and bindings to be used with the skeleton protocols to meet the requirements of a particular application or use case. A profile may also specify additional elements and / or bindings where necessary to meet its own particular needs.
- 96 Profiles are either abstract or concrete. Concrete profiles provide a complete selection of the
- 97 options giving the basis for interoperability: products implementing concrete profiles should be
- 98 compatible at the level of protocol defined by DSS. Abstract profiles add some functionality or
- 99 options to the core that can be inherited by concrete profiles, or by other abstract profiles (and in
- some cases, concrete profiles can be made more concrete through inheritance as well).

- These relationships can be visualized as an inheritance graph, with the core as the root node, and a directed acyclic graph of profiles and sub-profiles extending below it.
- The DSS TC has produced several profiles so far, and is likely to produce further profiles in the future. Below is a summary of the existing DSS profiles.

2 Current DSS Profiles

2.1 Time-stamp Profile

108 **2.1.1 Overview**

- 109 The Time-stamp profile define the use of the DSS Core protocols to support creation and
- 110 verification of time-stamps. The profile includes support for the creation of XML Time-stamps as
- defined in the Core and binary time-stamps as defined in [RFC 3161].

112 2.1.2 Relationship to other Profiles

113 None.

106

107

114 **2.2 Asynchronous Profile**

115 **2.2.1 Overview**

- 116 Although most applications of the OASIS Digital Signature Service supply the results
- immediately, there is a demand for deferred delivery of results. For example, the German
- 118 Signature Law explicitly requires the commitment of the certificate holder or at least a time slot for
- the certificate holder to deny the signing request.
- 120 This abstract profile defines a simple mechanism for asynchronous signing and verification
- 121 requests. Concrete profiles that use this abstract profile allow the client to submit a request which
- the server doesn't respond to right away. Instead, the client can poll the server until the response
- is ready.

124 2.2.2 Relationship to other Profiles

125 This profile is a parent of the code-signing profile.

2.3 Code-Signing Profile

127 **2.3.1 Overview**

- 128 Code-signing allows the recipient of a software program to receive assurances regarding the
- 129 origin and integrity of a program. The recipient may use this information to make a trust decision
- on whether to install or execute the program.
- 131 Centralizing the generation of signatures in the code-signing process allows for the roles of the
- 132 software developer and the code signer to be separated. This has the advantage that keys used
- for signing software programs can be better managed, access to the keys can be better
- 134 controlled, audit trails can be centrally kept, event records can be reliably archived, and signing
- 135 policies can be rigorously enforced.
- 136 This abstract profile provides a basic framework for code-signing independent of any specific
- 137 signature schemes or formats. Specifying the use of specific signature schemes and formats is
- 138 left to concrete sub-profiles. For instance, a code-signing profile should be defined for Java 2
- 139 Micro Edition code-signing and Authenticode code-signing.

2.3.2 Relationship to other Profiles

141 This profile is a child of the asynchronous profile, and a parent of the J2ME code-signing profile.

142 2.4 J2ME code-signing profile

143 **2.4.1 Overview**

- 144 This specification provides a concrete profile based on the Code-Signing Profile for requesting
- the generation of signatures as specified in the Java 2 Micro Edition (J2ME), Mobile Information
- 146 Device Profile 2.0 [MIDP 2.0].

147 2.4.2 Relationship to other Profiles

This profile is a child of the asynchronous profile, and the code-signing profile.

149

2.5 Entity Seal Profile

151 **2.5.1 Overview**

- 152 This profile supports creation and validation of a "seal" created by a given Entity or Organization
- 153 on electronic data.
- 154 The seal is a form of electronic signature which:
- a) protects the integrity of the document,
- b) includes the time at which the seal was applied proving that the data existed at the given time.
- 158 c) includes the identity of the entity requesting the seal,
- may include a statement of intent for applying the seal.
- This profile is concrete except for the security binding, which must be specified before using this
- in a particular environment.

2.5.2 Relationship to other Profiles

163 None.

164

165

2.6 Electronic Postmark (EPM) Profile

166 **2.6.1 Overview**

- 167 The Electronic PostMarking service [EPM] is a Universal Postal Union (UPU) endorsed standard
- aimed at providing generalized signature creation, signature verification, timestamping, and
- 169 receipting services for use by and across Postal Administrations and their target customers.
- 170 Although the total scope and functional coverage of the EPM's service offering are outside the
- immediate scope of the DSS initiative, the UPU wishes to offer its client base a DSS-compliant
- 172 subset of the EPM for clients who wish to maintain OASIS compliance in the core areas of
- 173 signature and timestamp creation and verification.

174 2.6.2 Relationship to other Profiles

175 None.

176

177 2.7 German Signature Law Profile

178 **2.7.1 Overview**

- 179 This abstract profile supports creation and validation of qualified signatures according to the
- guidelines given by the German signature law [SigG] and its associated regulations. The EU has
- 181 certified that the German signature law complies with the European legal framework, so this
- profile may be used as a template for national profiles all over Europe.

183 2.7.2 Relationship to other Profiles

184 None.

2.8 AdES Profile

186 **2.8.1 Overview**

- 187 This set of profiles supports the creation and verification of XML and binary Advanced Electronic
- 188 Signatures as defined in [XAdES] and [TS 101 733].

2.8.2 Relationship to other Profiles

190 None.

191

185

192 **2.9 Signature Gateway Profile**

193 **2.9.1 Overview**

- The Signature Gateway profile specifies the use of DSS to support the transform of a signature.
- 195 This Signature Gateway transforms both signing technology and credential logistics. The signing
- technology specifies the mechanisms through which one creates and verifies a signature.
- 197 Example technologies include, but are not limited to photocopied signatures, signatures using
- 198 public key infrastructures, and signatures defined using symmetric keying material. Credential
- 199 logistics, describes the means to distribute credentials to remote parties; and the associated
- vehicle for distributing trust. Although electronic means allows communication at a distance,
- 201 geographic separation increases the difficulty of trusting one's peers. Credentials overcome
- 202 many of the geographic impediments to trust; and the associated logistics securely define the
- means of managing the credential lifecycle, e.g., distribution, revocation, renewal, and retirement.

204 2.9.2 Relationship to other Profiles

205 None.

206 207

3 References

208

209

212

3.1 DSS Specifications

- The current list of DSS Specifications are available through the OASIS DSS home page:
- 211 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dss

3.2 Other Specifications

213		
214	[XMLSig]	D. Eastlake et al. XML-Signature Syntax and Processing. W3C
215		Recommendation, February 2002.
216		http://www.w3.org/TR/1999/REC-xml-names-19990114
217	[RFC 3369]	R. Housley. Cryptographic Message Syntax. IETF RFC 3369, August
218		2002.
219		http://www.ietf.org/rfc/rfc2459.txt.
220	[TS 101733]	Advanced Electronic Signatures. ETSI TS 101 733.
221	[XAdES]	XML Advanced Electronic Signatures. ETSI TS 101 903
222	[RFC 3161]	C. Adams, P. Cain, D. Pinkas, R. Zuccherato. Internet X.509 Public Key
223		Infrastructure Time-Stamp Protocol (TSP). IETF RFC 3161, August
224		2001.
225		http://www.ietf.org/rfc/rfc3161.txt.
226	[MIDP 2.0]	Mobile Information Device Profile for Java™ 2 Micro Edition Version 2.0,
227		JSR 118 Expert Group
228	[EPM]	Universal Postal Union, Electronic PostMark Web Service Description
229		Language (WSDL) the UPU's Postal Technology Centre
230		http://www.ptc.upu.int/.
231	[SigG]	Framework for Electronic Signatures, Amendment of Further Regulations
232		Act (Signaturgesetz – SigG).
233		http://www.regtp.de/imperia/md/content/tech_reg_t/digisign/119.pdf
234		