
Web Services for Building Controls at a Crossroads

Two years ago, controls industry leaders came together at BuilConn to
launch oBIX, an initiative to bring control systems to the enterprise by
leveraging the best practices of the data center. In the IT world, innovators
were no longer building bigger systems, but were instead developing
approaches to orchestrate many, many, independent systems. Monolithic,
single purpose systems tend to be inflexible and brittle in the face of change.
Systems built by dynamically federating components from independent
systems remain nimbler than the monolithic systems, better able to adapt to
changing requirements, and operate more effectively across corporate
boundaries.

This revolution was driven in part by near ubiquitous adoption of XML.
Because XML is self describing and human readable, interface problems
could be resolved quickly. This revolution had many names, from Service
Oriented Architecture (SOA) to Grid Computing. A key outgrowth of XML
adoption is the widespread adoption of Web services, using XML to send
messages between systems. The most broadly adopted format for XML
messages is SOAP. Another key component of this revolution was directory
enabled networking, wherein organizationally aware security permeated the
fabric of systems. As these security systems spanned organizations, it grew
into Federated Identity Management, wherein a single user’s identity
spanned system and organizational boundaries.

In the post September 11, 2001 world, government embraced these
approaches as well, as new organizational structures and new challenges
demanded that agencies be able to share information and integrate
processes across traditional boundaries. Large complex processes, encoded
in monolithic systems internal to each agency had to be re-crafted to share
information. This new openness did not mean, however that these agencies
could relinquish their business processes, often legally mandated.

Building Control systems, however, remained enmired in domain-specific
protocols. These systems could participate with other systems only in limited
ways, and with great effort. Even the wire protocols did not play well in the
new world where the isolated control network was a thing of the past. The
simplistic security of the control system, once stripped of isolation, provided
almost no security at all.

XML and SOAP, together with other Web services specifications, define an
open standards-based approach able to leverage the world of open
standards and corporate security to integrate disparate systems. Adoption of
Web services is a clear opportunity for the building controls world to enable

integration with enterprise systems making control operations and
information visible to the enterprise. Control systems must become first
class citizens on the corporate “enterprise service bus” by embracing the
session-less protocols of the web.

At BuilConn this year, we can see that first step is near fruition. Just about
any kind of control system can produce and interact with Web services. oBIX
will demonstrate interoperability and describe the path to the first release of
its standard. BACnet will demonstrate a capability and openness in its Web
services that almost no one would have anticipated two years ago. LON Web
services are maturing and becoming well understood. Nearly every control
system has some sort of XML interface. Walking around the trade show, one
can find numerous Web service gateways to get to the few systems without
Web services.

With all this progress in Web services, control systems are still not ready for
the enterprise. They remain controls-centric. They do not interact well with
other enterprise systems, or even with each other. Great progress has been
made, but there remains much more to accomplish.

We have had many conversations about this recently, both within oBIX and
with other interested parties. At the risk of being unfair to some, I will try to
simplify and condense the three perspectives: those of controls
professionals, of IT professionals, and of building operators. While the views
below are extracted from actual conversations, please realize that the
originals were longer and more cogent; the oversimplifications and mistakes
are probably mine.

Controls Standard Developer Perspective:

We are using Web Services to model control interfaces against which
applications can do fine-grained gets/sets. A single schema works for all
variety of devices. We also define a registry to allow for discovery of data by
traversing a tree-structured hierarchy of controls data. This hierarchical
abstraction allows access to all of the primitive sensors and actuators in a
building/campus. This Web service is the end-point for the IT skill set, there
is nothing behind it the IT world can talk to.

The last thing we want is a schema for each kind of device out there. We
want one schema that could model them all using a small set of primitive
values (because control is that simple). It is a very important goal of oBIX to
have a normalized view of the entire controls world. We have no standard
lexicon and won't for some time.

There are thousands of devices with different configurations; very few HVAC
devices have the same configuration. The device manufacturers and
vendors, if they even still exist, are not going to go back and create device
profiles for products they no longer sell. The IT community won't be
creating profiles for these devices because they can't even talk to them. The
burden will fall upon gateway servers, and the issue is, how easy will it be
for these servers to act as proxies for all of the different devices behind
them?

Because of the simplicity and elegance of our interface, we will be able to
auto-generate a good deal of the Web service interface, and move quickly to
deploy our Web services everywhere.

It is important that we do not limit what our Web services can be used for.
In the future, controls consultants will be able to get to control systems
securely without visiting the customer site. Any restriction on the granularity
of access will prevent us from getting the full benefit of Web services.

IT Professional / Systems Architecture Perspective:

Note:
In general, anything that begins WS is a Web Services specification.
WSRF is the Web Services Resource Framework
WSDM is Web Services Distributed Management
CIM is the Common Information Model (for computer/network resources)
DMTF is the Distributed Management Task Force

Web services is all about trying to figure out what "minimal" model is
needed to allow client applications to interoperate with services with minimal
shared understanding. The more shared understanding that is required, the
more brittle the system and the higher the bar is to interoperability.

The fundamental question when using Web services to model an application
domain is “What abstraction are we presenting in the application
programming model?” A simple hierarchy of values requiring a standardized
path traversal agreement requires the enterprise programmer to understand
control systems. This model makes it more difficult for any individual to
effectively determine how to integrate enterprise systems with building
controls systems (the number of people who understand both domains is
very small). The preferred model is an abstraction layer on top of physical
devices that presents the "capabilities" of the system, encapsulating the
details of the physical devices. The abstraction layer pushes down onto the
aggregation of the lower level physical sensors and actuators.

We have a similar situation when managing devices in a data center. The
goal is to find a common interface to data center components that is
sufficiently interesting to motivate 3rd party application software vendors to
program to. There is significant variation in servers, printers, network
controllers etc. However, there is a common core data model that provides
some level of interoperability/uniformity. This core data model is extensible,
allowing vendors to provide specific operations and properties if required.
With a standards based approach, third party application providers feel
confident to provide value add functionality.

This is similar to the problem of building controls. A domain (e.g. an office, a
floor of an office building, an entire building, an entire campus) has certain
“capabilities”, often described as a collection of resources. When each
resource has a well defined XML schema, one is able to model how an
application interacts with each resource. A Web services interface provides
me with further information about the set of operations an application can
invoke on that resource.

In a data center, resources have lifetime, they are created, deployed,
brought on/off line, crash, are un-deployed and destroyed. It appears that a
similar lifecycle exists with building resources (however, perhaps at a
timescale that is "longer than data center resources"). Different domains
would have registries (and potentially naming services) indicating which
resources are available in that domain, e.g. an office has a light resource, a
HVAC vent resource, a temperature sensor resource, a thermostat resource,
etc. Applications would interact with resources, and "discover" them within a
domain.

In WSRF (and therefore WSDM, Grid, other exploiters) we have chosen to
model the set of related data items and their values as an XML document
associated with a particular resource. So some resources are simple (one or
two data values). Some resources (like a data server) may have 100s of
properties. In either case, that "bag of state", modeled as a single XML
instance document, and validateable to an XML schema type associated with
the "resource type", is the thing of interest to the system. The individual
resources are important to consider, separately from the notion of how the
resource relates to other resources (either physically or logically grouped
together). There are separate techniques available for applications to reason
about the relationships between the resources.

WSRF is just a Web services framework; it is completely neutral to how it is
composed with the design of the specific resource and its XML schema.
WSDM is the same. CIM (DMTF) is the source we look to define the XML

schema properties for the actual "concrete" resources like servers, operating
systems etc.

Building Operator Perspective

Do Web services define interactions all the way down into the control world
by developing definitions to cover every controller and control process that
might be implemented—if so, then it’s no wonder the controls industry is
taking so long to implement a WS environment. All of our discussions have
been about using existing building controls to handle control level
transactions using LON or BACNET (or something proprietary or legacy), but
to provide access to those transactions at an enterprise level by turning the
existing “control object” into a fully encapsulated ”service”.

With my not being an IT guy, the discussion is a little hard to follow. I do
think that the concept of defining the commonality instead of the myriad
details does make any “conversion” or “porting” of control system
transactions (PID loops, optimal start, local demand management, or even
sensor calibration or historical data collection or many others) a much more
manageable task. If you try to define every detail of each control system as
a Web service then not only every vendor but perhaps even every enterprise
may end up having to develop a custom WSDL. If oBIX can provide a layer
of abstracted commonality that is applicable for all vendors and then provide
a detailed guide for vendor specific extensions that allow vendors to add
value to their own systems while at the same time providing the framework
to define how legacy systems need to bundle their existing data and
transactions into an open WS environment then that would meet most of my
goals.

I [the Building Operator] am in favor of abstraction at the enterprise level
even if the devil remains in the details at the building control level. I would
like to be able to tunnel to the details from a remote location but that may
be an appropriate use of vendor specific tools in any case and not an OBIX
thing at all (except may defining what a tunnel consists of)

My Perspective:

There is still a lot of distance between the three perspectives above. We
need further work within oBIX to bring them together.

We now have at least three WS-Building Controls standards that are either
useable or will be within a year. LON, BACNET, and oBIX can all bring control
systems to Web services. None of them is, yet, an enterprise interface to

controls. Between these three, we have WS-Building Controls, a complete
definition of what the control system engineer needs from Web services.

Were do we go from here?

WS-Building Controls, as defined above, is not enough.

I still want the abstraction that the enterprise needs. Few enterprise
programmers are trained in controls; nor do they want to be. The work has
been important, but it is not enough. We simply do not have the taxonomies
in place to make things useful to the enterprise. We also need to expose
these abstraction in a manner that can exploit other Web services standards,
such as WSRF.

One critical piece may be coming already. ASHRAE Guideline Project
Committee 20 (GPC 20) will provide the HVAC&R industry with XML
definitions. Standard definitions will be freely available from the ASHRAE
website. Publication of Guideline 20 is expected by 2007. If we accept GPC
20, then we have the lexicon we need for one domain. We need to identify
other bodies to define the lexicons for the other building controls domains.

I propose we define oBIX v2 as the application of common abstract lexicons
to each domain under oBIX. The focus of oBIX v2 will be to provide to the
enterprise the specific business needs of Scheduling, M&V, Performance,
Commissioning, etc. A profile of the oBIX v2 framework, then, might look
like:

Foundational protocols, used by controls professionals and systems
integrators

• WS-Buildings Controls:
o BACNET-WS
o LON-WS
o oBIX v1
o proprietary Web services

Functional Domain Services used by the enterprise: Owners, Operators, and
Tenants

• WS-Buildings HVAC (based on GPC 20)
• WS-Buildings Power
• WS-Buildings Access Control
• WS-Buildings Intrusion Detection
• WS-Buildings CCTV
• WS-Buildings Occupancy

Higher end integrated applications interacting with the Domain Services and
their exposing functionality through Web services

• WS-Buildings Performance (M&V, commissioning)
• WS-Buildings Analytics
• WS-Buildings Tenant Services

oBIX v2 should also compose with Web services specifications for Policy,
Security etc. in a fashion similar to that used by WSDM, WSM, et al. oBIX v2
should also include standard guidance for control silos coming to oBIX,
including:

• Standards for other industries to implement their own WS-Buildings
Services

• Reference implementations of oBIX as WSDM and WS-Management.
• Reference implementation for a combined oBIX/UPnP service.

Call to Action:

The annual meeting of oBIX is in Dallas on Monday afternoon, March 21,
before BuilConn. This is an open meeting, and I am inviting not only oBIX
members, but also all parties to come and discuss the future of Web services
and the enterprise. There are places at the table for BACNET and LON, for
Web services and IT, and for Owners and Operators.

It is said, “Well begun is half done.” Well, we are certainly well begun.
Please help us come and begin the rest.

