To: IEEE P1619.3 Task Group

From: P1619.3 Name Space Subgroup, Members:

Gideon Avida, Decru (NetApp)

Matt Ball, Quantum Corp.

Kevin Butt, IBM

Bob Griffin, RSA Security/EMC

Jack Harwood, RSA Security/EMC

Larry Hofer, Emulex

Joerg Huser, NXP Semiconductor

Glen Jaquette, IBM

Ravi Kavuri, Decru (NetApp)

Bob Lockhart, NeoScale Systems

Kevin Marks, Dell

Luther Martin, Voltage Security

Landon Curt Noll, NeoScale Systems

Arshad Noor, StrongAuth

Chris Williams, Hewlett-Packard

Date: September 5, 2007

Purpose: Proposed changes against P1619.3/D1 to incorporate a global unique key identifier

Introduction

The P1619.3 Name Space Subgroup has been working on a proposal to create a globally unique name space for creating key identifiers. This is an important component for interchange because cryptographic keys may travel between key managers of different organizations, and it needs to be possible to integrate the Key IDs within each manager. A collision of the Key ID in this case can cause many problems, including the loss of one of the keys, or difficultly in resolving the required key.

To create a globally unique Key ID, it is necessary to either use a Naming Authority (such as ICANN or IEEE), or use a sufficiently large random number that the chance of a name space collision is acceptably low (e.g. a 256-bit random number). The group was unable to decide on a single naming authority (or lack there-of), and so we decided to instead create a two-character code that then describes the format of the key identifier, including the naming authority.

This proposal is against P1619.3/D1. New changes are in blue and deletions are in read strikethrough.

Changes to P1619.3/D1

[Remove subclause 4.3.3.1 "Key Object", and replace with following starting at 4.4]

3. Definitions, acronyms, and abbreviations

For the purposes of this draft standard, the following terms and definitions apply. The Authoritative Dictionary of IEEE Standards, Seventh Edition, should be referenced for terms not defined in this clause.

3.1 Definitions

3.1.security object: A collection of data and metadata that controls the cryptographic properties of a different object. Examples of a security object: a cryptographic key, a policy, or set of policies, a security log entry, a user or client description, or authorization.

3.1.security object globally unique identifier (SO_GUID): a value that uniquely identifies a particular security object and that has a low probability of having the same value as another independent SO_GUID. See also security object.

3.1.POSIX portable filename character set: The set of characters defined by the IEEE Standard 1003.1 portable filename character set. This set consists of the following 65 characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period (%x2E), underscore (%x5F), and hyphen (%x2D) characters respectively. Upper- and lowercase letters shall retain their unique identities (i.e., they are case sensitive).

3.1.POSIX portable filename: An alphanumeric octet followed by zero or more octets from the POSIX portable filename character set. Upper- and lowercase letters shall retain their unique identities (i.e., they are case sensitive).

3.1.hexadecimal tri-graph: A ‘%’ character followed by two characters from the base16 encoding character set as defined by RFC 3548. The base16 encoding character set consists of the following 16 characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Note that lower case letters are not part of the hexadecimal encoding character set.

For purposes of this document each character is presented and stored as a full octet and for length calculation, a base16 tri-graph shall count as three octets.

3.1.encoded octet: A hexadecimal tri-graph where the value of the octet is represented in the two base16 encoding characters that follow the ‘%’ character.

3.1.KM FQDN: A Fully Qualified Domain Name consisting of only hexadecimal tri-graphs and the characters allowed in a domain name as defined by RFC 1034. The RFC 1034 domain name characters are:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 .

The last character is a period (%x2E).

In anticipation of internationalization of domain names, all characters that are not in the RFC 1034 domain name character set shall be represented as encoded octets. No other characters of the KM FQDN shall be encoded as a hexadecimal tri-graph.

 3.1.KM filename: A filename consisting of only hexadecimal tri-graphs and characters from the POSIX portable filename character set. All characters not part of the POSIX portable filename shall be represented as hexadecimal tri-graphs. No character from a valid POSIX portable filename shall be encoded as a hexadecimal tri-graph.

 3.1. Domain Identifier (DID): An 8-octet numeric identifier with a minimum value of 1 and a maximum value of 18446744073709551615. It is the Private Enterprise Number (PEN) as assigned by IANA at http://pen.iana.org/pen/PenApplication.page.

 3.1.Global Key Identifier (GKID): A 27-octet value consisting of three (3) 8-octet numerical identifiers separated by hyphens (%x2D). Each numerical identifier is a value ranging from 0 to 18446744073709551615; the first identifier is the Domain ID, the second identifier the Server ID and the third, and last, identifier is the Key ID. Collectively, the three numerical identifiers, each separated by a hyphen (0x2D) represents the Global Key ID.

3.1.Key Identifier (KID): An 8-octet numerical value ranging from 0 to 18446744073709551615.

3.1.Server Identifier (SID): An 8-octet numerical value ranging from 0 to 18446744073709551615.

4. Abbreviations

DID
Domain Identifier

FQDN
Fully Qualified Domain Name

GKID
Global Key Identifier

KID
Key Identifier

SID
Server Identifier

SO_GUID
security object globally unique identifier

URI
Universal Resource Identifier

5. General overview

5.4 Globally unique identifier for Key Management Services

5.4.1 Overview

Each security object stored within the KMS shall be associated with a security object global unique identifier (SO_GUID), as defined in this sub clause.

A SO_GUID shall contain the following information, in order:

· SO_Family: A mandatory two-character code that describes the format for the following fields

· SO_Domain: An optional Fully qualified domain name as defined in RFC 1034

· SO_Context: An optional value that identifies a name space that is common across a set of keys

· SO_Handle: A mandatory value that is unique under the given SO_Context and corresponds to a specific security object

The SO_Family shall be a value from :

Table A — SO_Family values

SO_Family
Description
Name Authority
Ref.

‘km’
A format based on a URI name space
ICANN

 ‘na’
A format based on an IEEE OUI name space
IEEE OUI

'rn'
A format based on 32 octet random numbers
None

‘ek’
A format based on the EKMI name space
None

Each format from shall support a unique serialization consisting of the concatenation of the three fields. The total length of the SO_GUID shall not exceed 1024 octets. The length of the SO_Handle shall be at least one octet.

The SO_GUID shall be constructed in a manner such that it is possible to unambiguously extract each of the three fields.

[TBD]

The transport layer shall be able to determine the over-all length of the SO_GUID.

5.4.2 km SO_Family: KMS Globally Unique ID using URI format with ICANN naming authority

The km SO_Family consists of URIs that are based on RFC 3986. When fully qualified they provide globally unique identifiers for security objects under key management.

URI syntax definition uses augmented Backus-Naur form (ABNF) as defined by RFC 4234 for descriptions.

If the SO_Family field of the SO_GUID is set to “km”, then the following requirements apply.

The SO_GUID shall consist of the following components:

<SO_GUID> = <SO_Family> “://” <SO_Domain> <SO_Context> <SO_Handle> / <SO_Directory>

· <SO_Directory> = <SO_Family> “://” <SO_Domain> <SO_Context>

a) <SO_Family> = “km”

· “km” shall be followed by “://” when preceding a <SO_Domain>

b) <SO_Domain> = <KM FQDN>

· <KM FQDN> <FQDN non-dot> 1*253 <FQDN octet> <FQDN non-dot>

· <hex> = DIGIT / “A” / “B” / “C” / “D” / “E” / “F”

· <dot> = %x2E

· <FQDN encoded non-dot> = “%” (“0” / “1” / “2”) <hex>

· <FQDN encoded non-dot> =/ “2” (DIGIT / “A” / “B” / “C” / “D” / “F”))

· <FQDN encoded non-dot> =/ “3” (“A” / “B” / “C” / “D” / “E” / “F”))

· <FQDN encoded non-dot> =/ “%” “4” “0”

· <FQDN encoded non-dot> =/ “%” “5” (“B” / “C” / “D” / “E” / “F”)

· <FQDN encoded non-dot> =/ “%” “6” “0”

· <FQDN encoded non-dot> =/ “%” “7” (“B” / “C” / “D” / “E” / “F”)

· <FQDN encoded non-dot> =/ “%” (“8” / “9” / A” / “B” / “C” / “D” / “E” / “F”) <hex>

· <FQDN encoded octet> = <FQDN encoded non-dot> / “%” “2” “E”

· <FQDN non-dot> = ALPHA / DIGIT / <FQDN encoded non-dot>

· <RFC1034 octet> = ALPHA / DIGIT / <dot>

· <FQDN octet> = <RFC1034 octet> / <FQDN encoded octet>

· The <SO_Domain> shall not begin nor end with a <dot>

· The maximum length of the <SO_Domain> shall be 255 octets even though <KM FQDN> as defined in the above ABNF may be longer than 255 octets. The API shall return an error if the <KM FQDN> length exceeds 255 octets.

· A <KM FQDN>, with the exception of the encoded octets, is defined by RFC1034

· A <SO_Domain> is unique on the Internet

c) <SO_Context> = <slash> <Object Space> <Path>

· <dash> = %x2E

· <slash> = %x2F

· <underscore> = %x5F

· <POSIX non-dot octet> = ALPHA / DIGIT / <underscore> / <dash>

· <POSIX octet> = <POSIX non-dot octet> / <dot>

· <Object Space> = <Object Type> / <FQDN Space> / <Reserved Space>

· <Object Type> = (ALPHA / DIGIT) 0*254<POSIX octet>

· <FQDN Space> = <dot> <KM FQDN>

· <Reserved Space> =/ 2 <dot> 0*254 <POSIX octet>

· The maximum length of the <FQDN Space> shall be 256 octets even though <KM FQDN> as defined in the above ABNF may be longer than 255 octets. The API shall return an error if the <KM FQDN> length exceeds 255 octets.

· The maximum length of an <Object Space> that starts with a <dot> shall be 256 octets. The maximum length of all other <Object Space> strings shall be 255 octets.

· The <Reserved Space> is reserved for future use by this standard

· <Path> = *(<slash> <Directory>) <slash>

· <Directory> = (ALPHA / DIGIT) 0*254 <POSIX octet>

· The <SO_Context> is unique within a given <SO_Domain>.

d) <SO_Handle> = <POSIX handle> / <non-POSIX encoded handle>

· <POSIX handle> = (ALPHA / DIGIT) 0*254 <POSIX octet>

· <non-POSIX encoded handle> = <non-POSIX encoded first octet> 0*254 <non-POSIX next octet>

· <non-POSIX first octet> = ALPHA / DIGIT / <POSIX encoded first>

· <non-POSIX encoded first> = “%” (“0” / “1” / “2”) <hex>

· <non-POSIX encoded first> =/ “3” (“A” / “B” / “C” / “D” / “E” / “F”))

· <non-POSIX encoded first> =/ “%” “4” “0”

· <non-POSIX encoded first> =/ “%” “5” (“B” / “C” / “D” / “E” / “F”)

· <non-POSIX encoded first> =/ “%” “6” “0”

· <non-POSIX encoded first> =/ “%” “7” (“B” / “C” / “D” / “E” / “F”)

· <non-POSIX encoded first> =/ “%” (“8” / “9” / A” / “B” / “C” / “D” / “E” / “F”) <hex>

· <non-POSIX next octet> = ALPHA / DIGIT / <dash> / <dot> / <underscore>

· <non-POSIX next octet> =/ <non-POSIX encoded octet>

· <non-POSIX encoded octet> = “%” (“0” / “1”) <hex>

· <non-POSIX encoded octet> =/ “2” (“A” / “B” / “C” / “F”))

· <non-POSIX encoded octet> =/ “3” (“A” / “B” / “C” / ”D” / “E” / “F”))

· <non-POSIX encoded octet> =/ “%” “4” “0”

· <non-POSIX encoded octet> =/ “%” “5” (“B” / “C” / “D” / “E”)

· <non-POSIX encoded octet> =/ “%” “6” “0”

· <non-POSIX encoded octet> =/ “%” “7” (“B” / “C” / “D” / “E” / “F”)

· <non-POSIX encoded octet> =/ “%” (“8” / “9” / A” / “B” / “C” / “D” / “E” / “F”) <hex>

· The maximum length of the <SO_Handle> shall be 255 octets even though <non-POSIX encoded handle> as defined in the above ABNF may be longer than 255 octets. The API shall return an error if the <non-POSIX encoded handle> length exceeds 255 octets.

· The a<SO_Handle> unique value within a given <SO_Context> under a given <SO_Domain>

· The <SO_Handle> is a KM filename.

· When used in fully qualified SOGUID for a non-directory security object, the <SO_Handle> follows the <SO_Context>

· The SOGUID of a directory security object has no <SO_Handle>

· A SO_Handle identifies a security object (i.e., key, policy, key set, key pool, client, log, record Number, etc.)

NOTE 1— The 1024 octet maximum length implies that not all the individual components of the SO_GUID can be at their maximum length at the same time.

The <Object Space> values for the Security Object Types defined in this standard shall be according to the following table:

Table B Required <Object Space> values for various Security Objects

Security Object Type
<Object Space> value

Key
“k” “e” “y”

Policy
“p” “o” “l” “i” “c” “y”

Key set
“s” “e” “t”

Key Pool
“p” “o” “o” “l”

Client
“c” “l” “i” “e” “n” “t”

Log
“l” “o” “g”

Record Number
“r” “e” “c”

Security objects with may be referenced in several ways:

1) Globally by: SO_Family, SO_Domain, SO_Context and SO_Handle

2) SO_Context and SO_Handle within the clients current SO_Domain

3) SO_Handle within a clients current SO_Context

The following are examples of a fully qualified SO_GUID in the km SO_Family:

1) km://kms.example.org/key/dir1/dir2/key123

4) km://example.com/key/dir1/%00%00%EA%05

5) km://kms.bigbank.example.com/key/000102030405060708090A0B0C0D0E0F

6) km://example.net/policy/bizpolicy/storsecpolicy/kmspolicy/keypolicy3

7) km://kms.subdomain.example.com/client/location/kmclient1

8) km://kms.division.bigcompany.example.com/key/Hayward/keyid1

9) km://dc4.bigfirm.example.biz/.product.example.com/legacy_key_from_old_product

10) km://dc4.bigfirm.example.biz/.acmeprod.example.biz/200708/acme_product_leyacy_key

5.4.2.1 km common methods

5.4.2.1.1 km SO_GUID constructor method

[To be added]

5.4.2.1.2 km SO_GUID parser method

[To be added]

5.4.2.1.3 km valid SO_GUID check method

[To be added]

5.4.2.1.4 km SO_GUID property list method

[To be added]

5.4.2.2 km specific methods

 [If needed, add family specific methods here]

5.4.3 na: SO_Context and SO_Handle using IEEE OUI name address authority

If the SO_Family field of the SO_GUID is set to 'na', then the following requirements apply:

a) The SO_Context field of the SO_GUID shall contain an 8-octet name address authority (NAA) identifier that identifies the KM Server that created the security object

b) The SO_Handle field of the SO_GUID shall contain a variable-length binary number that uniquely identifies this object within the scope of the NAA within the SO_Context field.

 shows the format of a SO_GUID when the family is set to 'na'.

Table C — Format of a SO_GUID with a family set to 'na'

Bit

Octet
7
6
5
4
3
2
1
0

0
'n' (6E16)

1
'a' (6116)

2
NAA

...
NAA specific

9

10
(MSB)
SO_Handle

n-1

(LSB)

If the SO_GUID length is less than 11 octets, then the GUID parser shall return FAIL. Otherwise, the parser shall return SO_Context and the NAA specific field forms the NAA identifier as defined by T10/SPC-4.

The NAA field shall contain one of the values given in .

Table D — Values for the NAA field

Value
Description
Name Authority
Reference

2
IEEE Extended
IEEE OUI
T10/SPC-4

3
Locally assigned
None
T10/SPC-4

5
IEEE Registered
IEEE OUI
T10/SPC-4

All others
Reserved

If the NAA field is set to 3 (i.e. locally assigned), then an NAA specific value of all zeros indicates that there is no valid context for this SO_GUID and that the SO_Handle is the only information that identifies the security object.

If the NAA field value is not contained within , then the parser shall return FAIL.

When using an NAA field value of 3 (i.e. locally assigned), then there is no assertion that this SO_GUID is globally unique. The KM Server should take care when migrating such security objects to ensure that the set of SO_GUIDs in the originating system do not collide with SO_GUIDs from the destination system.

The NAA specific field shall contain data as defined by the reference associated with the corresponding NAA field value.

The SO_Handle field shall contain an application-specific identifier to a particular security object that is unique within the scope of the NAA identifier. The SO_Handle shall contain at least 1 octet and no more than 64 octets. Otherwise, the SO_GUID parser shall return FAIL.

5.4.3.1 na common methods

5.4.3.1.1 na SO_GUID constructor method

[To be added]

5.4.3.1.2 na SO_GUID parser method

[To be added]

5.4.3.1.3 na valid SO_GUID check method

[To be added]

5.4.3.1.4 na SO_GUID property list method

[To be added]

5.4.3.2 na specific methods

 [If needed, add family specific methods here]

5.4.4 rn: SO_Handle using 1 to 64 octet random numbers and no naming authority

If the SO_Family field of the SO_GUID is set to 'rn', then the following requirements apply:

a) The SO_Context field of the SO_GUID shall contain a 2-octet length field (big Endean) followed by a variable-length random number of corresponding length.

c) The SO_Handle field of the SO_GUID shall be a 1 to 64 octet binary. This value should be derived from a random bit generator, and may be incremented for consecutive SO_Handle values.

5.4.4.1 rn methods

5.4.4.1.1 rn SO_GUID constructor method

[To be added]

5.4.4.1.2 rn SO_GUID parser method

[To be added]

5.4.4.1.3 rn SO_GUID valid SO_GUID check method

[To be added]

5.4.4.1.4 rn SO_GUID property list method

[To be added]

5.4.4.2 rn specific methods

 [If needed, add family specific methods here]

5.4.5 ek: SO_Context and SO_Handle using Enterprise Key Management Infrastructure (EKMI)

If the SO_Family field of the SO_GUID is set to “ek”, then the following requirements apply.

The SO_GUID shall consist of the following components:

<SO_GUID> = <SO_Family> “://” <SO_Handle> /

a) <SO_Family> = “ek”

· “ek” shall be followed by “://” when preceding a <SO_Handle>

b) <SO_Handle> = <GKID>

· <GKID> = <DID> 0x2D <SID> 0x2D <KID>

· <DID> = DIGIT 1*8

· <SID> = DIGIT 1*8

· <KID> = DIGIT 1*8

· The maximum length of the <SO_Handle> shall be 27 octets. The API shall return an error if the length exceeds 27 octets.

· A SO_Handle identifies a security object - i.e., key

Valid examples of of the SO_Handle within the “ek” namespace are as follows:

· 0-0-0

· 1-2-3

· 10514-22-344342232

· 18446744073709551615-18446744073709551615-18446744073709551615

5.4.5.1 ek common methods

5.4.5.1.1 ek SO_GUID constructor method

[To be added]

5.4.5.1.2 ek SO_GUID parser method

[To be added]

5.4.5.1.3 ek valid SO_GUID check method

[To be added]

5.4.5.1.4 ek SO_GUID property list method

[To be added]

5.4.5.2 ek specific methods

 [If needed, add family specific methods here]

Annex A
(informative)
Discussion of SO_GUID formats

A.1 Comparison Chart of Name Spaces

Table A.1 shows a quantitative comparison of the various attributes of the allowed SO_GUID formats

Table A.1 — Attributes of Name Spaces

Attributes
URI
IEEE OUI
Random
EKMI

Naming Authority
ICANN
 IEEE
None
None

Reference Documentation
RFC 1034, RFC1035,
RFC 3548,
RFC 3986,

IEEE Standard 1003.1

EKMI Specification

Number of SO_Domains in the SO_Family
Greater than 65^255
0
0
0

Number of SO_Contexts in the SO_Family
Greater than 65^765
2^64
0
2^64

0

Number of SO_Handles in the SO_Family
Greater than 65^1020
2^224
 2^512
2^128

2^192

SO_GUID length in octets
13 to 1024
28
1 to 64
16

27

SO_Domain length in octets
1 to 255
0
0
0

SO_Context ID length in octets
3 to 512
8
0
8

0

SO_Handle length in octets
1 to 255
28
1 to 64
8

27

Vendor Definable Namespace support
SO_Context Path Structure
Yes
No
No

Customer Definable Namespace support
SO_Context Path Structure
Yes (potential issues)
No
No

Ability to map SO_Handle to SO_GUID within SO_Context
Yes
Yes
Yes
No

Multiple SO_Handle definitions supported
Yes
No
No
No

Number of SO_Handle definitions supported
Definable per Context
1
1
1

Differentiation between SO_Handle and SOGUID for short and long form identification of keys
Yes
Yes
No
Yes

Keys sharing between organizations using unique namespace
Yes
Yes
No
No

SO_Handle defined by Key Generator, KM Client, KM Server, Both* or Any**
Any
Any
Any
KM Client

KM Server

 * Both denotes that two or more of the devices are required to generate a Key ID and/or GUID

** Any denotes that any one of the devices may generate the Key ID and/or GUID

A.2 SO_Family Advantages, Potential Concerns and Solutions

A.1.1 km SO_Family Advantages, Potential Concerns and Solutions

A.1.1.1 URI Advantages

· Ensures globally unique key ids that can be exchanged via the internet in an automated fashion using policy and/or access control mechanisms

· Makes use of existing standards to define namespace format while allowing individual applications to decide what Object ID format best suit the applications needs

· Uses well established, existing naming authority with the ability to limit lookups to local and/or remote destinations for keys, policies, etc…

· Support for legacy key namespaces that do not support a full URI implementation using redirects including the namespaces found in section 4.4.3 through 4.4.6

A.1.1.2 URI Potential Concerns and Solutions

· SO_GUID The size is not fixed and can be too large for some implementations

· Solutions can store a fixed size SO_Context and SO_Handle with media while SO_Family and SO_Domain are stored in the KM Client systems. Media that is transferred would potentially require manual intervention to import into another Domain or SO_Context.

A.1.2 na SO_Family Advantages, Potential Concerns and Solutions

A.1.2.1 IEEE OUI Advantages

· Compact format

· Many devices use NAA

A.1.2.2 IEEE OUI Potential Concerns

· Requires end users to provide their own unique NAA to ensure globally unique identifiers which will require additional costs not normally required for end users

· Use of existing vendor NAA works around this issue without requiring additional expense. Some manual configuration of KM Server and key locations would be required to share keys between organizations.

A.1.3 rn SO_Family Advantages, Potential Concerns and Solutions

A.1.3.1 Advantages of 32 Octet Random Numbers

· Supports existing naming formats for key identifiers

A.1.3.2 Potential Concerns of 32 Octet Random Numbers

· No guarantee that identifier can be globally unique when keys must be shared between environments

A.1.4 ek SO_Family Advantages, Potential Concerns and Solutions

A.1.4.1 Advantages of EKMI Name Space

· Supports existing naming formats for key identifiers

A.1.4.2 Potential Concerns of EKMI Name Space

· No guarantee that identifier is globally unique when keys must be shared between organizations

· With the addition of the Domain ID to the existing GKID definition (in the next DRAFT of the SKSML specification), the identifier becomes globally unique.

· Establishment of naming authority for 64 bit

· The next DRAFT of the SKSML will recommend using the IANA-issued Private Enterprise Numbers (PEN) as the naming authority for the Domain ID. Currently, nearly 30,000 PENs have been issued, and a well-defined process exists for ensuring uniqueness in numbers and values.

�Describe how a SO_GUID may be a redirect security object that refers to another SO_GUID. This will need to apply to all name spaces otherwise this needs to be defined on a per name space basis.

